

http://www.springer.com
http://www.springer.com/mycopy

Texts in Computational Science
and Engineering 6
Editors

Timothy J. Barth
Michael Griebel
David E. Keyes
Risto M. Nieminen
Dirk Roose
Tamar Schlick

http://www.springer.com
http://www.springer.com/mycopy

Hans Petter Langtangen

A Primer on Scientific
Programming
with Python

Third Edition

Hans Petter Langtangen
Simula Research Laboratory
Lysaker, Fornebu
Norway

On leave from:

Department of Informatics
University of Oslo
Oslo, Norway

ISSN 1611-0994 Texts in Computational Science and Engineering
ISBN 978-3-642-30292-3 ISBN 978-3-642-30293-0 (eBook)
DOI 10.1007/978-3-642-30293-0
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2012942179

Mathematics Subject Classification (2000): 26-01, 34A05, 34A30, 34A34, 39-01, 40-01, 65D15, 65D25,
65D30, 68-01, 68N01, 68N19, 68N30, 70-01, 92D25, 97-04, 97U50

© Springer-Verlag Berlin Heidelberg 2009, 2011, 2012
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this pub-
lication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s
location, in its current version, and permission for use must always be obtained from Springer. Permis-
sions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable
to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publica-
tion, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors
or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

http://www.springer.com
http://www.springer.com/mycopy

Preface

The aim of this book is to teach computer programming using exam-
ples from mathematics and the natural sciences. We have chosen to use
the Python programming language because it combines remarkable ex-
pressive power with very clean, simple, and compact syntax. Python is
easy to learn and very well suited for an introduction to computer pro-
gramming. Python is also quite similar to Matlab and a good language
for doing mathematical computing. It is easy to combine Python with
compiled languages, like Fortran, C, and C++, which are widely used
languages for scientific computations. A seamless integration of Python
with Java is offered by a special version of Python called Jython.

The examples in this book integrate programming with applications
to mathematics, physics, biology, and finance. The reader is expected to
have knowledge of basic one-variable calculus as taught in mathematics-
intensive programs in high schools. It is certainly an advantage to take
a university calculus course in parallel, preferably containing both clas-
sical and numerical aspects of calculus. Although not strictly required,
a background in high school physics makes many of the examples more
meaningful.

Many introductory programming books are quite compact and focus
on listing functionality of a programming language. However, learning
to program is learning how to think as a programmer. This book has its
main focus on the thinking process, or equivalently: programming as a
problem solving technique. That is why most of the pages are devoted
to case studies in programming, where we define a problem and explain
how to create the corresponding program. New constructions and pro-
gramming styles (what we could call theory) is also usually introduced
via examples. Special attention is paid to verification of programs and
to finding errors. These topics are very demanding for mathematical
software, because the unavoidable numerical approximation errors are
possibly mixed with programming mistakes.

v

vi Preface

By studying the many examples in the book, I hope readers will
learn how to think right and thereby write programs in a quicker and
more reliable way. Remember, nobody can learn programming by just
reading – one has to solve a large amount of exercises hands on. The
book is therefore full of exercises of various types: modifications of
existing examples, completely new problems, or debugging of given
programs.

To work with this book, I recommend to use Python version 2.7 (al-
though version 2.6 will work for most of the material). For Chapters 5–9
and Appendices A–E you need the NumPy, Matplotlib, SciTools pack-
ages, and for Appendix G Cython is also required. There is a web page
associated with this book, http:/hplgit.github.com/scipro-primer,
which lists the software you need and explains briefly how to install
it. This page also contains all the files associated with the program
examples in this book.

Python Version 2 or 3? A common problem among Python program-
mers is to choose between version 2 or 3, which at the time of this
writing means choosing between version 2.7 and 3.3. The general rec-
ommendation is to go for version 3, but programs are then not com-
patible with version 2 and vice versa. There is still a problem that
much useful mathematical software in Python has not yet been ported
to version 3. Therefore, scientific computing with Python still goes
mostly with version 2. A widely used strategy for software developers
who want to write Python code that works with both versions, is to
develop for v2.7, which is very close to what is accepted in version 3,
and then use the translation tool 2to3 to automatically translate the
code to version 3.

When using v2.7, one should employ the newest syntax and modules
that make the differences between version 2 and 3 very small. This
strategy is adopted in the present book. Only two differences between
versions 2 and 3 are expected to be significant for the programs in
the book: a/b implies float division in version 3 if a and b are inte-
gers, and print ’Hello’ in version 2 must be turned into a function
call print(’Hello’) in version 3. None of these differences should lead
to any annoying problems when future readers study the book’s v2.7
examples, but program in version 3. Anyway, running 2to3 on the ex-
ample files generates the corresponding version 3 code.

Contents. Chapter 1 introduces variables, objects, modules, and text
formatting through examples concerning evaluation of mathematical
formulas. Chapter 2 presents programming with while and for loops
as well as lists, including nested lists. The next chapter deals with two
other fundamental concepts in programming: functions and if-else
tests. Successful further reading of the book demands that Chapters 1–
3 are digested.

http://hplgit.github.com/scipro-primer

Preface vii

How to read data into programs and deal with errors in input are the
subjects of Chapter 4. Chapter 5 introduces arrays and array computing
(including vectorization) and how this is used for plotting y = f(x)
curves and making animation of curves. Many of the examples in the
first five chapters are strongly related. Typically, formulas from the first
chapter are used to produce tables of numbers in the second chapter.
Then the formulas are encapsulated in functions in the third chapter.
In the next chapter, the input to the functions are fetched from the
command line, or from a question-answer dialog with the user, and
validity checks of the input are added. The formulas are then shown
as graphs in Chapter 5. After having studied Chapters 1–5, the reader
should have enough knowledge of programming to solve mathematical
problems by what many refer to as “Matlab-style” programming.

Chapter 6 explains how to work with files and text data. Class pro-
gramming, including user-defined types for mathematical computations
(with overloaded operators), is introduced in Chapter 7. Chapter 8
deals with random numbers and statistical computing with applica-
tions to games and random walks. Object-oriented programming, in the
meaning of class hierarchies and inheritance, is the subject of Chap-
ter 9. The key examples here deal with building toolkits for numerical
differentiation and integration as well as graphics.

Appendix A introduces mathematical modeling, using sequences and
difference equations. We also treat sound as a sequence. Only program-
ming concepts from Chapters 1–5 are used in this appendix, the aim
being to consolidate basic programming knowledge and apply it to
mathematical problems. Some important mathematical topics are in-
troduced via difference equations in a simple way: Newton’s method,
Taylor series, inverse functions, and dynamical systems.

Appendix B deals with functions on a mesh, numerical differenti-
ation, and numerical integration. A simple introduction to ordinary
differential equations and their numerical treatment is provided in Ap-
pendix C. Appendix D shows how a complete project in physics can be
solved by mathematical modeling, numerical methods, and program-
ming elements from Chapters 1–5. This project is a good example on
problem solving in computational science, where it is necessary to in-
tegrate physics, mathematics, numerics, and computer science.

How to create software for solving systems of ordinary differential
equations, primarily using classes and object-oriented programming,
is the subject of Appendix E. The material in this appendix brings
together many of the programming concepts from Chapters 1–9 in a
mathematical setting and ends up with a flexible and general tool for
solving differential equations.

Appendix F is devoted to the art of debugging, and in fact problem
solving in general. Speeding up numerical computations in Python by

viii Preface

migrating code to C via Cython is exemplified in Appendix G. Finally,
Appendix H deals with various more advanced technical topics.

Most of the examples and exercises in this book are quite short.
However, many of the exercises are related, and together they form
larger projects, for example on Fourier Series (3.13, 4.18–4.20, 5.30,
5.31), numerical integration (3.5–3.8, 5.38–5.39, A.16), Taylor series
(3.30, 5.21, 5.28, A.18–A.19, 7.29), piecewise constant functions (3.24–
3.28, 5.23, 5.36–5.37, 7.19–7.25), inverse functions (7.26, E.7–E.10),
falling objects (E.11–E.13, E.31–E.32), oscillatory population growth
(A.23–A.25, 7.40–7.41), epidemic disease modeling (E.35–E.42), analy-
sis of web data (6.22, 6.27–6.29), optimization and finance (A.26, 8.44–
8.45), statistics and probability (4.24–4.26, 8.23–8.25), hazard games
(8.8–8.14), random walk and statistical physics (8.34–8.42), noisy data
analysis (8.46–8.50), numerical methods (5.14–5.16, 7.8–7.9, A.12, 7.28,
9.16–9.18, E.21–E.29), building a calculus calculator (7.42, 7.43, 9.19,
9.20), and creating a toolkit for simulating vibrating engineering sys-
tems (E.44–E.49).

Chapters 1–9 and Appendix E have from 2007 formed the core of an
introductory first semester course on scientific programming (INF1100)
at the University of Oslo.

Changes to the First Edition. Besides numerous corrections of mis-
prints, the second edition features a major reorganization of several
chapters. Chapter 2 in the first edition, Basic Constructions, was a
comprehensive chapter, both with respect to length and topics. This
chapter has therefore been split in two for the second edition: a new
Chapter 2 Loops and Lists and a new Chapter 3 Functions and Branch-
ing. A new Chapter 2.1.4 explicitly explains how to implement a sum-
mation expression by a loop, and later examples present alternative
implementations.

All text and program files that used the getopt module to parse
command-line options in the first edition now make use of the sim-
pler and more flexible argparse module (new in Python v2.7/3.1). The
material on curve plotting in Chapter 5 has been thoroughly revised.
Now we give an introduction to plotting with Matplotlib as well as
SciTools/Easyviz.

While the first edition almost exclusively used “star import” for con-
venience (e.g., from numpy import * and from scitools.std import *),
the second edition tries to adhere to the standard import numpy as

np. However, in mathematical formulas that are to work with scalar
and array variables, we do not want an explicit prefix. Avoiding the
namespace prefixes is important for making formulas as close to the
mathematical notation as possible as well as for making the transition
from or to Matlab smooth. The two import styles have different merits
and applications. The choice of style in various examples is carefully
thought through in the second edition.

Preface ix

Chapter 5 in the first edition, Sequences and Difference Equations,
has now become Appendix A. Chapter 6 in the first edition, Files,
Strings, and Dictionaries, has been substantially revised. Chapter 6.4
on downloading and interpreting data from web pages have now com-
pletely new examples. Exercises are also reworked to fit with the new
examples.

The material on differential equations in chapters on classes (Ch. 7
and 9 in the first edition) has been extracted, reworked, slightly ex-
panded, and placed in Appendix E. This restructuring allows a more
flexible treatment of differential equations, and parts of this important
topic can be addressed right after Chapter 3, if desired.

To distinguish between Python’s random module and the one in
numpy, we have in Chapter 8 changed practice compared with the first
edition. Now random always refers to Python’s random module, while
the random module in numpy is normally invoked as np.random (or oc-
casionally as numpy.random). The associated software has been revised
similarly.

Changes to the Second Edition. Many typos have been fixed in the
third edition, a lot of examples have been improved, some material has
been reorganized and extended, some material is new, several exercises
have been removed and many new ones added, and numerous exercises
are reformulated after feedback from teachers. The associated SciTools
package is also extensively upgraded.

The reorganized and extended material covers Chapter 4.2.4
on command-line parsing, Chapter 5.5 on vectorization, and Ap-
pendix E.2.8 on building simulation software for ODEs. The new ma-
terial consists of Chapter 6.2.4 on dictionaries with default values and
ordering, Chapter 9.4 on making a drawing program, Appendix A.1.7
on integrals as difference equations, Appendix G on using Cython and
combining Python with fast C code, and the bioinformatics examples
in Chapters 3.3, 6.6, 8.3.4, and 9.5.

Four new projects are added: numerical integration (Exercises 3.5–
3.8, 5.38–5.39, A.16), piecewise constant functions (Exercises 3.24–3.28,
5.23, 5.36–5.37, 7.19–7.25), inverse functions (Exercises 7.26, E.7–E.10),
and epidemic modeling (Exercises E.35–E.42).

The software for ODEs derived in Appendix E and the drawing pro-
gram from Chapter 9.4 have been much further developed into the
packages Odespy and Pysketcher, both available from github.com.

Acknowledgments. First, I want to express my thanks to Aslak Tveito
for his enthusiastic role in the initiation of this book project and for
writing Appendices B and C about numerical methods. Without Aslak
there would be no book. Another key contributor is Ilmar Wilbers.
His extensive efforts with assisting the book project and help estab-
lishing the associated course (INF1100) at the University of Oslo are

x Preface

greatly appreciated. Without Ilmar and his solutions to numerous tech-
nical problems the book would never have been completed. Johannes
H. Ring also deserves a special acknowledgment for the development of
the Easyviz graphics tool and for his careful maintenance and support
of software associated with the book. Professor Loyce Adams studied
the entire book, solved all the exercises, found numerous errors, and
suggested many improvements. Her contributions are so much appre-
ciated. I also want to thank Geir Kjetil Sandve for being the primary
author of the third edition’s new series of computational bioinformat-
ics examples in Chapters 3.3, 6.6, 8.3.4, and 9.5, with contributions
from Sveinung Gundersen, Ksenia Khelik, Halfdan Rydbeck, and Kai
Trengereid.

Several people have helped to make substantial improvements of the
text, the exercises, and the associated software components. The author
is thankful to Ingrid Eide, St̊ale Zerener Haugnæss, Kristian Hiorth,
Arve Knudsen, Tobias Vidarssønn Langhoff, Martin Vonheim Larsen,
Kine Veronica Lund, Solveig Masvie, H̊akon Møller, Rebekka Mørken,
Mathias Nedrebø, Marit Sandstad, Helene Norheim Semmerud, Lars
Storjord, Fredrik Heffer Valdmanis, and Torkil Vederhus for their con-
tributions. Hakon Adler is greatly acknowledged for his careful reading
of early various versions of the manuscript. The professors Fred Es-
pen Bent, Ørnulf Borgan, Geir Dahl, Knut Mørken, and Geir Pedersen
have contributed with many exciting exercises from various application
fields. Great thanks also go to Jan Olav Langseth for creating the cover
image.

This book and the associated course are parts of a comprehensive re-
form at the University of Oslo, called Computing in Science Education.
The goal of the reform is to integrate computer programming and sim-
ulation in all bachelor courses in natural science where mathematical
models are used. The present book lays the foundation for the modern
computerized problem solving technique to be applied in later courses.
It has been extremely inspiring to work with the driving forces behind
this reform, especially the professors Morten Hjorth–Jensen, Anders
Malthe–Sørenssen, Knut Mørken, and Arnt Inge Vistnes.

The excellent assistance from the Springer system, in particular
Martin Peters, Thanh-Ha Le Thi, Ruth Allewelt, Peggy Glauch-Ruge,
Nadja Kroke, Thomas Schmidt, Patrick Waltemate, Donatas Akma-
navičius, and Edita Baronaitė, is highly appreciated, and ensured a
smooth and rapid production of all editions of this book.

Oslo Hans Petter Langtangen

Contents

1 Computing with Formulas . 1
1.1 The First Programming Encounter: A Formula 1

1.1.1 Using a Program as a Calculator 2
1.1.2 About Programs and Programming 2
1.1.3 Tools for Writing Programs 3
1.1.4 Using Idle to Write the Program. 4
1.1.5 How to Run the Program . 7
1.1.6 Verifying the Result . 8
1.1.7 Using Variables . 8
1.1.8 Names of Variables . 9
1.1.9 Reserved Words in Python 10
1.1.10 Comments . 10
1.1.11 Formatting Text and Numbers 11

1.2 Computer Science Glossary . 14
1.3 Another Formula: Celsius-Fahrenheit Conversion 19

1.3.1 Potential Error: Integer Division 19
1.3.2 Objects in Python . 20
1.3.3 Avoiding Integer Division . 21
1.3.4 Arithmetic Operators and Precedence 22

1.4 Evaluating Standard Mathematical Functions 23
1.4.1 Example: Using the Square Root Function 23
1.4.2 Example: Using More Mathematical Functions . 25
1.4.3 A First Glimpse of Round-Off Errors 26

1.5 Interactive Computing . 27
1.5.1 Using the Python Shell . 27
1.5.2 Type Conversion . 28
1.5.3 IPython . 29

1.6 Complex Numbers . 32
1.6.1 Complex Arithmetics in Python 33

xi

xii Contents

1.6.2 Complex Functions in Python 33

1.6.3 Unified Treatment of Complex and Real Functions 34

1.7 Summary . 35

1.7.1 Chapter Topics . 35

1.7.2 Example: Trajectory of a Ball 39

1.7.3 About Typesetting Conventions in This Book . . . 40

1.8 Exercises . 41

2 Loops and Lists . 49

2.1 While Loops . 49

2.1.1 A Naive Solution . 49

2.1.2 While Loops . 50

2.1.3 Boolean Expressions . 52

2.1.4 Loop Implementation of a Sum 54

2.2 Lists . 55

2.2.1 Basic List Operations . 55

2.2.2 For Loops . 58

2.3 Alternative Implementations with Lists and Loops 60

2.3.1 While Loop Implementation of a For Loop 60

2.3.2 The Range Construction . 60

2.3.3 For Loops with List Indices 61

2.3.4 Changing List Elements . 63

2.3.5 List Comprehension . 63

2.3.6 Traversing Multiple Lists Simultaneously 64

2.4 Nested Lists . 64

2.4.1 A Table as a List of Rows or Columns 65

2.4.2 Printing Objects . 66

2.4.3 Extracting Sublists . 67

2.4.4 Traversing Nested Lists . 69

2.5 Tuples . 71

2.6 Summary . 72

2.6.1 Chapter Topics . 72

2.6.2 Example: Analyzing List Data 75

2.6.3 How to Find More Python Information 78

2.7 Exercises . 79

3 Functions and Branching . 87

3.1 Functions . 87

3.1.1 Functions of One Variable . 87

3.1.2 Local and Global Variables 89

3.1.3 Multiple Arguments . 91

3.1.4 Multiple Return Values . 93

3.1.5 Functions with No Return Values 95

3.1.6 Keyword Arguments . 96

3.1.7 Doc Strings . 99

Contents xiii

3.1.8 Function Input and Output 100

3.1.9 Functions as Arguments to Functions 100

3.1.10 The Main Program . 102

3.1.11 Lambda Functions . 103

3.2 Branching . 104

3.2.1 If-Else Blocks . 104

3.2.2 Inline If Tests . 106

3.3 Mixing Loops, Branching, and Functions in
Bioinformatics Examples . 107

3.3.1 Counting Letters in DNA Strings 107

3.3.2 Efficiency Assessment . 113

3.4 Summary . 115

3.4.1 Chapter Topics . 115

3.4.2 Example: Numerical Integration 116

3.5 Exercises . 120

4 Input Data and Error Handling . 137

4.1 Asking Questions and Reading Answers 138

4.1.1 Reading Keyboard Input . 138

4.1.2 The Magic “eval” Function 139

4.1.3 The Magic “exec” Function 143

4.1.4 Turning String Expressions into Functions 144

4.2 Reading from the Command Line 145

4.2.1 Providing Input on the Command Line 145

4.2.2 A Variable Number of Command-Line Arguments 146

4.2.3 More on Command-Line Arguments 147

4.2.4 Option–Value Pairs on the Command Line 148

4.3 Handling Errors . 152

4.3.1 Exception Handling . 153

4.3.2 Raising Exceptions . 156

4.4 A Glimpse of Graphical User Interfaces 158

4.5 Making Modules . 161

4.5.1 Example: Interest on Bank Deposits 161

4.5.2 Collecting Functions in a Module File 162

4.5.3 Using Modules . 167

4.6 Summary . 169

4.6.1 Chapter Topics . 169

4.6.2 Example: Bisection Root Finding 172

4.7 Exercises . 180

5 Array Computing and Curve Plotting 187

5.1 Vectors . 188

5.1.1 The Vector Concept . 188

5.1.2 Mathematical Operations on Vectors 189

5.1.3 Vector Arithmetics and Vector Functions 191

xiv Contents

5.2 Arrays in Python Programs . 193
5.2.1 Using Lists for Collecting Function Data 193

5.2.2 Basics of Numerical Python Arrays 194
5.2.3 Computing Coordinates and Function Values 195

5.2.4 Vectorization . 196
5.3 Curve Plotting . 198

5.3.1 Matplotlib; Pylab . 198
5.3.2 Matplotlib; Pyplot . 202

5.3.3 SciTools and Easyviz . 204
5.3.4 Making Animations . 209

5.3.5 Curves in Pure Text . 214
5.4 Plotting Difficulties . 215

5.4.1 Piecewisely Defined Functions 216
5.4.2 Rapidly Varying Functions . 218

5.5 More Advanced Vectorization of Functions 219
5.5.1 Vectorizing StringFunction Objects 220

5.5.2 Vectorization of the Heaviside Function 221
5.5.3 Vectorization of a Hat Function 224

5.6 More on Numerical Python Arrays 226
5.6.1 Copying Arrays . 226

5.6.2 In-Place Arithmetics . 227
5.6.3 Allocating Arrays . 228

5.6.4 Generalized Indexing . 228
5.6.5 Testing for the Array Type 229
5.6.6 Compact Syntax for Array Generation. 230

5.6.7 Shape Manipulation . 230
5.7 Higher-Dimensional Arrays . 231

5.7.1 Matrices and Arrays . 231
5.7.2 Two-Dimensional Numerical Python Arrays 232

5.7.3 Array Computing . 235
5.7.4 Two-Dimensional Arrays and Functions of Two

Variables . 235
5.7.5 Matrix Objects . 236

5.8 Summary . 237
5.8.1 Chapter Topics . 237

5.8.2 Example: Animating a Function 239
5.9 Exercises . 243

6 Files, Strings, and Dictionaries . 257
6.1 Reading Data from File . 257

6.1.1 Reading a File Line by Line 258
6.1.2 Reading a Mixture of Text and Numbers 261

6.1.3 What Is a File, Really? . 262
6.2 Dictionaries . 266

6.2.1 Making Dictionaries . 266

Contents xv

6.2.2 Dictionary Operations . 267
6.2.3 Example: Polynomials as Dictionaries 269

6.2.4 Dictionaries with Default Values and Ordering . . 271
6.2.5 Example: File Data in Dictionaries 273

6.2.6 Example: File Data in Nested Dictionaries 274
6.2.7 Example: Comparing Stock Prices 278

6.3 Strings . 282
6.3.1 Common Operations on Strings 282

6.3.2 Example: Reading Pairs of Numbers 286
6.3.3 Example: Reading Coordinates 288

6.4 Reading Data from Web Pages . 291
6.4.1 About Web Pages . 291

6.4.2 How to Access Web Pages in Programs 292
6.4.3 Example: Reading Pure Text Files 293

6.4.4 Example: Extracting Data from HTML 295
6.5 Writing Data to File . 296

6.5.1 Example: Writing a Table to File 296
6.5.2 Standard Input and Output as File Objects 298

6.5.3 Reading and Writing Spreadsheet Files 300
6.6 Examples from Analyzing DNA . 305

6.6.1 Computing Frequencies . 305
6.6.2 Analyzing the Frequency Matrix 312

6.6.3 Finding Base Frequencies . 315
6.6.4 Translating Genes into Proteins 317
6.6.5 Some Humans Can Drink Milk, While Others

Cannot . 322
6.7 Summary . 323

6.7.1 Chapter Topics . 323
6.7.2 Example: A File Database . 325

6.8 Exercises . 329

7 Introduction to Classes . 341

7.1 Simple Function Classes . 342
7.1.1 Problem: Functions with Parameters 342

7.1.2 Representing a Function as a Class 344
7.1.3 Another Function Class Example 350

7.1.4 Alternative Function Class Implementations 351
7.1.5 Making Classes Without the Class Construct 353

7.2 More Examples on Classes . 356
7.2.1 Bank Accounts . 356

7.2.2 Phone Book . 358
7.2.3 A Circle . 359

7.3 Special Methods . 360
7.3.1 The Call Special Method . 361

7.3.2 Example: Automagic Differentiation 361

xvi Contents

7.3.3 Example: Automagic Integration 364
7.3.4 Turning an Instance into a String 366

7.3.5 Example: Phone Book with Special Methods 367
7.3.6 Adding Objects . 369

7.3.7 Example: Class for Polynomials 369
7.3.8 Arithmetic Operations and Other Special

Methods . 373

7.3.9 Special Methods for String Conversion. 374
7.4 Example: Class for Vectors in the Plane 375

7.4.1 Some Mathematical Operations on Vectors 376
7.4.2 Implementation . 376

7.4.3 Usage . 378
7.5 Example: Class for Complex Numbers 379

7.5.1 Implementation . 380
7.5.2 Illegal Operations . 381

7.5.3 Mixing Complex and Real Numbers 382
7.5.4 Special Methods for “Right” Operands 384

7.5.5 Inspecting Instances . 386
7.6 Static Methods and Attributes . 387

7.7 Summary . 388
7.7.1 Chapter Topics . 388

7.7.2 Example: Interval Arithmetics 389
7.8 Exercises . 395

8 Random Numbers and Simple Games 413
8.1 Drawing Random Numbers . 414

8.1.1 The Seed . 414
8.1.2 Uniformly Distributed Random Numbers 415

8.1.3 Visualizing the Distribution 416
8.1.4 Vectorized Drawing of Random Numbers 417

8.1.5 Computing the Mean and Standard Deviation . . . 418
8.1.6 The Gaussian or Normal Distribution 419

8.2 Drawing Integers . 420
8.2.1 Random Integer Functions . 421

8.2.2 Example: Throwing a Die . 422
8.2.3 Drawing a Random Element from a List 422

8.2.4 Example: Drawing Cards from a Deck 423
8.2.5 Example: Class Implementation of a Deck 425

8.3 Computing Probabilities . 428
8.3.1 Principles of Monte Carlo Simulation 428

8.3.2 Example: Throwing Dice . 429
8.3.3 Example: Drawing Balls from a Hat 432

8.3.4 Random Mutations of Genes 434
8.3.5 Example: Policies for Limiting Population Growth 439

8.4 Simple Games . 442

Contents xvii

8.4.1 Guessing a Number . 442
8.4.2 Rolling Two Dice . 443

8.5 Monte Carlo Integration . 446
8.5.1 Standard Monte Carlo Integration 446

8.5.2 Area Computing by Throwing Random Points . . . 448
8.6 Random Walk in One Space Dimension 450

8.6.1 Basic Implementation . 451
8.6.2 Visualization . 452

8.6.3 Random Walk as a Difference Equation 452
8.6.4 Computing Statistics of the Particle Positions . . . 453

8.6.5 Vectorized Implementation . 454
8.7 Random Walk in Two Space Dimensions 456

8.7.1 Basic Implementation . 456
8.7.2 Vectorized Implementation . 457

8.8 Summary . 459
8.8.1 Chapter Topics . 459

8.8.2 Example: Random Growth . 460
8.9 Exercises . 466

9 Object-Oriented Programming . 483
9.1 Inheritance and Class Hierarchies 483

9.1.1 A Class for Straight Lines . 484
9.1.2 A First Try on a Class for Parabolas 485

9.1.3 A Class for Parabolas Using Inheritance 485
9.1.4 Checking the Class Type . 487

9.1.5 Attribute Versus Inheritance 488
9.1.6 Extending Versus Restricting Functionality 489

9.1.7 Superclass for Defining an Interface 490
9.2 Class Hierarchy for Numerical Differentiation 492

9.2.1 Classes for Differentiation . 493
9.2.2 A Flexible Main Program . 496

9.2.3 Extensions . 497
9.2.4 Alternative Implementation via Functions 500

9.2.5 Alternative Implementation via Functional
Programming . 501

9.2.6 Alternative Implementation via a Single Class . . . 502

9.3 Class Hierarchy for Numerical Integration 504
9.3.1 Numerical Integration Methods 504

9.3.2 Classes for Integration . 505
9.3.3 Using the Class Hierarchy . 509

9.3.4 About Object-Oriented Programming 511
9.4 Class Hierarchy for Making Drawings 513

9.4.1 Using the Object Collection 514
9.4.2 Example of Classes for Geometric Objects 523

9.4.3 Adding Functionality via Recursion 528

xviii Contents

9.4.4 Scaling, Translating, and Rotating a Figure 531

9.5 Classes for DNA Analysis . 534

9.5.1 Class for Regions . 534

9.5.2 Class for Genes . 534

9.5.3 Subclasses . 539

9.6 Summary . 541

9.6.1 Chapter Topics . 541

9.6.2 Example: Input Data Reader 542

9.7 Exercises . 548

A Sequences and Difference Equations 557

A.1 Mathematical Models Based on Difference Equations . . 558

A.1.1 Interest Rates . 559

A.1.2 The Factorial as a Difference Equation 561

A.1.3 Fibonacci Numbers . 562

A.1.4 Growth of a Population . 563

A.1.5 Logistic Growth . 564

A.1.6 Payback of a Loan . 566

A.1.7 The Integral as a Difference Equation 567

A.1.8 Taylor Series as a Difference Equation 569

A.1.9 Making a Living from a Fortune 571

A.1.10 Newton’s Method . 571

A.1.11 The Inverse of a Function . 575

A.2 Programming with Sound . 577

A.2.1 Writing Sound to File . 578

A.2.2 Reading Sound from File . 579

A.2.3 Playing Many Notes . 580

A.2.4 Music of a Sequence . 580

A.3 Exercises . 583

B Introduction to Discrete Calculus 593

B.1 Discrete Functions . 593

B.1.1 The Sine Function . 594

B.1.2 Interpolation . 596

B.1.3 Evaluating the Approximation 596

B.1.4 Generalization . 597

B.2 Differentiation Becomes Finite Differences 599

B.2.1 Differentiating the Sine Function 600

B.2.2 Differences on a Mesh . 600

B.2.3 Generalization . 602

B.3 Integration Becomes Summation . 603

B.3.1 Dividing into Subintervals 604

B.3.2 Integration on Subintervals 605

B.3.3 Adding the Subintervals . 606

B.3.4 Generalization . 607

Contents xix

B.4 Taylor Series . 609
B.4.1 Approximating Functions Close to One Point 609
B.4.2 Approximating the Exponential Function 609
B.4.3 More Accurate Expansions . 610
B.4.4 Accuracy of the Approximation 612
B.4.5 Derivatives Revisited . 614
B.4.6 More Accurate Difference Approximations 615
B.4.7 Second-Order Derivatives . 617

B.5 Exercises . 619

C Introduction to Differential Equations 625
C.1 The Simplest Case . 626
C.2 Exponential Growth . 628
C.3 Logistic Growth . 633
C.4 A Simple Pendulum . 634
C.5 A Model for the Spread of a Disease 637
C.6 Exercises . 639

D A Complete Differential Equation Project 641
D.1 About the Problem: Motion and Forces in Physics 641

D.1.1 The Physical Problem . 641
D.1.2 The Computational Algorithm 644
D.1.3 Derivation of the Mathematical Model 644
D.1.4 Derivation of the Algorithm 646

D.2 Program Development and Testing 648
D.2.1 Implementation . 648
D.2.2 Callback Functionality . 651
D.2.3 Making a Module . 652
D.2.4 Verification . 653

D.3 Visualization . 655
D.3.1 Simultaneous Computation and Plotting 655
D.3.2 Some Applications . 658
D.3.3 Remark on Choosing Δt . 658
D.3.4 Comparing Several Quantities in Subplots 659
D.3.5 Comparing Approximate and Exact Solutions . . . 660
D.3.6 Evolution of the Error as Δt Decreases 661

D.4 Exercises . 665

E Programming of Differential Equations 667
E.1 Scalar Ordinary Differential Equations 668

E.1.1 Examples on Right-Hand-Side Functions 668
E.1.2 The Forward Euler Scheme 670
E.1.3 Function Implementation . 671
E.1.4 Verifying the Implementation 671
E.1.5 From Discrete to Continuous Solution 672
E.1.6 Switching Numerical Method 673

xx Contents

E.1.7 Class Implementation . 674
E.1.8 Example: Logistic Growth 677

E.2 Systems of Ordinary Differential Equations 677
E.2.1 Mathematical Problem . 678
E.2.2 Example of a System of ODEs 680
E.2.3 From Scalar ODE Code to Systems 681
E.2.4 Numerical Methods . 684
E.2.5 The ODE Solver Class Hierarchy 685
E.2.6 The Backward Euler Method 688
E.2.7 Application 1: u′ = −u . 691
E.2.8 Application 2: The Logistic Equation 693
E.2.9 Application 3: An Oscillating System. 700
E.2.10 Application 4: The Trajectory of a Ball 702
E.2.11 Further Developments of ODESolver 704

E.3 Exercises . 705

F Debugging . 735
F.1 Using a Debugger . 735
F.2 How to Debug . 738

F.2.1 A Recipe for Program Writing and Debugging . . 738
F.2.2 Application of the Recipe . 740

G Migrating Python to Compiled Code 753
G.1 Pure Python Code for Monte Carlo Simulation 754

G.1.1 The Computational Problem 754
G.1.2 A Scalar Python Implementation 754
G.1.3 A Vectorized Python Implementation 755

G.2 Migrating Scalar Python Code to Cython 757
G.2.1 A Plain Cython Implementation 757
G.2.2 A Better Cython Implementation 759

G.3 Migrating Code to C . 761
G.3.1 Writing a C Program . 761
G.3.2 Migrating Loops to C Code via F2PY 762
G.3.3 Migrating Loops to C Code via Cython. 764
G.3.4 Comparing Efficiency . 765

H Technical Topics . 767
H.1 Different Ways of Running Python Programs 767

H.1.1 Executing Python Programs in IPython 767
H.1.2 Executing Python Programs on Unix 767
H.1.3 Executing Python Programs on Windows 769
H.1.4 Executing Python Programs on Macintosh 771
H.1.5 Making a Complete Stand-Alone Executable . . . 771

H.2 Integer and Float Division . 771
H.3 Visualizing a Program with Lumpy 772
H.4 Doing Operating System Tasks in Python 774

Contents xxi

H.5 Variable Number of Function Arguments 776
H.5.1 Variable Number of Positional Arguments 777
H.5.2 Variable Number of Keyword Arguments 779

H.6 Evaluating Program Efficiency . 781
H.6.1 Making Time Measurements 781
H.6.2 Profiling Python Programs . 783

References . 785

Index . 787

http://www.springer.com
http://www.springer.com/mycopy

List of Exercises

Exercise 1.1 Compute 1+1 . 43
Exercise 1.2 Write a “Hello, World!” program 43
Exercise 1.3 Derive and compute a formula 43
Exercise 1.4 Convert from meters to British length units 43
Exercise 1.5 Compute the mass of various substances 43
Exercise 1.6 Compute the growth of money in a bank 43
Exercise 1.7 Find error(s) in a program . 44
Exercise 1.8 Type in program text . 44
Exercise 1.9 Type in programs and debug them 44
Exercise 1.10 Evaluate a Gaussian function 45
Exercise 1.11 Compute the air resistance on a football 45
Exercise 1.12 How to cook the perfect egg 46
Exercise 1.13 Derive the trajectory of a ball 46
Exercise 1.14 Find errors in the coding of formulas 47
Exercise 1.15 Explain why a program does not work 47
Exercise 1.16 Find errors in Python statements 47
Exercise 1.17 Find errors in the coding of a formula 48
Exercise 2.1 Make a Fahrenheit–Celsius conversion table 79
Exercise 2.2 Write an approximate Fahrenheit–Celsius

conversion table . 79
Exercise 2.3 Generate odd numbers . 79
Exercise 2.4 Store odd numbers in a list . 79
Exercise 2.5 Generate odd numbers by a list comprehension . . 80
Exercise 2.6 Make a table of values from a formula 80
Exercise 2.7 Store values from a formula in lists 80
Exercise 2.8 Work with a list . 80
Exercise 2.9 Simulate operations on lists by hand 80
Exercise 2.10 Generate equally spaced coordinates 80
Exercise 2.11 Use a list comprehension to solve Exer. 2.10 81
Exercise 2.12 Compute a mathematical sum 81

xxiii

xxiv List of Exercises

Exercise 2.13 Use a for loop in Exer. 2.12 81
Exercise 2.14 Simulate a program by hand. 81
Exercise 2.15 Explore the Python Library Reference 82
Exercise 2.16 Index a nested lists . 82
Exercise 2.17 Construct a double for loop over a nested list 82
Exercise 2.18 Store data in lists in Exercise 2.2 82
Exercise 2.19 Store data from Exer. 2.7 in a nested list 82
Exercise 2.20 Convert nested list comprehensions to nested

standard loops . 83
Exercise 2.21 Values of boolean expressions 83
Exercise 2.22 Explore round-off errors from a large number of

inverse operations . 83
Exercise 2.23 Explore what zero can be on a computer 84
Exercise 2.24 Compare two real numbers on a computer 84
Exercise 2.25 Interpret a code . 84
Exercise 2.26 Explore problems with inaccurate indentation . . . 85
Exercise 2.27 Simulate nested loops by hand 85
Exercise 2.28 Explore punctuation in Python programs 86
Exercise 2.29 Investigate a for loop over a changing list 86
Exercise 3.1 Write a Fahrenheit–Celsius conversion function . . 120
Exercise 3.2 Write the program in Exer. 2.12 as a function . . . 120
Exercise 3.3 Write a function for solving ax2 + bx+ c = 0 120
Exercise 3.4 Implement the sum function 120
Exercise 3.5 Integrate a function by one trapezoid 121
Exercise 3.6 Integrate a function by two trapezoids 121
Exercise 3.7 Derive the general Trapezoidal integration rule . . . 121
Exercise 3.8 Derive the general Midpoint integration rule 122
Exercise 3.9 Compute the area of an arbitrary triangle 122
Exercise 3.10 Compute the length of a path 123
Exercise 3.11 Approximate π . 123
Exercise 3.12 Write various hello-world functions 123
Exercise 3.13 Approximate a function by a sum of sines 124
Exercise 3.14 Implement a Gaussian function 124
Exercise 3.15 Make a function of the formula in Exer. 1.12 124
Exercise 3.16 Write a function for numerical differentiation 125
Exercise 3.17 Make an adaptive Trapezoidal integration rule . . . 125
Exercise 3.18 Compute a polynomial via a product 126
Exercise 3.19 Implement the factorial function 126
Exercise 3.20 Compute velocity and acceleration from position

data; one dimension . 126
Exercise 3.21 Compute velocity and acceleration from position

data; two dimensions . 127
Exercise 3.22 Find the max and min values of a function 127
Exercise 3.23 Find the max and min elements in a list 127
Exercise 3.24 Implement the Heaviside function 128

List of Exercises xxv

Exercise 3.25 Implement a smoothed Heaviside function 128
Exercise 3.26 Implement an indicator function 128
Exercise 3.27 Implement a piecewise constant function 128
Exercise 3.28 Apply indicator functions . 129
Exercise 3.29 Rewrite a mathematical function 129
Exercise 3.30 Make a table for approximations of cosx 130
Exercise 3.31 Use None in keyword arguments 130
Exercise 3.32 Write a sort function for a list of 4-tuples 131
Exercise 3.33 Find prime numbers . 132
Exercise 3.34 Find pairs of characters . 132
Exercise 3.35 Count substrings . 132
Exercise 3.36 Explain why a program works 132
Exercise 3.37 Resolve a problem with a function 132
Exercise 3.38 Determine the types of some objects 133
Exercise 3.39 Explain the difference between if and elif 133
Exercise 3.40 Find an error in a program . 134
Exercise 3.41 Find programming errors . 134
Exercise 4.1 Make an interactive program 180
Exercise 4.2 Read from the command line in Exer. 4.1 180
Exercise 4.3 Use exceptions in Exer. 4.2 . 180
Exercise 4.4 Read input from the keyboard 180
Exercise 4.5 Read input from the command line 180
Exercise 4.6 Prompt the user for input to a formula 180
Exercise 4.7 Read command line input a formula 180
Exercise 4.8 Make the program from Exer. 4.7 safer 181
Exercise 4.9 Test more in the program from Exer. 4.7 181
Exercise 4.10 Raise an exception in Exer. 4.9 181
Exercise 4.11 Compute the distance it takes to stop a car 181
Exercise 4.12 Look up calendar functionality 181
Exercise 4.13 Use the StringFunction tool 181
Exercise 4.14 Extend a program from Ch. 4.2.1 181
Exercise 4.15 Why we test for specific exception types 182
Exercise 4.16 Make a simple module . 182
Exercise 4.17 Make a useful main program for Exer. 4.16 182
Exercise 4.18 Make a module in Exer. 3.13 182
Exercise 4.19 Extend the module from Exer. 4.18 183
Exercise 4.20 Use options and values in Exer. 4.19 183
Exercise 4.21 Check if mathematical identities hold on a

computer . 183
Exercise 4.22 Improve input to the program in Exer. 4.21 183
Exercise 4.23 Apply the program from Exer. 4.22 184
Exercise 4.24 Compute the binomial distribution 184
Exercise 4.25 Apply the binomial distribution 185
Exercise 4.26 Compute probabilities with the Poisson

distribution . 185

xxvi List of Exercises

Exercise 5.1 Fill lists with function values 243
Exercise 5.2 Fill arrays; loop version . 244
Exercise 5.3 Fill arrays; vectorized version 244
Exercise 5.4 Plot a function . 244
Exercise 5.5 Apply a function to a vector 244
Exercise 5.6 Simulate by hand a vectorized expression 245
Exercise 5.7 Demonstrate array slicing . 245
Exercise 5.8 Replace list operations by array computing 245
Exercise 5.9 Plot a formula . 245
Exercise 5.10 Plot a formula for several parameters 245
Exercise 5.11 Specify the x and y axes in Exer. 5.10 245
Exercise 5.12 Plot exact and inexact Fahrenheit–Celsius

formulas . 246
Exercise 5.13 Plot the trajectory of a ball 246
Exercise 5.14 Implement Lagrange’s interpolation formula 246
Exercise 5.15 Plot the polynomial in Exer. 5.14 247
Exercise 5.16 Investigate the polynomial in Exer. 5.14 247
Exercise 5.17 Plot a wave packet . 247
Exercise 5.18 Judge a plot . 248
Exercise 5.19 Plot the viscosity of water . 248
Exercise 5.20 Explore a complicated function graphically 248
Exercise 5.21 Plot Taylor polynomial approximations to sin x . . 248
Exercise 5.22 Animate a wave packet . 249
Exercise 5.23 Animate a smoothed Heaviside function 249
Exercise 5.24 Animate two-scale temperature variations 249
Exercise 5.25 Improve the solution in Exer. 5.24 250
Exercise 5.26 Animate a sequence of approximations to π 250
Exercise 5.27 Animate a planet’s orbit . 250
Exercise 5.28 Animate the evolution of Taylor polynomials 251
Exercise 5.29 Plot the velocity profile for pipeflow 252
Exercise 5.30 Plot the functions from Exer. 3.13 252
Exercise 5.31 Make a movie of the functions from Exer. 3.13 . . . 252
Exercise 5.32 Plot functions from the command line 253
Exercise 5.33 Improve the program from Exercise 5.32 253
Exercise 5.34 Demonstrate energy concepts from physics 253
Exercise 5.35 Plot a w-like function . 254
Exercise 5.36 Plot a piecewise constant function 254
Exercise 5.37 Vectorize a piecewise constant function 254
Exercise 5.38 Visualize approximations in the Midpoint

integration rule . 254
Exercise 5.39 Visualize approximations in the Trapezoidal

integration rule . 254
Exercise 5.40 Experience overflow in a function 254
Exercise 5.41 Experience less overflow in a function 255
Exercise 5.42 Extend Exer. 5.5 to a rank 2 array 256

List of Exercises xxvii

Exercise 5.43 Explain why array computations fail 256
Exercise 6.1 Read a two-column data file 329
Exercise 6.2 Read a data file . 329
Exercise 6.3 Simplify the implementation of Exer. 6.1 329
Exercise 6.4 Fit a polynomial to data . 329
Exercise 6.5 Read acceleration data and find velocities 330
Exercise 6.6 Read acceleration data and plot velocities 331
Exercise 6.7 Find velocity from GPS coordinates 331
Exercise 6.8 Make a dictionary from a table 331
Exercise 6.9 Explore syntax differences: lists vs. dictionaries . . 332
Exercise 6.10 Improve the program from Ch. 6.2.5 332
Exercise 6.11 Interpret output from a program 332
Exercise 6.12 Make a dictionary . 333
Exercise 6.13 Make a nested dictionary . 333
Exercise 6.14 Make a nested dictionary from a file 333
Exercise 6.15 Compute the area of a triangle 333
Exercise 6.16 Compare data structures for polynomials 333
Exercise 6.17 Compute the derivative of a polynomial 333
Exercise 6.18 Generalize the program from Ch. 6.2.7 334
Exercise 6.19 Write function data to file . 334
Exercise 6.20 Specify functions on the command line 334
Exercise 6.21 Interpret function specifications 335
Exercise 6.22 Compare average temperatures in cities 336
Exercise 6.23 Try Word or OpenOffice to write a program 336
Exercise 6.24 Evaluate objects in a boolean context 337
Exercise 6.25 Fit a polynomial to experimental data 337
Exercise 6.26 Generate an HTML report with figures 337
Exercise 6.27 Extract information from a weather page 338
Exercise 6.28 Compare alternative weather forecasts 338
Exercise 6.29 Improve the output in Exercise 6.28 338
Exercise 6.30 Allow different types for a function argument 338
Exercise 6.31 Make a function more robust 339
Exercise 6.32 Find proportion of bases inside/outside exons 339
Exercise 7.1 Make a function class . 395
Exercise 7.2 Extend the class from Ch. 7.2.1 395
Exercise 7.3 Make classes for a rectangle and a triangle 395
Exercise 7.4 Make a class for straight lines 395
Exercise 7.5 Improve the constructor in Exer. 7.4 396
Exercise 7.6 Make a class for quadratic functions 396
Exercise 7.7 Make a class for linear springs 396
Exercise 7.8 Wrap functions in a class . 397
Exercise 7.9 Extend the constructor in Exer. 7.8 397
Exercise 7.10 Deduce a class implementation 398
Exercise 7.11 Use special methods in Exer. 7.1 398
Exercise 7.12 Extend the class from Ch. 7.2.1 398

xxviii List of Exercises

Exercise 7.13 Implement a class for numerical differentiation . . . 398
Exercise 7.14 Verify a program . 399
Exercise 7.15 Test methods for numerical differentiation 399
Exercise 7.16 Modify a class for numerical differentiation 400
Exercise 7.17 Make a class for summation of series 400
Exercise 7.18 Apply the differentiation class from Ch. 7.3.2 401
Exercise 7.19 Make a class for the Heaviside function 401
Exercise 7.20 Add vectorization to the class in Exer. 7.19 401
Exercise 7.21 Equip the class in Exer. 7.19 with plotting 401
Exercise 7.22 Make a class for the indicator function 402
Exercise 7.23 Make a class for piecewise constant functions 402
Exercise 7.24 Extend the class in Exer. 7.23 with plot

functionality . 402
Exercise 7.25 Make a module for piecewise constant functions . . 402
Exercise 7.26 Use classes for computing inverse functions 403
Exercise 7.27 Vectorize a class for numerical integration 403
Exercise 7.28 Speed up repeated integral calculations 404
Exercise 7.29 Apply a polynomial class . 404
Exercise 7.30 Find a bug in a class for polynomials 404
Exercise 7.31 Implement subtraction of polynomials 405
Exercise 7.32 Represent a polynomial by a NumPy array 405
Exercise 7.33 Vectorize a class for polynomials 405
Exercise 7.34 Use a dict to hold polynomial coefficients; add . . . 405
Exercise 7.35 Use a dict to hold polynomial coefficients; mul . . . 406
Exercise 7.36 Extend class Vec2D to work with lists/tuples 406
Exercise 7.37 Extend class Vec2D to 3D vectors 406
Exercise 7.38 Use NumPy arrays in class Vec2D 406
Exercise 7.39 Use classes in the program from Ch. 6.7.2 407
Exercise 7.40 Use a class in Exer. A.25 . 407
Exercise 7.41 Apply the class from Exer. 7.40 interactively 408
Exercise 7.42 Find local and global extrema of a function 408
Exercise 7.43 Improve the accuracy in Exer. 7.42 410
Exercise 7.44 Find the optimal production for a company 410
Exercise 7.45 Extend the program from Exer. 7.44 412
Exercise 8.1 Flip a coin N times . 466
Exercise 8.2 Compute a probability . 466
Exercise 8.3 Choose random colors . 466
Exercise 8.4 Draw balls from a hat . 466
Exercise 8.5 Computing probabilities of rolling dice 466
Exercise 8.6 Estimate the probability in a dice game 466
Exercise 8.7 Compute the probability of hands of cards 467
Exercise 8.8 Decide if a dice game is fair 467
Exercise 8.9 Adjust the game in Exer. 8.8 467
Exercise 8.10 Generalize the game from Chap. 8.3.2 467
Exercise 8.11 Compare two playing strategies 467

List of Exercises xxix

Exercise 8.12 Solve Exercise 8.11 with different no. of dice 468
Exercise 8.13 Extend Exercise 8.12 . 468
Exercise 8.14 Investigate the winning chances of some games . . . 468
Exercise 8.15 Compute probabilities of throwing two dice 468
Exercise 8.16 Play with vectorized boolean expressions 468
Exercise 8.17 Vectorize the program from Exer. 8.1 469
Exercise 8.18 Vectorize the code in Exer. 8.2 469
Exercise 8.19 Throw dice and compute a small probability 469
Exercise 8.20 Difference equation for random numbers 469
Exercise 8.21 Make a class for drawing balls from a hat 470
Exercise 8.22 Independent vs. dependent random numbers 470
Exercise 8.23 Compute the probability of flipping a coin 470
Exercise 8.24 Extend Exer. 8.23 . 471
Exercise 8.25 Simulate the problems in Exer. 4.25 471
Exercise 8.26 Simulate a poker game . 471
Exercise 8.27 Write a non-vectorized version of a code 471
Exercise 8.28 Estimate growth in a simulation model 472
Exercise 8.29 Investigate guessing strategies for Ch. 8.4.1 472
Exercise 8.30 Make a vectorized solution to Exer. 8.8 472
Exercise 8.31 Compute π by a Monte Carlo method 472
Exercise 8.32 Implement a variant of Exer. 8.31 473
Exercise 8.33 Compute π by a random sum 473
Exercise 8.34 1D random walk with drift . 473
Exercise 8.35 1D random walk until a point is hit 473
Exercise 8.36 Simulate making a fortune from gaming 473
Exercise 8.37 Make a class for 2D random walk 474
Exercise 8.38 Vectorize the class code from Exer. 8.37 474
Exercise 8.39 2D random walk with walls; scalar version 475
Exercise 8.40 2D random walk with walls; vectorized version . . . 475
Exercise 8.41 Simulate the mixture of gas molecules 475
Exercise 8.42 Solve a variant of Exer. 8.41 475
Exercise 8.43 Guess beer brands . 476
Exercise 8.44 Simulate stock prices . 476
Exercise 8.45 Compute with option prices in finance 476
Exercise 8.46 Compute velocity and acceleration 478
Exercise 8.47 Differentiate noisy signals . 478
Exercise 8.48 Model the noise in the data in Exer. 8.47 479
Exercise 8.49 Reduce the noise in Exer. 8.47 480
Exercise 8.50 Make a class for differentiating noisy data 480
Exercise 8.51 Speed up Markov chain mutation 481
Exercise 9.1 Demonstrate the magic of inheritance 548
Exercise 9.2 Inherit from classes in Ch. 9.1 549
Exercise 9.3 Inherit more from classes in Ch. 9.1 549
Exercise 9.4 Reverse the class hierarchy from Ch. 9.1 549
Exercise 9.5 Make circle a subclass of an ellipse 549

xxx List of Exercises

Exercise 9.6 Make super- and subclass for a point 550
Exercise 9.7 Modify a function class by subclassing 550
Exercise 9.8 Explore the accuracy of difference formulas 550
Exercise 9.9 Implement a subclass . 551
Exercise 9.10 Make classes for numerical differentiation 551
Exercise 9.11 Implement a new subclass for differentiation 551
Exercise 9.12 Understand if a class can be used recursively 551
Exercise 9.13 Represent people by a class hierarchy 551
Exercise 9.14 Add a new class in a class hierarchy 553
Exercise 9.15 Change the user interface of a class hierarchy 553
Exercise 9.16 Compute convergence rates of numerical

integration methods . 553
Exercise 9.17 Add common functionality in a class hierarchy . . . 554
Exercise 9.18 Make a class hierarchy for root finding 554
Exercise 9.19 Make a calculus calculator class 555
Exercise 9.20 Extend Exer. 9.19 . 556
Exercise 9.21 Make line drawing of a person; program 556
Exercise 9.22 Make line drawing of a person; class 556
Exercise 9.23 Animate a person with waving hands 556
Exercise A.1 Determine the limit of a sequence 583
Exercise A.2 Determine the limit of a sequence 583
Exercise A.3 Experience convergence problems 583
Exercise A.4 Compute π via sequences . 584
Exercise A.5 Reduce memory usage of difference equations 584
Exercise A.6 Compute the development of a loan 584
Exercise A.7 Solve a system of difference equations 584
Exercise A.8 Extend the model (A.32)–(A.33) 584
Exercise A.9 Experiment with the program from Exer. A.8 585
Exercise A.10 Change index in a difference equation 585
Exercise A.11 Construct time points from dates 585
Exercise A.12 Solve nonlinear equations by Newton’s method . . . 586
Exercise A.13 Visualize the convergence of Newton’s method . . . 586
Exercise A.14 Implement the Secant method 587
Exercise A.15 Test different methods for root finding 587
Exercise A.16 Make difference equations for the Midpoint rule . . 587
Exercise A.17 Compute the arc length of a curve 587
Exercise A.18 Find difference equations for computing sin x 588
Exercise A.19 Find difference equations for computing cosx 588
Exercise A.20 Make a guitar-like sound . 588
Exercise A.21 Damp the bass in a sound file 589
Exercise A.22 Damp the treble in a sound file 589
Exercise A.23 Demonstrate oscillatory solutions of (A.13) 590
Exercise A.24 Improve the program from Exer. A.23 590
Exercise A.25 Generate an HTML report . 591
Exercise A.26 Simulate the price of wheat 591

List of Exercises xxxi

Exercise B.1 Interpolate a discrete function 619
Exercise B.2 Study a function for different parameter values . . 619
Exercise B.3 Study a function and its derivative 620
Exercise B.4 Use the Trapezoidal method 620
Exercise B.5 Compute a sequence of integrals 621
Exercise B.6 Use the Trapezoidal method 621
Exercise B.7 Compute trigonometric integrals 622
Exercise B.8 Plot functions and their derivatives 623
Exercise B.9 Use the Trapezoidal method 623
Exercise C.1 Solve a nonhomogeneous linear ODE 639
Exercise C.2 Solve a nonlinear ODE . 639
Exercise C.3 Solve an ODE for y(x) . 639
Exercise C.4 Experience instability of an ODE 640
Exercise C.5 Solve an ODE with time-varying growth 640
Exercise D.1 Use a w function with a step 665
Exercise D.2 Make a callback function in Exercise D.1 665
Exercise D.3 Improve input to the simulation program. 665
Exercise E.1 Solve a simple ODE in two ways 705
Exercise E.2 Use the ODESolver hierarchy to solve a simple

ODE . 705
Exercise E.3 Solve an ODE for emptying a tank 705
Exercise E.4 Scale the logistic equation . 706
Exercise E.5 Compute logistic growth with time-varying

carrying capacity . 707
Exercise E.6 Solve an ODE for the arc length 707
Exercise E.7 Compute inverse functions by solving an ODE . . . 707
Exercise E.8 Generalize the implementation in Exer. E.7 708
Exercise E.9 Extend the implementation in Exer. E.8 708
Exercise E.10 Compute inverse functions by interpolation 709
Exercise E.11 Simulate a falling or rising body in a fluid 709
Exercise E.12 Check the solution’s limit in Exer. E.11 711
Exercise E.13 Visualize the different forces in Exer. E.11 711
Exercise E.14 Solve an ODE until constant solution 711
Exercise E.15 Use classes in Exer. E.14 . 712
Exercise E.16 Scale away parameters in Exer. E.14 712
Exercise E.17 Use the 4th-order Runge-Kutta on (C.34) 713
Exercise E.18 Compare ODE methods . 713
Exercise E.19 Compare ODE methods . 713
Exercise E.20 Solve two coupled ODEs for radioactive decay . . . 714
Exercise E.21 Code a 2nd-order Runge-Kutta method; function . 714
Exercise E.22 Code a 2nd-order Runge-Kutta method; class 714
Exercise E.23 Make a subclass for Heun’s method 714
Exercise E.24 Make a subclass for the Midpoint method 715
Exercise E.25 Make a subclass for an Adams-Bashforth method 715
Exercise E.26 Implement the iterated Midpoint method; function 715

xxxii List of Exercises

Exercise E.27 Implement the iterated Midpoint method; class . . 715
Exercise E.28 Make a subclass for the iterated Midpoint method 716
Exercise E.29 Study convergence of numerical methods for ODEs 716
Exercise E.30 Solve an ODE specified on the command line 716
Exercise E.31 Find the body’s position in Exer. E.11 717
Exercise E.32 Add the effect of air resistance on a ball 717
Exercise E.33 Solve an ODE system for an electric circuit 718
Exercise E.34 Compare methods for solving (E.76)–(E.77) 718
Exercise E.35 Simulate the spreading of a disease 718
Exercise E.36 Make a more flexible code in Exer. E.35 720
Exercise E.37 Introduce vaccination in Exer. E.35 721
Exercise E.38 Introduce a vaccination campaign in Exer. E.37 . . 721
Exercise E.39 Find optimal vaccination period in Exer. E.38 . . . 721
Exercise E.40 Simulate human–zombie interaction 722
Exercise E.41 Simulate an entire zombie movie 724
Exercise E.42 Simulate a war on zombies . 725
Exercise E.43 Explore predator-prey population interactions . . . 725
Exercise E.44 Formulate a 2nd-order ODE as a system 726
Exercise E.45 Solve the system in Exer. E.44 in a special case . . 727
Exercise E.46 Make a tool for analyzing oscillatory solutions . . . 728
Exercise E.47 Enhance the code from Exer. E.45 729
Exercise E.48 Allow flexible choice of functions in Exer. E.47 . . . 732
Exercise E.49 Use the modules from Exer. E.47 and E.48 733
Exercise E.50 Model the economy of fishing 734

Computing with Formulas 1

Our first examples on computer programming involve programs that
evaluate mathematical formulas. You will learn how to write and run
a Python program, how to work with variables, how to compute with
mathematical functions such as ex and sinx, and how to use Python
for interactive calculations.

We assume that you are somewhat familiar with computers so that
you know what files and folders1 are, how you move between folders,
how you change file and folder names, and how you write text and save
it in a file.

All the program examples associated with this chapter can be found
as files in the folder src/formulas. We refer to the preface for how to
download the folder tree src containing all the program files for this
book.

1.1 The First Programming Encounter: A Formula

The first formula we shall consider concerns the vertical motion of a
ball thrown up in the air. From Newton’s second law of motion one can
set up a mathematical model for the motion of the ball and find that
the vertical position of the ball, called y, varies with time t according
to the following formula2:

y(t) = v0t−
1

2
gt2. (1.1)

1 Another frequent word for folder is directory.
2 This formula neglects air resistance, which is usually small unless v0 is large – see Exer-

cise 1.11.

H.P. Langtangen, A Primer on Scientific Programming with Python,
Texts in Computational Science and Engineering 6,

DOI 10.1007/978-3-642-30293-0 1, c© Springer-Verlag Berlin Heidelberg 2012

1

http://dx.doi.org/10.1007/978-3-642-30293-0_1

2 1 Computing with Formulas

Here, v0 is the initial velocity of the ball, g is the acceleration of gravity,
and t is time. Observe that the y axis is chosen such that the ball starts
at y = 0 when t = 0.

To get an overview of the time it takes for the ball to move upwards
and return to y = 0 again, we can look for solutions to the equation
y = 0:

v0t−
1

2
gt2 = t

(
v0 −

1

2
gt

)
= 0 ⇒ t = 0 or t = 2v0/g.

That is, the ball returns after 2v0/g seconds, and it is therefore reason-
able to restrict the interest of (1.1) to t ∈ [0, 2v0/g].

1.1.1 Using a Program as a Calculator

Our first program will evaluate (1.1) for a specific choice of v0, g, and
t. Choosing v0 = 5 m/s and g = 9.81 m/s2 makes the ball come back
after t = 2v0/g ≈ 1 s. This means that we are basically interested in
the time interval [0, 1]. Say we want to compute the height of the ball
at time t = 0.6 s. From (1.1) we have

y = 5 · 0.6− 1

2
· 9.81 · 0.62

This arithmetic expression can be evaluated and its value can be printed
by a very simple one-line Python program:

print 5*0.6 - 0.5*9.81*0.6**2

The four standard arithmetic operators are written as +, -, *, and /

in Python and most other computer languages. The exponentiation
employs a double asterisk notation in Python, e.g., 0.62 is written as
0.6**2.

Our task now is to create the program and run it, and this will be
described next.

1.1.2 About Programs and Programming

A computer program is just a sequence of instructions to the computer,
written in a computer language. Most computer languages look some-
what similar to English, but they are very much simpler. The number
of words and associated instructions is very limited, so to perform a
complicated operation we must combine a large number of different
types of instructions. The program text, containing the sequence of in-
structions, is stored in one or more files. The computer can only do
exactly what the program tells the computer to do.

1.1 The First Programming Encounter: A Formula 3

Another perception of the word “program” is a file that can be run
(“double-clicked”) to perform a task. Sometimes this is a file with tex-
tual instructions (which is the case with Python), and sometimes this
file is a translation of all the program text to a more efficient and
computer-friendly language that is quite difficult to read for a human.
All the programs in this chapter consist of short text stored in a single
file. Other programs that you have used frequently, for instance Fire-
fox or Internet Explorer for reading web pages, consist of program text
distributed over a large number of files, written by a large number of
people over many years. One single file contains the machine-efficient
translation of the whole program, and this is normally the file that
you “double-click” on when starting the program. In general, the word
“program” means either this single file or the collection of files with
textual instructions.

Programming is obviously about writing programs, but this process
is more than writing the correct instructions in a file. First, we must
understand how a problem can be solved by giving a sequence of in-
structions to the computer. This is usually the most difficult thing
with programming. Second, we must express this sequence of instruc-
tions correctly in a computer language and store the corresponding
text in a file (the program). Third, we must run the program, check
the validity of the results, and usually enter a fourth phase where errors
in the program must be found and corrected. Mastering this process
requires a lot of training, which implies making a large number of pro-
grams (exercises in this book, for instance) and getting the programs
to work.

1.1.3 Tools for Writing Programs

Since programs consist of plain text, we need to write this text with the
help of another program that can store the text in a file. You have most
likely extensive experience with writing text on a computer, but for
writing your own programs you need special programs, called editors ,
which preserve exactly the characters you type. The widespread word
processors, Microsoft Word being a primary example3, are aimed at
producing nice-looking reports. These programs format the text and
are not good tools for writing your own programs, even though they can
save the document in a pure text format. Spaces are often important in
Python programs, and editors for plain text give you complete control
of the spaces and all other characters in the program file.

3 Other examples are OpenOffice, TextEdit, iWork Pages, and BBEdit. Chapter 6.1.3 gives

some insight into why such programs are not suitable for writing your own Python programs.

4 1 Computing with Formulas

Emacs, XEmacs, Vim, and Gedit are popular editors for writing pro-
grams on Linux or Unix systems, including Mac4 computers. On Win-
dows we recommend Notepad++ or the Window versions of Emacs,
Vim, or Gedit. None of these programs are part of a standard Win-
dows installation.

A special editor for Python programs comes with the Python soft-
ware. This editor is called Idle and is usually installed under the name
idle (or idle-python) on Linux/Unix and Mac. On Windows, it is
reachable from the Python entry in the Start menu. Idle has a gentle
learning curve, but is mainly restricted to writing Python programs.
Completely general editors, such as Emacs and Vim, have a steeper
learning curve and can be used for any text files, including reports in
student projects.

More advanced development environments also exist for Python. For
numerical programming the Spyder software is of particular interest as
it provides a graphical environment much like that of Matlab.

1.1.4 Using Idle to Write the Program

Let us explain in detail how we can use Idle to write our one-line
program from Chapter 1.1.1. Idle may not become your favorite editor
for writing Python programs, yet we recommend to follow the steps
below to get in touch with Idle and try it out. You can simply replace
the Idle instructions by similar actions in your favorite editor, Emacs
for instance.

First, create a folder where your Python programs can be located.
Here we choose a folder name mytest under your home folder. To write
and run Python programs, you will need a terminal window on Lin-
ux/Unix or Mac, sometimes called a console window, or an MS-DOS

window or command prompt on Windows. Launch such a window and
use the cd (change directory) command to move to the mytest folder.
If you have not made the folder with a graphical file & folder manager
you must create the folder by the command mkdir mytest (mkdir stands
for make directory).

The next step is to start Idle. This can be done by writing idle&

(Linux) or start idle (Windows) in the terminal window. Alterna-
tively, you can launch Idle from the Start menu on Windows. Fig-
ure 1.1 displays a terminal window where we create the folder, move
to the folder, and start Idle5.

4 On Mac, you may want to download a more “Mac-like” editor such as the Really Simple
Text program.
5 The ampersand after idle is Linux specific. On Windows you have to write start idle

instead. The ampersand postfix or the start prefix makes it possible to continue with

other commands in the terminal window while the program, here Idle, is running. This is
important for program testing where we often do a lot of edit-and-run cycles, which means

that we frequently switch between the editor and the terminal window.

1.1 The First Programming Encounter: A Formula 5

Fig. 1.1 A terminal window on a Linux/Unix/Mac machine where we create a folder
(mkdir), move to the folder (cd), and start Idle.

If a window now appears on the screen, with “Python Shell” in the
title bar of the window, go to its File menu and choose New Window.
The window that now pops up is the Idle editor (having the window
name “Untitled”). Move the cursor inside this window and write the
line

print 5*0.6 - 0.5*9.81*0.6**2

followed by pressing the Return key. The Idle window looks as in Fig-
ure 1.2.

Fig. 1.2 An Idle editor window containing our first one-line program.

Your program is now in the Idle editor, but before you can run it,
the program text must be saved in a file. Choose File and then Save
As. As usual, such a command launches a new window where you can
fill in the name of the file where the program is to be stored. And
as always, you must first check that you are in the right folder, or
directory which is Idle’s word for the same thing. The upper line in
the file dialog window contains the folder name. Clicking on the bar to
the right (after the directory/folder name), gives a possibility to move
upwards in the folder hierarchy, and clicking on the folder icon to the
right of the bar, moves just one folder upwards. To go down in the

6 1 Computing with Formulas

folder tree, you simply double-click a folder icon in the main window
of this dialog. You must now navigate to the mytest folder under your
home folder. If you started Idle from the terminal window, there is
no need to navigate and change folder. Simply fill in the name of the
program. Any name will do, but we suggest that you choose the name
ball1.py because this name is compatible with what we use later in
this book. The file extension .py is common for Python programs, but
not strictly required6.

Press the Save button and move back to the terminal window. Make
sure you have a new file ball1.py here, by running the command ls

(on Linux/Unix and Mac) or dir (on Windows). The output should be
a text containing the name of the program file. You can now jump to
the paragraph “How to Run the Program”, but it might be a good idea
to read the warning below first.

Warning About Typing Program Text. Even though a program is just
a text, there is one major difference between a text in a program and
a text intended to be read by a human. When a human reads a text,
she or he is able to understand the message of the text even if the text
is not perfectly precise or if there are grammar errors. If our one-line
program was expressed as

write 5*0.6 - 0.5*9.81*0.6^2

most humans would interpret write and print as the same thing, and
many would also interpret 6^2 as 62. In the Python language, however,
write is a grammar error and 6^2 means an operation very different
from the exponentiation 6**2. Our communication with a computer
through a program must be perfectly precise without a single grammar
error7. The computer will only do exactly what we tell it to do. Any
error in the program, however small, may affect the program. There is
a chance that we will never notice it, but most often an error causes
the program to stop or produce wrong results. The conclusion is that
computers have a much more pedantic attitude to language than what
(most) humans have.

Now you understand why any program text must be carefully typed,
paying attention to the correctness of every character. If you try out
program texts from this book, make sure that you type them in exactly
as you see them in the book. Blanks, for instance, are often impor-
tant in Python, so it is a good habit to always count them and type
them in correctly. Any attempt not to follow this advice will cause you
frustrations, sweat, and maybe even tears.

6 Some editors, like Emacs, have many features that make it easier to write Python pro-

grams, but these features will not be automatically available unless the program file has a
.py extension.
7 “Programming demands significantly higher standard of accuracy. Things don’t simply
have to make sense to another human being, they must make sense to a computer.” –

Donald Knuth [4, p. 18], computer scientist, 1938–.

1.1 The First Programming Encounter: A Formula 7

1.1.5 How to Run the Program

The one-line program above is stored in a file with name ball1.py.
To run the program, you need to be in a terminal window and in the
folder where the ball1.py file resides. The program is run by writing
the command python ball1.py in the terminal window8:

Terminal

Terminal> python ball1.py
1.2342

The program immediately responds with printing the result of its calcu-
lation, and the output appears on the next line in the terminal window.
Figure 1.3 shows what the whole terminal window may look like after
having run the program.

We use the prompt Terminal> in this book to indicate commands in
a Linux, Unix, Mac, or DOS terminal window. The text following the
Terminal> prompt must be a valid Unix or DOS command. You will
likely see a different prompt in the terminal window on your machine,
perhaps something reflecting your username or the current folder.

Fig. 1.3 A terminal window on a Linux/Unix/Mac machine where we run our first one-line
Python program.

From your previous experience with computers you are probably
used to double-click on icons to run programs. Python programs can
also be run that way, but programmers usually find it more convenient
to run programs by typing commands in a terminal window. Why this
is so will be evident later when you have more programming experience.
For now, simply accept that you are going to be a programmer, and
that commands in a terminal window is an efficient way to work with
the computer.

Suppose you want to evaluate (1.1) for v0 = 1 and t = 0.1. This is
easy: move the cursor to the Idle editor window, edit the program text
to

8 There are other ways of running Python programs, as explained in Appendix H.1.

8 1 Computing with Formulas

print 1*0.1 - 0.5*9.81*0.1**2

Save the file, move back to the terminal window and run the program
as before:

Terminal

Terminal> python ball1.py
0.05095

We see that the result of the calculation has changed, as expected.

1.1.6 Verifying the Result

We should always carefully control that the output of a computer pro-
gram is correct. You will experience that in most of the cases, at least
until you are an experienced programmer, the output is wrong, and
you have to search for errors. In the present application we can simply
use a calculator to control the program. Setting t = 0.6 and v0 = 5 in
the formula, the calculator confirms that 1.2342 is the correct solution
to our mathematical problem.

1.1.7 Using Variables

When we want to evaluate y(t) for many values of t, we must modify the
t value at two places in our program. Changing another parameter, like
v0, is in principle straightforward, but in practice it is easy to modify
the wrong number. Such modifications would be simpler to perform
if we express our formula in terms of variables, i.e., symbols, rather
than numerical values. Most programming languages, Python included,
have variables similar to the concept of variables in mathematics. This
means that we can define v0, g, t, and y as variables in the program,
initialize the former three with numerical values, and combine these
three variables to the desired right-hand side expression in (1.1), and
assign the result to the variable y.

The alternative version of our program, where we use variables, may
be written as this text:

v0 = 5
g = 9.81
t = 0.6
y = v0*t - 0.5*g*t**2
print y

Figure 1.4 displays what the program looks like in the Idle editor win-
dow. Variables in Python are defined by setting a name (here v0, g,
t, or y) equal to a numerical value or an expression involving already
defined variables.

1.1 The First Programming Encounter: A Formula 9

Fig. 1.4 An Idle editor window containing a multi-line program with several variables.

Note that this second program is much easier to read because it is
closer to the mathematical notation used in the formula (1.1). The pro-
gram is also safer to modify, because we clearly see what each number
is when there is a name associated with it. In particular, we can change
t at one place only (the line t = 0.6) and not two as was required in
the previous program.

We store the program text in a file ball2.py. Running the program,

Terminal

Terminal> python ball2.py

results in the correct output 1.2342.

1.1.8 Names of Variables

Introducing variables with descriptive names, close to those in the
mathematical problem we are going to solve, is considered important
for the readability and reliability (correctness) of the program. Variable
names can contain any lower or upper case letter, the numbers from
0 to 9, and underscore, but the first character cannot be a number.
Python distinguishes between upper and lower case, so X is always dif-
ferent from x. Here are a few examples on alternative variable names
in the present example9:

initial_velocity = 5
acceleration_of_gravity = 9.81
TIME = 0.6
VerticalPositionOfBall = initial_velocity*TIME - \

0.5*acceleration_of_gravity*TIME**2
print VerticalPositionOfBall

9 In this book we shall adopt the rule that variable names have lower case letters where

words are separated by an underscore. The first two declared variables have this form.

10 1 Computing with Formulas

With such long variables names, the code for evaluating the formula
becomes so long that we have decided to break it into two lines. This
is done by a backslash at the very end of the line (make sure there are
no blanks after the backslash!).

We note that even if this latter version of the program contains
variables that are defined precisely by their names, the program is
harder to read than the one with variables v0, g, t, and y0.

The rule of thumb is to use the same variable names as those appear-
ing in a precise mathematical description of the problem to be solved
by the program. For all variables where there is no associated precise
mathematical description and symbol, one must use descriptive vari-
able names which explain the purpose of the variable. For example, if
a problem description introduces the symbol D for a force due to air
resistance, one applies a variable D also in the program. However, if the
problem description does not define any symbol for this force, one must
apply a descriptive name, such as air_resistance, resistance_force,
or drag_force.

1.1.9 Reserved Words in Python

Certain words are reserved in Python because they are used to build up
the Python language. These reserved words cannot be used as variable
names: and, as, assert, break, class, continue, def, del, elif, else,
except, False, finally, for, from, global, if, import, in, is, lambda,
None, nonlocal, not, or, pass, raise, return, True, try, with, while, and
yield. You may, for instance, add an underscore at the end to turn a
reserved word into a variable name. See Exercise 1.16 for examples on
legal and illegal variable names.

1.1.10 Comments

Along with the program statements it is often informative to provide
some comments in a natural human language to explain the idea behind
the statements. Comments in Python start with the # character, and
everything after this character on a line is ignored when the program is
run. Here is an example of our program with explanatory comments:

Program for computing the height of a ball in vertical motion.
v0 = 5 # initial velocity
g = 9.81 # acceleration of gravity
t = 0.6 # time
y = v0*t - 0.5*g*t**2 # vertical position
print y

This program and the initial version on page 8 are identical when
run on the computer, but for a human the latter is easier to understand
because of the comments.

1.1 The First Programming Encounter: A Formula 11

Good comments together with well-chosen variable names are nec-
essary for any program longer than a few lines, because otherwise the
program becomes difficult to understand, both for the programmer and
others. It requires some practice to write really instructive comments.
Never repeat with words what the program statements already clearly
express. Use instead comments to provide important information that
is not obvious from the code, for example, what mathematical variable
names mean, what variables are used for, and general ideas that lie
behind a forthcoming set of statements.

1.1.11 Formatting Text and Numbers

Instead of just printing the numerical value of y in our introductory
program, we now want to write a more informative text, typically some-
thing like

At t=0.6 s, the height of the ball is 1.23 m.

where we also have control of the number of digits (here y is accurate
up to centimeters only).

Printf Syntax. The output of the type shown above is accomplished by
a print statement combined with some technique for formatting the
numbers. The oldest and most widely used such technique is known
as printf formatting10. For a newcomer to programming, the syntax of
printf formatting may look awkward, but it is quite easy to learn and
very convenient and flexible to work with. The printf syntax is used in
a lot of other programming languages as well.

The sample output above is produced by this statement using printf
syntax:

print ’At t=%g s, the height of the ball is %.2f m.’ % (t, y)

Let us explain this line in detail. The print statement now prints a
string: everything that is enclosed in quotes (either single: ’, or dou-
ble: ") denotes a string in Python. The string above is formatted using
printf syntax. This means that the string has various “slots”, start-
ing with a percentage sign, here %g and %.2f, where variables in the
program can be put in. We have two “slots” in the present case, and
consequently two variables must be put into the slots. The relevant syn-
tax is to list the variables inside standard parentheses after the string,
separated from the string by a percentage sign. The first variable, t,
goes into the first “slot”. This “slot” has a format specification %g,
where the percentage sign marks the slot and the following character,

10 This formatting was originally introduced by a function printf in the C programming

language.

12 1 Computing with Formulas

g, is a format specification. The g that a real number is to be writ-
ten as compactly as possible. The next variable, y, goes into the second
“slot”. The format specification here is .2f, which means a real number
written with two digits after comma. The f in the .2f format stands
for float, a short form for floating-point number, which is the term used
for a real number on a computer.

For completeness we present the whole program, where text and
numbers are mixed in the output:

v0 = 5
g = 9.81
t = 0.6
y = v0*t - 0.5*g*t**2
print ’At t=%g s, the height of the ball is %.2f m.’ % (t, y)

You can find the program in the file ball_print1.py in the src/formulas
folder.

There are many more ways to specify formats. For example, e writes
a number in scientific notation, i.e., with a number between 1 and 10
followed by a power of 10, as in 1.2432 · 10−3. On a computer such a
number is written in the form 1.2432e-03. Capital E in the exponent is
also possible, just replace e by E, with the result 1.2432E-03.

For decimal notation we use the letter f, as in %f, and the output
number then appears with digits before and/or after a comma, e.g.,
0.0012432 instead of 1.2432E-03. With the g format, the output will
use scientific notation for large or small numbers and decimal notation
otherwise. This format is normally what gives most compact output of
a real number. A lower case g leads to lower case e in scientific notation,
while upper case G implies E instead of e in the exponent.

One can also specify the format as 10.4f or 14.6E, meaning in the
first case that a float is written in decimal notation with four decimals
in a field of width equal to 10 characters, and in the second case a float
written in scientific notation with six decimals in a field of width 14
characters.

Here is a list of some important printf format specifications11:

%s a string
%d an integer
%0xd an integer padded with x leading zeros
%f decimal notation with six decimals
%e compact scientific notation, e in the exponent
%E compact scientific notation, E in the exponent
%g compact decimal or scientific notation (with e)
%G compact decimal or scientific notation (with E)
%xz format z right-adjusted in a field of width x
%-xz format z left-adjusted in a field of width x
%.yz format z with y decimals
%x.yz format z with y decimals in a field of width x
%% the percentage sign (%) itself

The program printf_demo.py exemplifies many of these formats.

11 For a complete specification of the possible printf-style format strings, follow the link

from the item “printf-style formatting” in the index of the Python Library Reference.

http://docs.python.org/lib/genindex.html

1.1 The First Programming Encounter: A Formula 13

We may try out some formats by writing more numbers to the screen
in our program (the corresponding file is ball_print2.py):

v0 = 5
g = 9.81
t = 0.6
y = v0*t - 0.5*g*t**2

print """
At t=%f s, a ball with
initial velocity v0=%.3E m/s
is located at the height %.2f m.
""" % (t, v0, y)

Observe here that we use a triple-quoted string, recognized by starting
and ending with three single or double quotes: ’’’ or """. Triple-quoted
strings are used for text that spans several lines.

In the print statement above, we print t in the f format, which
by default implies six decimals; v0 is written in the .3E format, which
implies three decimals and the number spans as narrow field as possible;
and y is written with two decimals in decimal notation in as narrow
field as possible. The output becomes

Terminal

Terminal> python ball_print2.py

At t=0.600000 s, a ball with
initial velocity v0=5.000E+00 m/s
is located at the height 1.23 m.

You should look at each number in the output and check the formatting
in detail.

Format String Syntax. Python offers all the functionality of the printf
format and much more through a different syntax, often known as
format string syntax. Let us illustrate this syntax on the one-line output
previously used to show the printf construction. The corresponding
format string syntax reads

print ’At t={t:g} s, the height of the ball is {y:.2f} m.’.format(
t=t, y=y)

The “slots” where variables are inserted are now recognized by curly
braces rather than a percentage sign. The name of the variable is listed
with an optional colon and format specifier of the same kind as was
used for the printf format. The various variables and their values must
be listed at the end as shown. This time the “slots” have names so the
sequence of variables is not important.

The multi-line example is written as follows in this alternative for-
mat:

14 1 Computing with Formulas

print """
At t={t:f} s, a ball with
initial velocity v0={v0:.3E} m/s
is located at the height {y:.2f} m.
""".format(t=t, v0=v0, y=y)

The Newline Character. We often want a computer program to write
out text that spans several lines. In the last example we obtained such
output by triple-quoted strings. We could also use ordinary single-
quoted strings and a special character for indicating where line breaks
should occur. This special character reads \n, i.e., a backslash followed
by the letter n. The two print statements

print """y(t) is
the position of
our ball."""

print ’y(t) is\nthe position of\nour ball’

result in identical output:

y(t) is
the position of
our ball.

1.2 Computer Science Glossary

It is now time to pick up some important words that programmers
use when they talk about programming: algorithm, application, as-
signment, blanks (whitespace), bug, code, code segment, code snippet,
debug, debugging, execute, executable, implement, implementation, in-
put, library, operating system, output, statement, syntax, user, verify,
and verification.

These words are frequently used in English in lots of contexts, yet
they have a precise meaning in computer science.

Program and code are interchangeable terms. A code/program seg-
ment is a collection of consecutive statements from a program. Another
term with similar meaning is code snippet. Many also use the word ap-
plication in the same meaning as program and code. A related term is
source code, which is the same as the text that constitutes the program.
You find the source code of a program in one or more text files12.

We talk about running a program, or equivalently executing a pro-
gram or executing a file. The file we execute is the file in which the
program text is stored. This file is often called an executable or an

12 Note that text files normally have the extension .txt, while program files have an ex-
tension related to the programming language, e.g., .py for Python programs. The content

of a .py file is, nevertheless, plain text as in a .txt file.

1.2 Computer Science Glossary 15

application. The program text may appear in many files, but the ex-
ecutable is just the single file that starts the whole program when we
run that file. Running a file can be done in several ways, for instance,
by double-clicking the file icon, by writing the filename in a terminal
window, or by giving the filename to some program. This latter tech-
nique is what we have used so far in this book: we feed the filename to
the program python. That is, we execute a Python program by execut-
ing another program python, which interprets the text in our Python
program file.

The term library is widely used for a collection of generally useful
program pieces that can be applied in many different contexts. Having
access to good libraries means that you do not need to program code
snippets that others have already programmed (most probable in a bet-
ter way!). There are huge numbers of Python libraries. In Python termi-
nology, the libraries are composed ofmodules and packages. Chapter 1.4
gives a first glimpse of the math module, which contains a set of stan-
dard mathematical functions for sinx, cosx, lnx, ex, sinhx, sin−1 x,
etc. Later, you will meet many other useful modules. Packages are just
collections of modules. The standard Python distribution comes with
a large number of modules and packages, but you can download many
more from the Internet, see in particular www.python.org/pypi. Very
often, when you encounter a programming task that is likely to occur
in many other contexts, you can find a Python module where the job
is already done. To mention just one example, say you need to com-
pute how many days there are between two dates. This is a non-trivial
task that lots of other programmers must have faced, so it is not a big
surprise that Python comes with a module datetime to do calculations
with dates.

The recipe for what the computer is supposed to do in a program is
called algorithm. In the examples in the first couple of chapters in this
book, the algorithms are so simple that we can hardly distinguish them
from the program text itself, but later in the book we will carefully set
up an algorithm before attempting to implement it in a program. This
is useful when the algorithm is much more compact than the resulting
program code. The algorithm in the current example consists of three
steps:

1. initialize the variables v0, g, and t with numerical values,
2. evaluate y according to the formula (1.1),
3. print the y value to the screen.

The Python program is very close to this text, but some less expe-
rienced programmers may want to write the tasks in English before
translating them to Python.

The implementation of an algorithm is the process of writing and
testing a program. The testing phase is also known as verification: After

http://www.python.org/pypi

16 1 Computing with Formulas

the program text is written we need to verify that the program works
correctly. This is a very important step that will receive substantial
attention in the present book. Mathematical software produce numbers,
and it is normally quite a challenging task to verify that the numbers
are correct.

An error in a program is known as a bug13, and the process of
locating and removing bugs is called debugging. Many look at debugging
as the most difficult and challenging part of computer programming.

Programs are built of statements . There are many types of state-
ments:

v0 = 3

is an assignment statement, while

print y

is a print statement. It is common to have one statement on each
line, but it is possible to write multiple statements on one line if the
statements are separated by semi-colon. Here is an example:

v0 = 3; g = 9.81; t = 0.6
y = v0*t - 0.5*g*t**2
print y

Although most newcomers to computer programming will think they
understand the meaning of the lines in the above program, it is im-
portant to be aware of some major differences between notation in a
computer program and notation in mathematics. When you see the
equality sign “=” in mathematics, it has a certain interpretation as an
equation (x+2 = 5) or a definition (f(x) = x2+1). In a computer pro-
gram, however, the equality sign has a quite different meaning, and it is
called an assignment. The right-hand side of an assignment contains an
expression, which is a combination of values, variables, and operators.
When the expression is evaluated, it results in a value that the variable
on the left-hand side will refer to. We often say that the right-hand side
value is assigned to the variable on the left-hand side. In the current
context it means that we in the first line assign the number 3 to the
variable v0, 9.81 to g, and 0.6 to t. In the next line, the right-hand side
expression v0*t - 0.5*g*t**2 is first evaluated, and the result is then
assigned to the y variable.

13 In the very early days of computing, computers were built of a large number of tubes,
which glowed and gave off heat. The heat attracted bugs, which caused short circuits.

“Debugging” meant shutting down the computer and cleaning out the dead bugs.

1.2 Computer Science Glossary 17

Consider the assignment statement

y = y + 3

This statement is mathematically false, but in a program it just means
that we evaluate the right-hand side expression and assign its value to
the variable y. That is, we first take the current value of y and add 3.
The value of this operation is assigned to y. The old value of y is then
lost.

You may think of the = as an arrow, y <- y+3, rather than an equality
sign, to illustrate that the value to the right of the arrow is stored in
the variable to the left of the arrow14. An example will illustrate the
principle of assignment to a variable:

y = 3
print y
y = y + 4
print y
y = y*y
print y

Running this program results in three numbers: 3, 7, 49. Go through
the program and convince yourself that you understand what the result
of each statement becomes.

A computer program must have correct syntax , meaning that the
text in the program must follow the strict rules of the computer lan-
guage for constructing statements. For example, the syntax of the print
statement is the word print, followed by one or more spaces, followed
by an expression of what we want to print (a Python variable, text
enclosed in quotes, a number, for instance). Computers are very picky
about syntax! For instance, a human having read all the previous pages
may easily understand what this program does,

myvar = 5.2
prinnt Myvar

but the computer will find two errors in the last line: prinnt is an
unknown instruction and Myvar is an undefined variable. Only the first
error is reported (a syntax error), because Python stops the program
once an error is found. All errors that Python finds are easy to remove.
The difficulty with programming is to remove the rest of the errors,
such as errors in formulas or the sequence of operations.

Blanks may or may not be important in Python programs. In Chap-
ter 2.1.2 you will see that blanks are in some occasions essential for a
correct program. Around = or arithmetic operators, however, blanks do
not matter. We could hence write our program from Chapter 1.1.7 as

14 The R (or S or S-PLUS) programming languages for statistical computing actually use
an arrow, while other languages such as Algol, Simula, and Pascal use := to explicitly state

that we are not dealing with a mathematical equality.

18 1 Computing with Formulas

v0=3;g=9.81;t=0.6;y=v0*t-0.5*g*t**2;print y

This is not a good idea because blanks are essential for easy reading
of a program code, and easy reading is essential for finding errors, and
finding errors is the difficult part of programming. The recommended
layout in Python programs specifies one blank around =, +, and -, and
no blanks around *, /, and **. Note that the blank after print is essen-
tial: print is a command in Python and printy is not recognized as any
valid command. (Python would look at printy as an undefined vari-
able.) Computer scientists often use the term whitespace when referring
to a blank15.

When we interact with computer programs, we usually provide some
information to the program and get some information out. It is common
to use the term input data, or just input , for the information that must
be known beforehand. The result from a program is similarly referred to
as output data, or just output . In our example, v0, g, and t constitute
input, while y is output. All input data must be assigned values in
the program before the output can be computed. Input data can be
explicitly initialized in the program, as we do in the present example,
or the data can be provided by user through keyboard typing while the
program is running, as we explain in Chapter 4. Output data can be
printed in the terminal window, as in the current example, displayed
as graphics on the screen, as done in Chapter 5, or stored in a file for
later access, as explained in Chapter 6.

The word user usually has a special meaning in computer science:
It means a human interacting with a program. You are a user of a
text editor for writing Python programs, and you are a user of your
own programs. When you write programs, it is difficult to imagine how
other users will interact with the program. Maybe they provide wrong
input or misinterpret the output. Making user-friendly programs is very
challenging and depends heavily on the target audience of users. The
author had the average reader of the book in mind as a typical user
when developing programs for this book.

A central part of a computer is the operating system. This is actu-
ally a collection of programs that manages the hardware and software
resources on the computer. There are three major operating systems
today: Windows, Macintosh (called Mac for short), and Unix. Sev-
eral versions of Windows have appeared since the 1990s: Windows 95,
98, 2000, ME, XP, and Vista. Unix was invented already in 1970 and
comes in many different versions. Nowadays, two open source imple-
mentations of Unix, Linux and Free BSD Unix, are most common. The
latter forms the core of the Mac OS X operating system on Macintosh

15 More precisely, blank is the character produced by the space bar on the keyboard,

while whitespace denotes any character(s) that, if printed, do not print ink on the paper:
a blank, a tabulator character (produced by backslash followed by t), or a newline character

(produced by backslash followed by n). The newline character is explained on page 14.

1.3 Another Formula: Celsius-Fahrenheit Conversion 19

machines, while Linux exists in slightly different flavors: Red Hat, De-
bian, Ubuntu, and Suse to mention the most important distributions.
We will use the term Unix in this book as a synonym for all the operat-
ing systems that inherit from classical Unix, such as Solaris, Free BSD,
Mac OS X, and any Linux variant. Note that this use of Unix also in-
cludes Macintosh machines, but only newer machines as the older ones
run an Apple-specific Mac operating system. As a computer user and
reader of this book, you should know exactly which operating system
you have. In particular, Mac users must know if their operating system
is Unix-based or not.

The user’s interaction with the operation system is through a set of
programs. The most widely used of these enable viewing the contents
of folders or starting other programs. To interact with the operating
system, as a user, you can either issue commands in a terminal window
or use graphical programs. For example, for viewing the file contents of
a folder you can run the command ls in a Unix terminal window or dir
in a DOS (Windows) terminal window. The graphical alternatives are
many, some of the most common are Windows Explorer on Windows,
Nautilus and Konqueror on Unix, and Finder on Mac. To start a pro-
gram, it is common to double-click on a file icon or write the program’s
name in a terminal window.

1.3 Another Formula: Celsius-Fahrenheit Conversion

Our next example involves the formula for converting temperature mea-
sured in Celsius degrees to the corresponding value in Fahrenheit de-
grees:

F =
9

5
C + 32 (1.2)

In this formula, C is the amount of degrees in Celsius, and F is the
corresponding temperature measured in Fahrenheit. Our goal now is to
write a computer program which can compute F from (1.2) when C is
known.

1.3.1 Potential Error: Integer Division

Straightforward Coding of the Formula. A straightforward attempt at
coding the formula (1.2) goes as follows16:

16 The parentheses around 9/5 are not strictly needed, i.e., (9/5)*C is computationally
identical to 9/5*C, but parentheses remove any doubt that 9/5*C could mean 9/(5*C).

Chapter 1.3.4 has more information on this topic.

20 1 Computing with Formulas

C = 21
F = (9/5)*C + 32
print F

When run, this program prints the value 53. You can find the program
in the file c2f_v1.py17 in the src/formulas folder – as all other programs
from this chapter.

Verifying the Results. Testing the correctness is easy in this case since
we can evaluate the formula on a calculator: 9

5 · 21+ 32 is 69.8, not 53.
What is wrong? The formula in the program looks correct!

Float and Integer Division. The error in our program above is one
of the most common errors in mathematical software and is not at all
obvious for a newcomer to programming. In many computer languages,
there are two types of divisions: float division and integer division.
Float division is what you know from mathematics: 9/5 becomes 1.8 in
decimal notation.

Integer division a/b with integers (whole numbers) a and b results
in an integer that is truncated (or mathematically, “rounded down”).
More precisely, the result is the largest integer c such that bc ≤ a. This
implies that 9/5 becomes 1 since 1 · 5 = 5 ≤ 9 while 2 · 5 = 10 > 9.
Another example is 1/5, which becomes 0 since 0 ·5 ≤ 1 (and 1 ·5 > 1).
Yet another example is 16/6, which results in 2 (try 2 · 6 and 3 · 6 to
convince yourself). Many computer languages, including Fortran, C,
C++, Java, and Python, interpret a division operation a/b as integer
division if both operands a and b are integers. If either a or b is a real
(floating-point) number, a/b implies the standard mathematical float
division.

The problem with our program is the coding of the formula (9/5)*C

+ 32. This formula is evaluated as follows. First, 9/5 is calculated. Since
9 and 5 are interpreted by Python as integers (whole numbers), 9/5 is
a division between two integers, and Python chooses by default integer
division, which results in 1. Then 1 is multiplied by C, which equals 21,
resulting in 21. Finally, 21 and 32 are added with 53 as result.

We shall very soon present a correct version of the temperature con-
version program, but first it may be advantageous to introduce a fre-
quently used word in Python programming: object.

1.3.2 Objects in Python

When we write

17 The v1 part of the name stands for “version 1”. Throughout this book, we will often
develop several trial versions of a program, but remove the version number in the final

version of the program.

1.3 Another Formula: Celsius-Fahrenheit Conversion 21

C = 21

Python interprets the number 21 on the right-hand side of the assign-
ment as an integer and creates an int (for integer) object holding the
value 21. The variable C acts as a name for this int object. Similarly, if
we write C = 21.0, Python recognizes 21.0 as a real number and there-
fore creates a float (for floating-point) object holding the value 21.0
and lets C be a name for this object. In fact, any assignment statement
has the form of a variable name on the left-hand side and an object on
the right-hand side. One may say that Python programming is about
solving a problem by defining and changing objects.

At this stage, you do not need to know what an object really is, just
think of an int object as a collection, say a storage box, with some
information about an integer number. This information is stored some-
where in the computer’s memory, and with the name C the program
gets access to this information. The fundamental issue right now is that
21 and 21.0 are identical numbers in mathematics, while in a Python
program 21 gives rise to an int object and 21.0 to a float object.

There are lots of different object types in Python, and you will later
learn how to create your own customized objects. Some objects contain
a lot of data, not just an integer or a real number. For example, when
we write

print ’A text with an integer %d and a float %f’ % (2, 2.0)

a str (string) object, without a name, is first made of the text between
the quotes and then this str object is printed. We can alternatively do
this in two steps:

s = ’A text with an integer %d and a float %f’ % (2, 2.0)
print s

1.3.3 Avoiding Integer Division

As a quite general rule of thumb, one should avoid integer division in
mathematical formulas18. There are several ways to do this, as we de-
scribe in Appendix H.2. The simplest remedy in Python is to insert
a statement that simply turns off integer division. A more widely ap-
plicable method, also in other programming languages than Python,
is to enforce one of the operands to be a float object. In the current
example, there are several ways to do this:

18 Some mathematical algorithms do make use of integer division, but in those cases you
should use a double forward slash, //, as division operator, because this is Python’s way of

explicitly indicating integer division.

22 1 Computing with Formulas

F = (9.0/5)*C + 32
F = (9/5.0)*C + 32
F = float(C)*9/5 + 32

In the first two lines, one of the operands is written as a decimal num-
ber, implying a float object and hence float division. In the last line,
float(C)*9 means float times int, which results in a float object, and
float division is guaranteed.

A related construction,

F = float(C)*(9/5) + 32

does not work correctly, because 9/5 is evaluated by integer division,
yielding 1, before being multiplied by a float representation of C (see
next section for how compound arithmetic operations are calculated).
In other words, the formula reads F=C+32, which is wrong.

We now understand why the first version of the program does not
work and what the remedy is. A correct program is

C = 21
F = (9.0/5)*C + 32
print F

Instead of 9.0 we may just write 9. (the dot implies a float interpre-
tation of the number). The program is available in the file c2f.py. Try
to run it – and observe that the output becomes 69.8, which is correct.

Comment. We could easily have run into problems in our very first
programs if we instead of writing the formula 1

2gt
2 as 0.5*g*t**2 wrote

(1/2)*g*t**2. Explain the problem!

1.3.4 Arithmetic Operators and Precedence

Formulas in Python programs are usually evaluated in the same way
as we would evaluate them mathematically. Python proceeds from left
to right, term by term in an expression (terms are separated by plus
or minus). In each term, power operations such as ab, coded as a**b,
has precedence over multiplication and division. As in mathematics, we
can use parentheses to dictate the way a formula is evaluated. Below
are two illustrations of these principles.

• 5/9+2*a**4/2: First 5/9 is evaluated (as integer division, giving 0
as result), then a4 (a**4) is evaluated, then 2 is multiplied with a4,
that result is divided by 2, and the answer is added to the result of
the first term. The answer is therefore a**4.

• 5/(9+2)*a**(4/2): First 5
9+2 is evaluated (as integer division, yield-

ing 0), then 4/2 is computed (as integer division, yielding 2), then
a**2 is calculated, and that number is multiplied by the result of
5/(9+2). The answer is thus always zero.

1.4 Evaluating Standard Mathematical Functions 23

As evident from these two examples, it is easy to unintentionally get
integer division in formulas. Although integer division can be turned off
in Python, we think it is important to be strongly aware of the integer
division concept and to develop good programming habits to avoid it.
The reason is that this concept appears in so many common computer
languages that it is better to learn as early as possible how to deal with
the problem rather than using a Python-specific feature to remove the
problem.

1.4 Evaluating Standard Mathematical Functions

Mathematical formulas frequently involve functions such as sin, cos,
tan, sinh, cosh, exp, log, etc. On a pocket calculator you have spe-
cial buttons for such functions. Similarly, in a program you also have
ready-made functionality for evaluating these types of mathematical
functions. One could in principle write one’s own program for evaluat-
ing, e.g., the sin(x) function, but how to do this in an efficient way is
a non-trivial topic. Experts have worked on this problem for decades
and implemented their best recipes in pieces of software that we should
reuse. This section tells you how to reach sin, cos, and similar functions
in a Python context.

1.4.1 Example: Using the Square Root Function

Problem. Consider the vertical motion of a ball in (1.1) on page 1. We
now ask the question: How long time does it take for the ball to reach
the height yc? The answer is straightforward to derive. When y = yc
we have

yc = v0t−
1

2
gt2.

We recognize that this equation is a quadratic equation which we must
solve with respect to t. Rearranging,

1

2
gt2 − v0t+ yc = 0,

and using the well-known formula for the two solutions of a quadratic
equation, we find

t1 =
(
v0 −

√
v20 − 2gyc

)
/g, t2 =

(
v0 +

√
v20 − 2gyc

)
/g. (1.3)

There are two solutions because the ball reaches the height yc on its
way up (t = t1) and on its way down (t = t2 > t1).

24 1 Computing with Formulas

The Program. To evaluate the expressions for t1 and t2 from (1.3)
in a computer program, we need access to the square root function.
In Python, the square root function and lots of other mathematical
functions, such as sin, cos, sinh, exp, and log, are available in a module
called math. We must first import the module before we can use it,
that is, we must write import math. Thereafter, to take the square root
of a variable a, we can write math.sqrt(a). This is demonstrated in a
program for computing t1 and t2:

v0 = 5
g = 9.81
yc = 0.2
import math
t1 = (v0 - math.sqrt(v0**2 - 2*g*yc))/g
t2 = (v0 + math.sqrt(v0**2 - 2*g*yc))/g
print ’At t=%g s and %g s, the height is %g m.’ % (t1, t2, yc)

The output from this program becomes
At t=0.0417064 s and 0.977662 s, the height is 0.2 m.

You can find the program as the file ball_yc.py in the src/formulas

folder.

Two Ways of Importing a Module. The standard way to import a
module, say math, is to write

import math

and then access individual functions in the module with the module
name as prefix as in

x = math.sqrt(y)

People working with mathematical functions often find math.sqrt(y)

less pleasing than just sqrt(y). Fortunately, there is an alternative im-
port syntax that allows us to skip the module name prefix. This alter-
native syntax has the form “from module import function”. A specific
example is

from math import sqrt

Now we can work with sqrt directly, without the math. prefix. More
than one function can be imported:

from math import sqrt, exp, log, sin

Sometimes one just writes

from math import *

to import all functions in the math module. This includes sin, cos, tan,
asin, acos, atan, sinh, cosh, tanh, exp, log (base e), log10 (base 10),

1.4 Evaluating Standard Mathematical Functions 25

sqrt, as well as the famous numbers e and pi. Importing all functions
from a module, using the asterisk (*) syntax, is convenient, but this
may result in a lot of extra names in the program that are not used.
It is in general recommended not to import more functions than those
that are really used in the program19.

With a from math import sqrt statement we can write the formulas
for the roots in a more pleasing way:

t1 = (v0 - sqrt(v0**2 - 2*g*yc))/g
t2 = (v0 + sqrt(v0**2 - 2*g*yc))/g

Import with New Names. Imported modules and functions can be given
new names in the import statement, e.g.,

import math as m
m is now the name of the math module
v = m.sin(m.pi)

from math import log as ln
v = ln(5)

from math import sin as s, cos as c, log as ln
v = s(x)*c(x) + ln(x)

In Python, everything is an object, and variables refer to objects, so
new variables may refer to modules and functions as well as numbers
and strings. The examples above on new names can also be coded by
introducing new variables explicitly:

m = math
ln = m.log
s = m.sin
c = m.cos

1.4.2 Example: Using More Mathematical Functions

Our next examples involves calling some more mathematical functions
from the math module. We look at the definition of the sinh(x) function:

sinh(x) =
1

2

(
ex − e−x

)
. (1.4)

We can evaluate sinh(x) in three ways: i) by calling math.sinh, ii) by
computing the right-hand side of (1.4), using math.exp, or iii) by com-
puting the right-hand side of (1.4) with the aid of the power expressions
math.e**x and math.e**(-x). A program doing these three alternative
calculations is found in the file 3sinh.py. The core of the program looks
like this:

19 Nevertheless, of convenience we often use the from module import * syntax in this book.

26 1 Computing with Formulas

from math import sinh, exp, e, pi
x = 2*pi
r1 = sinh(x)
r2 = 0.5*(exp(x) - exp(-x))
r3 = 0.5*(e**x - e**(-x))
print r1, r2, r3

The output from the program shows that all three computations give
identical results:

267.744894041 267.744894041 267.744894041

1.4.3 A First Glimpse of Round-Off Errors

The previous example computes a function in three different yet math-
ematically equivalent ways, and the output from the print statement
shows that the three resulting numbers are equal. Nevertheless, this is
not the whole story. Let us try to print out r1, r2, r3 with 16 decimals:

print ’%.16f %.16f %.16f’ % (r1,r2,r3)

This statement leads to the output

267.7448940410164369 267.7448940410164369 267.7448940410163232

Now r1 and r2 are equal, but r3 is different! Why is this so?
Our program computes with real numbers, and real numbers need

in general an infinite number of decimals to be represented exactly.
The computer truncates the sequence of decimals because the storage
is finite. In fact, it is quite standard to keep only 16 digits in a real
number on a computer. Exactly how this truncation is done is not
explained in this book20. For now the purpose is to notify the reader
that real numbers on a computer often have a small error. Only a few
real numbers can be represented exactly with 16 digits, the rest of the
real numbers are only approximations.

For this reason, most arithmetic operations involve inaccurate real
numbers, resulting in inaccurate calculations. Think of the following
two calculations: 1/49 · 49 and 1/51 · 51. Both expressions are identical
to 1, but when we perform the calculations in Python,

print ’%.16f %.16f’ % (1/49.0*49, 1/51.0*51)

the result becomes

0.9999999999999999 1.0000000000000000

The reason why we do not get exactly 1.0 as answer in the first case, is
because 1/49 is not correctly represented in the computer. Also 1/51
has an inexact representation, but the error does not propagate to the
final answer.
20 Instead, you can search for “floating point number” on wikipedia.org.

http://wikipedia.org

1.5 Interactive Computing 27

To summarize, errors21 in floating-point numbers may propagate
through mathematical calculations and result in answers that are only
approximations to the exact underlying mathematical values. The er-
rors in the answers are commonly known as round-off errors. As soon
as you use Python interactively as explained in the next section, you
will encounter round-off errors quite often.

Python has a special module decimal which allows real numbers to
be represented with adjustable accuracy so that round-off errors can
be made as small as desired. However, we will hardly use this module22

because approximations implied by many mathematical methods ap-
plied throughout this book normally lead to (much) larger errors than
those caused by round-off.

1.5 Interactive Computing

A particular convenient feature of Python is the ability to execute
statements and evaluate expressions interactively. The environments
where you work interactively with programming are commonly known
as Python shells. The simplest Python shell is invoked by just typing
python at the command line in a terminal window. Some messages
about Python are written out together with a prompt >>>, after which
you can issue commands. Let us try to use the interactive shell as a
calculator. Type in 3*4.5-0.5 and then press the Return key to see
Python’s response to this expression:

Terminal> python
Python 2.5.1 (r251:54863, May 2 2007, 16:56:35)
[GCC 4.1.2 (Ubuntu 4.1.2-0ubuntu4)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> 3*4.5-0.5
13.0

The text on a line after >>> is what we write (shell input) and the
text without the >>> prompt is the result that Python calculates (shell
output). It is easy, as explained below, to recover previous input and
edit the text. This editing feature makes it convenient to experiment
with statements and expressions.

1.5.1 Using the Python Shell

The program from Chapter 1.1.7 can be typed in, line by line, in the
interactive shell:

21 Exercise 2.23 on page 84 estimates the size of the errors.
22 See the last paragraph of Chapter 3.1.9 for an example.

28 1 Computing with Formulas

>>> v0 = 5
>>> g = 9.81
>>> t = 0.6
>>> y = v0*t - 0.5*g*t**2
>>> print y
1.2342

We can now easily calculate an y value corresponding to another (say)
v0 value: hit the up arrow key23 to recover previous statements, repeat
pressing this key until the v0 = 5 statement is displayed. You can then
edit the line, say you edit the statement to

>>> v0 = 6

Press return to execute this statement. You can control the new value
of v0 by either typing just v0 or print v0:

>>> v0
6
>>> print v0
6

The next step is to recompute y with this new v0 value. Hit the up
arrow key multiple times to recover the statement where y is assigned,
press the Return key, and write y or print y to see the result of the
computation:

>>> y = v0*t - 0.5*g*t**2
>>> y
1.8341999999999996
>>> print y
1.8342

The reason why we get two slightly different results is that typing just
y prints out all the decimals that are stored in the computer (16), while
print y writes out y with fewer decimals. As mentioned on page 26,
computations on a computer often suffer from round-off errors. The
present calculation is no exception. The correct answer is 1.8342, but
round-off errors lead to a number that is incorrect in the 16th decimal.
The error is here 4 · 10−16.

1.5.2 Type Conversion

Often you can work with variables in Python without bothering about
the type of objects these variables refer to. Nevertheless, we encoun-
tered a serious problem in Chapter 1.3.1 with integer division, which
forced us to be careful about the types of objects in a calculation. The

23 This key works only if Python was compiled with the Readline library. In case the key
does not work, try the editing capabilities in another Python shell, for example, IPython

(see Chapter 1.5.3).

1.5 Interactive Computing 29

interactive shell is very useful for exploring types. The following exam-
ple illustrates the type function and how we can convert an object from
one type to another.

First, we create an int object bound to the name C and check its
type by calling type(C):

>>> C = 21
>>> type(C)
<type ’int’>

We convert this int object to a corresponding float object:

>>> C = float(C) # type conversion
>>> type(C)
<type ’float’>
>>> C
21.0

In the statement C = float(C) we create a new object from the original
object referred to by the name C and bind it to the same name C. That
is, C refers to a different object after the statement than before. The
original int with value 21 cannot be reached anymore (since we have
no name for it) and will be automatically deleted by Python.

We may also do the reverse operation, i.e., convert a particular float
object to a corresponding int object:

>>> C = 20.9
>>> type(C)
<type ’float’>
>>> D = int(C) # type conversion
>>> type(D)
<type ’int’>
>>> D
20 # decimals are truncated :-/

In general, one can convert a variable v to type MyType by writing
v=MyType(v), if it makes sense to do the conversion.

In the last input we tried to convert a float to an int, and this oper-
ation implied stripping off the decimals. Correct conversion according
to mathematical rounding rules can be achieved with help of the round

function:

>>> round(20.9)
21.0
>>> int(round(20.9))
21

1.5.3 IPython

There exist several improvements of the standard Python shell pre-
sented in the previous section. The author advocates the IPython shell
as the preferred interactive shell. You will then need to have IPython

30 1 Computing with Formulas

installed. Typing ipython in a terminal window starts the shell. The
(default) prompt in IPython is not >>> but In [X]:, where X is the
number of the present input command. The most widely used features
of IPython are summarized below.

Running Programs. Python programs can be run from within the
shell:

In [1]: run ball2.py
1.2342

This command requires that you have taken a cd to the folder where
the ball2.py program is located and started IPython from there.

On Windows you may, as an alternative to starting IPython from
a DOS window, double click on the IPython desktop icon or use the
Start menu. In that case, you must move to the right folder where your
program is located. This is done by the os.chdir (change directory)
command. Typically, you write something like

In [1]: import os
In [2]: os.chdir(r’C:\Documents and Settings\me\My Documents\div’)
In [3]: run ball2.py

if the ball2.py program is located in the folder div under My Documents

of user me. Note the r before the quote in the string: it is required to
let a backslash really mean the backslash character.

We recommend to run all your Python programs from the IPython
shell. Especially when something goes wrong, IPython can help you to
examine the state of variables so that you become quicker to locate
bugs. In the rest of the book, we just write the program name and the
output when we illustrate the execution of a program:

Terminal

ball2.py
1.2342

You then need to write run before the program name if you execute
the program in IPython, or if you prefer to run the program from the
Terminal command prompt in a terminal window, you need to write
python prior to the program name. Appendix H.1 describes various
other ways to run a Python program.

Quick Recovery of Previous Output. The results of the previous state-
ments in an interactive IPython session are available in variables of the
form _iX (underscore, i, and a number X), where X is 1 for the last state-
ment, 2 for the second last statement, and so forth. Short forms are _

for _i1, __ for _i2, and ___ for _i3. The output from the In [1] input
above is 1.2342. We can now refer to this number by an underscore
and, e.g., multiply it by 10:

1.5 Interactive Computing 31

In [2]: _*10
Out[2]: 12.341999999999999

Output from Python statements or expressions in IPython are pre-
ceded by Out[X] where X is the command number corresponding to the
previous In [X] prompt. When programs are executed, as with the run

command, or when operating system commands are run (as shown be-
low), the output is from the operating system and then not preceded
by any Out[X] label.

TAB Completion. Pressing the TAB key will complete an in-
completely typed variable name. For example, after defining
my_long_variable_name = 4, write just my at the In [4]: prompt
below, and then hit the TAB key. You will experience that my is imme-
diately expanded to my_long_variable_name. This automatic expansion
feature is called TAB completion and can save you from quite some
typing.

In [3]: my_long_variable_name = 4

In [4]: my_long_variable_name
Out[4]: 4

Recovering Previous Commands. You can “walk” through the com-
mand history by typing Ctrl-p or the up arrow for going backward or
Ctrl-n or the down arrow for going forward. Any command you hit can
be edited and re-executed. Also commands from previous sessions are
stored in the command history.

Running Unix/Windows Commands. Operating system commands can
be run from IPython. Below we run the three Unix commands date, ls
(list files), and mkdir (make directory):

In [5]: date
Thu Nov 18 11:06:16 CET 2010

In [6]: ls
myfile.py yourprog.py

In [7]: mkdir mytestdir

If you have defined Python variables with the same name as operat-
ing system commands, e.g., date=30, you must write !date to run the
corresponding operating system command.

IPython can do much more than what is shown here, but the ad-
vanced features and the documentation of them probably do not make
sense before you are more experienced with Python – and with reading
manuals.

Remark. In the rest of the book we will apply the >>> prompt in in-
teractive sessions instead of the input and output prompts as used by

32 1 Computing with Formulas

IPython, simply because most Python books and electronic manuals
use >>> to mark input in interactive shells. However, when you sit by
the computer and want to use an interactive shell, we recommend to
use IPython, and then you will see the In [X] prompt instead of >>>.

1.6 Complex Numbers

Suppose x2 = 2. Then most of us are able to find out that x =
√
2 is

a solution to the equation. The more mathematically interested reader
will also remark that x = −

√
2 is another solution. But faced with the

equation x2 = −2, very few are able to find a proper solution without
any previous knowledge of complex numbers. Such numbers have many
applications in science, and it is therefore important to be able to use
such numbers in our programs.

On the following pages we extend the previous material on comput-
ing with real numbers to complex numbers. The text is optional, and
readers without knowledge of complex numbers can safely drop this
section and jump to Chapter 1.7.

A complex number is a pair of real numbers a and b, most often
written as a+bi, or a+ ib, where i is called the imaginary unit and acts
as a label for the second term. Mathematically, i =

√
−1. An important

feature of complex numbers is definitely the ability to compute square
roots of negative numbers. For example,

√
−2 =

√
2i (i.e.,

√
2
√
−1).

The solutions of x2 = −2 are thus x1 = +
√
2i and x2 = −

√
2i.

There are rules for addition, subtraction, multiplication, and divi-
sion between two complex numbers. There are also rules for raising a
complex number to a real power, as well as rules for computing sin z,
cos z, tan z, ez, ln z, sinh z, cosh z, tanh z, etc. for a complex number
z = a + ib. We assume in the following that you are familiar with the
mathematics of complex numbers, at least to the degree encountered
in the program examples.

let u = a+ bi and v = c+ di

u = v ⇒ a = c, b = d

−u = −a− bi

u∗ ≡ a− bi (complex conjugate)

u+ v = (a+ c) + (b+ d)i

u− v = (a− c) + (b− d)i

uv = (ac− bd) + (bc+ ad)i

u/v =
ac+ bd

c2 + d2
+

bc− ad

c2 + d2
i

1.6 Complex Numbers 33

|u| =
√

a2 + b2

eiq = cos q + i sin q

1.6.1 Complex Arithmetics in Python

Python supports computation with complex numbers. The imaginary
unit is written as j in Python, instead of i as in mathematics. A complex
number 2 − 3i is therefore expressed as (2-3j) in Python. We remark
that the number i is written as 1j, not just j. Below is a sample session
involving definition of complex numbers and some simple arithmetics:

>>> u = 2.5 + 3j # create a complex number
>>> v = 2 # this is an int
>>> w = u + v # complex + int
>>> w
(4.5+3j)

>>> a = -2
>>> b = 0.5
>>> s = a + b*1j # create a complex number from two floats
>>> s = complex(a, b) # alternative creation
>>> s
(-2+0.5j)
>>> s*w # complex*complex
(-10.5-3.75j)
>>> s/w # complex/complex
(-0.25641025641025639+0.28205128205128205j)

A complex object s has functionality for extracting the real and imag-
inary parts as well as computing the complex conjugate:

>>> s.real
-2.0
>>> s.imag
0.5
>>> s.conjugate()
(-2-0.5j)

1.6.2 Complex Functions in Python

Taking the sine of a complex number does not work:

>>> from math import sin
>>> r = sin(w)
Traceback (most recent call last):
File "<input>", line 1, in ?

TypeError: can’t convert complex to float; use abs(z)

The reason is that the sin function from the math module only works
with real (float) arguments, not complex. A similar module, cmath,
defines functions that take a complex number as argument and return
a complex number as result. As an example of using the cmath module,
we can demonstrate that the relation sin(ai) = i sinh a holds:

34 1 Computing with Formulas

>>> from cmath import sin, sinh
>>> r1 = sin(8j)
>>> r1
1490.4788257895502j
>>> r2 = 1j*sinh(8)
>>> r2
1490.4788257895502j

Another relation, eiq = cos q + i sin q, is exemplified next:

>>> q = 8 # some arbitrary number
>>> exp(1j*q)
(-0.14550003380861354+0.98935824662338179j)
>>> cos(q) + 1j*sin(q)
(-0.14550003380861354+0.98935824662338179j)

1.6.3 Unified Treatment of Complex and Real Functions

The cmath functions always return complex numbers. It would be nice
to have functions that return a float object if the result is a real
number and a complex object if the result is a complex number. The
Numerical Python package (see more about this package in Chapter 5)
has such versions of the basic mathematical functions known from math

and cmath. By taking a

from numpy.lib.scimath import *

one gets access to these flexible versions of mathematical functions24.
A session will illustrate what we obtain.

Let us first use the sqrt function in the math module:

>>> from math import sqrt
>>> sqrt(4) # float
2.0
>>> sqrt(-1) # illegal
Traceback (most recent call last):
File "<input>", line 1, in ?

ValueError: math domain error

If we now import sqrt from cmath,

>>> from cmath import sqrt

the previous sqrt function is overwritten by the new one. More pre-
cisely, the name sqrt was previously bound to a function sqrt from the
math module, but is now bound to another function sqrt from the cmath
module. In this case, any square root results in a complex object:

>>> sqrt(4) # complex
(2+0j)
>>> sqrt(-1) # complex
1j

24 The functions also come into play by a from scipy import * statement or from

scitools.std import *. The latter is used as a standard import later in the book.

1.7 Summary 35

If we now take

>>> from numpy.lib.scimath import *

we import (among other things) a new sqrt function. This function is
slower than the versions from math and cmath, but it has more flexibility
since the returned object is float if that is mathematically possible,
otherwise a complex is returned:

>>> sqrt(4) # float
2.0
>>> sqrt(-1) # complex
1j

As a further illustration of the need for flexible treatment of both com-
plex and real numbers, we may code the formulas for the roots of a
quadratic function f(x) = ax2 + bx+ c:

>>> a = 1; b = 2; c = 100 # polynomial coefficients
>>> from numpy.lib.scimath import sqrt
>>> r1 = (-b + sqrt(b**2 - 4*a*c))/(2*a)
>>> r2 = (-b - sqrt(b**2 - 4*a*c))/(2*a)
>>> r1
(-1+9.94987437107j)
>>> r2
(-1-9.94987437107j)

Using the up arrow, we may go back to the definitions of the coefficients
and change them so the roots become real numbers:

>>> a = 1; b = 4; c = 1 # polynomial coefficients

Going back to the computations of r1 and r2 and performing them
again, we get

>>> r1
-0.267949192431
>>> r2
-3.73205080757

That is, the two results are float objects. Had we applied sqrt from
cmath, r1 and r2 would always be complex objects, while sqrt from the
math module would not handle the first (complex) case.

1.7 Summary

1.7.1 Chapter Topics

Program Files. Python programs must be made by a pure text editor
such as Emacs, Vim, Notepad++ or similar. The program text must
be saved in a text file, with a name ending with the extension .py. The

36 1 Computing with Formulas

filename can be chosen freely, but stay away from names that coincide
with modules or keywords in Python, in particular do not use math.py,
time.py, random.py, os.py, sys.py, while.py, for.py, if.py, class.py,
def.py, to mention some forbidden filenames.

Programs Must Be Accurate! A program is a collection of statements
stored in a text file. Statements can also be executed interactively in a
Python shell. Any error in any statement may lead to termination of
the execution or wrong results. The computer does exactly what the
programmer tells the computer to do!

Variables. The statement

some_variable = obj

defines a variable with the name some_variable which refers to an ob-
ject obj. Here obj may also represent an expression, say a formula,
whose value is a Python object. For example, 1+2.5 involves the ad-
dition of an int object and a float object, resulting in a float ob-
ject. Names of variables can contain upper and lower case English
letters, underscores, and the digits from 0 to 9, but the name can-
not start with a digit. Nor can a variable name be a reserved word in
Python.

If there exists a precise mathematical description of the problem to
be solved in a program, one should choose variable names that are
in accordance with the mathematical description. Quantities that do
not have a defined mathematical symbol, should be referred to by de-
scriptive variables names, i.e., names that explain the variable’s role
in the program. Well-chosen variable names are essential for making a
program easy to read, easy to debug, and easy to extend. Well-chosen
variable names also reduce the need for comments.

Comment Lines. Everything after # on a line is ignored by Python and
used to insert free running text, known as comments. The purpose of
comments is to explain, in a human language, the ideas of (several)
forthcoming statements so that the program becomes easier to under-
stand for humans. Some variables whose names are not completely
self-explanatory also need a comment.

Object Types. There are many different types of objects in Python. In
this chapter we have worked with

• integers (whole numbers, object type int):

x10 = 3
XYZ = 2

1.7 Summary 37

• floats (decimal numbers, object type float):

max_temperature = 3.0
MinTemp = 1/6.0

• strings (pieces of text, object type str):

a = ’This is a piece of text\nover two lines.’
b = "Strings are enclosed in single or double quotes."
c = """Triple-quoted strings can
span
several lines.
"""

• complex numbers (object type complex):

a = 2.5 + 3j
real = 6; imag = 3.1
b = complex(real, imag)

Operators. Operators in arithmetic expressions follow the rules from
mathematics: power is evaluated before multiplication and division,
while the latter two are evaluated before addition and subtraction.
These rules are overridden by parentheses. We suggest to use paren-
theses to group and clarify mathematical expressions, also when not
strictly needed.

-t**2*g/2
-(t**2)*(g/2) # equivalent
-t**(2*g)/2 # a different formula!

a = 5.0; b = 5.0; c = 5.0
a/b + c + a*c # yields 31.0
a/(b + c) + a*c # yields 25.5
a/(b + c + a)*c # yields 1.6666666666666665

Particular attention must be paid to coding fractions, since the division
operator / often needs extra parentheses that are not necessary in the
mathematical notation for fractions (compare a

b+c with a/(b+c) and
a/b+c).

Common Mathematical Functions. The math module contains common
mathematical functions for real numbers. Modules must be imported
before they can be used:

import math
a = math.sin(math.pi*1.5)

or

from math import *
a = sin(pi*1.5)

or

38 1 Computing with Formulas

from math import sin, pi
a = sin(pi*1.5)

Print. To print the result of calculations in a Python program to a
terminal window, we apply the print command, i.e., the word print

followed by a string enclosed in quotes, or just a variable:

print "A string enclosed in double quotes"
print a

Several objects can be printed in one statement if the objects are sepa-
rated by commas. A space will then appear between the output of each
object:

>>> a = 5.0; b = -5.0; c = 1.9856; d = 33
>>> print ’a is’, a, ’b is’, b, ’c and d are’, c, d
a is 5.0 b is -5.0 c and d are 1.9856 33

The printf syntax enables full control of the formatting of real numbers
and integers:

>>> print ’a=%g, b=%12.4E, c=%.2f, d=%5d’ % (a, b, c, d)
a=5, b= -5.0000E+00, c=1.99, d= 33

Here, a, b, and c are of type float and formatted as compactly as
possible (%g for a), in scientific notation with 4 decimals in a field of
width 12 (%12.4E for b), and in decimal notation with two decimals in
as compact field as possible (%.2f for c). The variable d is an integer
(int) written in a field of width 5 characters (%5d).

Integer Division. A common error in mathematical computations is
to divide two integers, because this results in integer division. Any
number written without decimals is treated as an integer. To avoid
integer division, ensure that every division involves at least one real
number, e.g., 9/5 is written as 9.0/5, 9./5, 9/5., or 9/5.0.

Complex Numbers. Values of complex numbers are written as (X+Yj),
where X is the value of the real part and Y is the value of the imaginary
part. One example is (4-0.2j). If the real and imaginary parts are
available as variables r and i, a complex number can be created by
complex(r, i).

The cmath module must be used instead of math if the argument
is a complex variable. The numpy package offers similar mathematical
functions, but with a unified treatment of real and complex variables.

Terminology. Some Python and computer science terms briefly covered
in this chapter are

1.7 Summary 39

• object: anything that a variable (name) can refer to25 (number,
string, function, module, . . .)

• variable: name of an object
• statement: an instruction to the computer, usually written on a line
in a Python program (multiple statements on a line must be sepa-
rated by semicolons)

• expression: a combination of numbers, text, variables, and operators
that results in a new object, when being evaluated

• assignment: a statement binding an evaluated expression (object) to
a variable (name)

• algorithm: detailed recipe for how to solve a problem by program-
ming

• code: program text (or synonym for program)
• implementation: same as code
• executable: the file we run to start the program
• verification: providing evidence that the program works correctly
• debugging: locating and correcting errors in a program

1.7.2 Example: Trajectory of a Ball

Problem. The formula (1.1) computes the height of a ball in vertical
motion. What if we throw the ball with an initial velocity having an
angle θ with the horizontal? This problem can be solved by basic high
school physics as you are encouraged to do in Exercise 1.13. The ball
will follow a trajectory y = f(x) through the air26, where

f(x) = x tan θ − 1

2v20

gx2

cos2 θ
+ y0. (1.5)

In this expression, x is a horizontal coordinate, g is the acceleration
of gravity, v0 is the size of the initial velocity which makes an angle θ
with the x axis, and (0, y0) is the initial position of the ball. Our pro-
gramming goal is to make a program for evaluating (1.5). The program
should write out the value of all the involved variables and what their
units are.

Solution. We use the SI system and assume that v0 is given in km/h;
g = 9.81 m/s2; x, y, and y0 are measured in meters; and θ in degrees.
The program has naturally four parts: initialization of input data, im-
port of functions and π from math, conversion of v0 and θ to m/s and

25 But objects can exist without being bound to a name: print ’Hello!’ first makes a

string object of the text in quotes and then the contents of this string object, without a
name, is printed.
26 This formula neglects air resistance. Exercise 1.11 explores how important air resistance
is. For a soft kick (v0 = 10 km/h) of a football, the gravity force is about 120 times larger

than the air resistance. For a hard kick, air resistance may be as important as gravity.

40 1 Computing with Formulas

radians, respectively, and evaluation of the right-hand side expression
in (1.5). We choose to write out all numerical values with one decimal.
The complete program is found in the file trajectory.py:

g = 9.81 # m/s**2
v0 = 15 # km/h
theta = 60 # degrees
x = 0.5 # m
y0 = 1 # m

print """\
v0 = %.1f km/h
theta = %d degrees
y0 = %.1f m
x = %.1f m\
""" % (v0, theta, y0, x)

from math import pi, tan, cos
Convert v0 to m/s and theta to radians
v0 = v0/3.6
theta = theta*pi/180

y = x*tan(theta) - 1/(2*v0**2)*g*x**2/((cos(theta))**2) + y0

print ’y = %.1f m’ % y

The backslash in the triple-quoted multi-line string makes the string
continue on the next line without a newline. This means that removing
the backslash results in a blank line above the v0 line and a blank
line between the x and y lines in the output on the screen. Another
point to mention is the expression 1/(2*v0**2), which might seem as a
candidate for unintended integer division. However, the conversion of
v0 to m/s involves a division by 3.6, which results in v0 being float,
and therefore 2*v0**2 being float. The rest of the program should be
self-explanatory at this stage in the book.

We can execute the program in IPython or an ordinary terminal
window and watch the output:

Terminal

v0 = 15.0 km/h
theta = 60 degrees
y0 = 1.0 m
x = 0.5 m
y = 1.6 m

1.7.3 About Typesetting Conventions in This Book

This version of the book applies different design elements for different
types of “computer text”. Complete programs and parts of programs
(snippets) are typeset with a light blue background. A snippet looks
like this:

1.8 Exercises 41

a = sqrt(4*p + c)
print ’a =’, a

A complete program has an additional vertical line to the left:

C = 21
F = (9.0/5)*C + 32
print F

As a reader of this book, you may wonder if a code shown is a complete
program you can try out or if it is just a part of a program (a snippet) so
that you need to add surrounding statements (e.g., import statements)
to try the code out yourself. The appearance of a vertical line to the
left or not will then quickly tell you what type of code you see.

An interactive Python session is typeset as

>>> from math import *
>>> p = 1; c = -1.5
>>> a = sqrt(4*p + c)

Running a program, say ball_yc.py, in the terminal window, followed
by some possible output is typeset as27

Terminal

ball_yc.py
At t=0.0417064 s and 0.977662 s, the height is 0.2 m.

Sometimes just the output from a program is shown, and this output
appears as plain “computer text”:

h = 0.2
order=0, error=0.221403
order=1, error=0.0214028
order=2, error=0.00140276
order=3, error=6.94248e-05
order=4, error=2.75816e-06

Files containing data are shown in a similar way in this book:

date Oslo London Berlin Paris Rome Helsinki
01.05 18 21.2 20.2 13.7 15.8 15
01.06 21 13.2 14.9 18 24 20
01.07 13 14 16 25 26.2 14.5

1.8 Exercises

What Does It Mean to Solve an Exercise? The solution to most of the
exercises in this book is a Python program. To produce the solution,

27 Recall from Chapter 1.5.3 that we just write the program name. A real execution de-

mands prefixing the program name by python in a DOS/Unix terminal window, or by run

if you run the program from an interactive IPython session. We refer to Appendix H.1 for

more complete information on running Python programs in different ways.

42 1 Computing with Formulas

you first need understand the problem and what the program is sup-
posed to do, and then you need to understand how to translate the
problem description into a series of Python statements. Equally impor-
tant is the verification (testing) of the program. A complete solution to
a programming exercises therefore consists of two parts: the program
text and a demonstration that the program works correctly. Some sim-
ple programs, like the ones in the first two exercises below, have so
simple output that the verification can just be to run the program and
record the output.

In cases where the correctness of the output is not obvious, it is
necessary to provide information together with the output to “prove”
that the result is correct. This can be a calculation done separately
on a calculator, or one can apply the program to a special simple test
with known results. The requirement is to provide evidence that the
program works as intended.

The sample run of the program to check its correctness can be in-
serted at the end of the program as a triple-quoted string28. The con-
tents of the string can be text from the run in the terminal window, cut
and pasted to the program file by the aid of the mouse. Alternatively,
one can run the program and direct the output to a file29:

Terminal

Terminal> python myprogram.py > result

Afterwards, use the editor to insert the file result inside the string.
As an example, suppose we are to write a program for converting

Fahrenheit degrees to Celsius. The solution process can be divided into
three steps:

1. Establish the mathematics to be implemented: solving (1.2) with
respect to C gives the conversion formula

C =
5

9
(F − 32).

2. Coding of the formula in Python: C = (5.0/9)*(F - 32)

3. Establish a test case: from the c2f.py program in Chapter 1.3.3 we
know that C = 21 corresponds to F = 69.8. We can therefore, in
our new program, set F = 69.8 and check that C = 21. The output
from a run can be appended as a triple quoted string at the end of
the program.

28 Alternatively, the output lines can be inserted as comments, but using a multi-line string
requires less typing. (Technically, a string object is created, but not assigned to any name
or used for anything in the program – but for a human the text in the string contains useful

information.)
29 The redirection to files does not work if the program is run inside IPython. In a DOS

terminal window you may also choose to redirect output to a file, because cut and paste
between the DOS window and the program window does not work by default unless you

right-click the top bar, choose Properties and tick off Quick Edit Mode.

1.8 Exercises 43

An appropriate complete solution to the exercise is then

Convert from Fahrenheit degrees to Celsius degrees:
F = 69.8
C = (5.0/9)*(F - 32)
print C

’’’
Sample run:
python f2c.py
21.0
’’’

Exercise 1.1. Compute 1+1.
The first exercise concerns some very basic mathematics and pro-

gramming: assign the result of 1+1 to a variable and print the value of
that variable. Name of program file: 1plus1.py. �

Exercise 1.2. Write a “Hello, World!” program.
Almost all books about programming languages start with a very

simple program that prints the text “Hello, World!” no the screen. Make
such a program in Python. Name of program file: hello_world.py. �

Exercise 1.3. Derive and compute a formula.
Can a newborn baby in Norway expect to live for one billion (109)

seconds? Name of program file: seconds2years.py. �

Exercise 1.4. Convert from meters to British length units.
Make a program where you set a length given in meters and then

compute and write out the corresponding length measured in inches,
in feet, in yards, and in miles. Use that one inch is 2.54 cm, one foot is
12 inches, one yard is 3 feet, and one British mile is 1760 yards. As a
verification, a length of 640 meters corresponds to 25196.85 inches,
2099.74 feet, 699.91 yards, or 0.3977 miles. Name of program file:
length_conversion.py. �

Exercise 1.5. Compute the mass of various substances.
The density of a substance is defined as � = m/V , where m is the

mass of a volume V . Compute and print out the mass of one liter of
each of the following substances whose densities in g/cm3 are found
in the file src/files/densities.dat: iron, air, gasoline, ice, the human
body, silver, and platinum: 21.4. Name of program file: 1liter.py. �

Exercise 1.6. Compute the growth of money in a bank.
Let p be a bank’s interest rate in percent per year. An initial amount

A has then grown to

A

(
1 +

p

100

)n

after n years. Make a program for computing how much money 1000
euros have grown to after three years with 5% interest rate. Name of
program file: interest_rate.py. �

44 1 Computing with Formulas

Exercise 1.7. Find error(s) in a program.
Suppose somebody has written a simple one-line program for com-

puting sin(1):

x=1; print ’sin(%g)=%g’ % (x, sin(x))

Type in this program and try to run it. What is the problem? �

Exercise 1.8. Type in program text.
Type the following program in your editor and execute it. If your

program does not work, check that you have copied the code correctly.

from math import pi

h = 5.0 # height
b = 2.0 # base
r = 1.5 # radius

area_parallelogram = h*b
print ’The area of the parallelogram is %.3f’ % area_parallelogram

area_square = b**2
print ’The area of the square is %g’ % area_square

area_circle = pi*r**2
print ’The area of the circle is %.3f’ % area_circle

volume_cone = 1.0/3*pi*r**2*h
print ’The volume of the cone is %.3f’ % volume_cone

Name of program file: formulas_shapes.py. �

Exercise 1.9. Type in programs and debug them.
Type these short programs in your editor and execute them. When

they do not work, identify and correct the erroneous statements.

(a) Does sin2(x) + cos2(x) = 1?

from math import sin, cos
x = pi/4
1_val = sin^2(x) + cos^2(x)
print 1_VAL

Name of program file: sin2_plus_cos2.py
(b) Work with the expressions for movement with constant accelera-

tion:

v0 = 3 m/s
t = 1 s
a = 2 m/s**2
s = v0*t + 1/2 a*t**2
print s

Name of program file: acceleration.py
(c) Verify these equations:

(a+ b)2 = a2 + 2ab+ b2

(a− b)2 = a2 − 2ab+ b2

1.8 Exercises 45

a = 3,3 b = 5,3
a2 = a**2
b2 = b**2

eq1_sum = a2 + 2ab + b2
eq2_sum = a2 - 2ab + b2

eq1_pow = (a + b)**2
eq2_pow = (a - b)**2

print ’First equation: %g = %g’, % (eq1_sum, eq1_pow)
print ’Second equation: %h = %h’, % (eq2_pow, eq2_pow)

Name of program file: a_pm_b_sqr.py �

Exercise 1.10. Evaluate a Gaussian function.
The bell-shaped Gaussian function,

f(x) =
1√
2π s

exp

[
−1

2

(
x−m

s

)2
]
, (1.6)

is one of the most widely used functions in science and technology30.
The parameters m and s are real numbers, where s must be greater
than zero. Make a program for evaluating this function when m = 0,
s = 2, and x = 1. Verify the program’s result by comparing with hand
calculations on a calculator. Name of program file: Gaussian1.py. �

Exercise 1.11. Compute the air resistance on a football.
The drag force, due to air resistance, on an object can be expressed

as

Fd =
1

2
CD�AV 2, (1.7)

where � is the density of the air, V is the velocity of the object, A is
the cross-sectional area (normal to the velocity direction), and CD is
the drag coefficient, which depends heavily on the shape of the object
and the roughness of the surface.

The gravity force on an object with mass m is Fg = mg, where
g = 9.81 m s−2.

We can use the formulas for Fd and Fg to study the importance of air
resistance versus gravity when kicking a football. The density of air is
� = 1.2 kgm−3. We have A = πa2 for any ball with radius a. For a foot-
ball a = 11 cm. The mass of a football is 0.43 kg, CD can be taken as 0.2.

Make a program that computes the drag force and the gravity force
on a football. Write out the forces with one decimal in units of Newton
(N = kgm/s2). Also print the ratio of the drag force and the gravity
force. Define CD, �, A, V , m, g, Fd, and Fg as variables, and put

30 The function is named after Carl Friedrich Gauss, 1777–1855, who was a German math-
ematician and scientist, now considered as one of the greatest scientists of all time. He

contributed to many fields, including number theory, statistics, mathematical analysis, dif-
ferential geometry, geodesy, electrostatics, astronomy, and optics. Gauss introduced the

function (1.6) when he analyzed probabilities related to astronomical data.

http://en.wikipedia.org/wiki/Carl_Gauss

46 1 Computing with Formulas

a comment with the corresponding unit. Use the program to calculate
the forces on the ball for a hard kick, V = 120 km/h and for a soft kick,
V = 10 km/h (it is easy to mix inconsistent units, so make sure you
compute with V expressed in m/s). Name of program file: kick.py. �

Exercise 1.12. How to cook the perfect egg.
As an egg cooks, the proteins first denature and then coagulate.

When the temperature exceeds a critical point, reactions begin and
proceed faster as the temperature increases. In the egg white the pro-
teins start to coagulate for temperatures above 63 C, while in the yolk
the proteins start to coagulate for temperatures above 70 C. For a soft
boiled egg, the white needs to have been heated long enough to coag-
ulate at a temperature above 63 C, but the yolk should not be heated
above 70 C. For a hard boiled egg, the center of the yolk should be
allowed to reach 70 C.

The following formula expresses the time t it takes (in seconds) for
the center of the yolk to reach the temperature Ty (in Celsius degrees):

t =
M2/3cρ1/3

Kπ2(4π/3)2/3
ln

[
0.76

To − Tw

Ty − Tw

]
. (1.8)

Here, M , ρ, c, and K are properties of the egg: M is the mass, ρ is the
density, c is the specific heat capacity, and K is thermal conductivity.
Relevant values are M = 47 g for a small egg and M = 67 g for
a large egg, ρ = 1.038 g cm−3, c = 3.7 J g−1K−1, and K = 5.4 ·
10−3 Wcm−1 K−1. Furthermore, Tw is the temperature (in C degrees)
of the boiling water, and To is the original temperature (in C degrees)
of the egg before being put in the water. Implement the formula in a
program, set Tw = 100 C and Ty = 70 C, and compute t for a large
egg taken from the fridge (To = 4 C) and from room temperature
(To = 20 C). Name of program file: egg.py. �

Exercise 1.13. Derive the trajectory of a ball.
The purpose of this exercise is to explain how Equation (1.5) for the

trajectory of a ball arises from basic physics. There is no programming
in this exercise, just physics and mathematics.

The motion of the ball is governed by Newton’s second law:

Fx = max (1.9)

Fy = may (1.10)

where Fx and Fy are the sum of forces in the x and y directions, re-
spectively, ax and ay are the accelerations of the ball in the x and y
directions, and m is the mass of the ball. Let (x(t), y(t)) be the posi-
tion of the ball, i.e., the horizontal and vertical coordinate of the ball at
time t. There are well-known relations between acceleration, velocity,
and position: the acceleration is the time derivative of the velocity, and

1.8 Exercises 47

the velocity is the time derivative of the position. Therefore we have
that

ax =
d2x

dt2
, (1.11)

ay =
d2y

dt2
. (1.12)

If we assume that gravity is the only important force on the ball, Fx = 0
and Fy = −mg.

Integrate the two components of Newton’s second law twice. Use the
initial conditions on velocity and position,

d

dt
x(0) = v0 cos θ, (1.13)

d

dt
y(0) = v0 sin θ, (1.14)

x(0) = 0, (1.15)

y(0) = y0, (1.16)

to determine the four integration constants. Write up the final expres-
sions for x(t) and y(t). Show that if θ = π/2, i.e., the motion is purely
vertical, we get the formula (1.1) for the y position. Also show that if
we eliminate t, we end up with the relation (1.5) between the x and y
coordinates of the ball. You may read more about this type of motion
in a physics book, e.g., [6]. �

Exercise 1.14. Find errors in the coding of formulas.
Some versions of our program for calculating the formula (1.2) are

listed below. Determine which versions that will not work correctly and
explain why in each case.

C = 21; F = 9/5*C + 32; print F
C = 21.0; F = (9/5)*C + 32; print F
C = 21.0; F = 9*C/5 + 32; print F
C = 21.0; F = 9.*(C/5.0) + 32; print F
C = 21.0; F = 9.0*C/5.0 + 32; print F
C = 21; F = 9*C/5 + 32; print F
C = 21.0; F = (1/5)*9*C + 32; print F
C = 21; F = (1./5)*9*C + 32; print F

�

Exercise 1.15. Explain why a program does not work.
Find out why the following program does not work:

C = A + B
A = 3
B = 2
print C

�

48 1 Computing with Formulas

Exercise 1.16. Find errors in Python statements.
Try the following statements in an interactive Python shell. Explain

why some statements fail and correct the errors.
1a = 2
a1 = b
x = 2
y = X + 4 # is it 6?
from Math import tan
print tan(pi)
pi = "3.14159’
print tan(pi)
c = 4**3**2**3
_ = ((c-78564)/c + 32))
discount = 12%
AMOUNT = 120.-
amount = 120$
address = hpl@simula.no
and = duck
class = ’INF1100, gr 2"
continue_ = x > 0
rev = fox = True
Norwegian = [’a human language’]
true = fox is rev in Norwegian

Hint: It might be wise to test the values of the expressions on the right-
hand side, and the validity of the variable names, separately before you
put the left- and right-hand sides together in statements. The last two
statements work, but explaining why goes beyond what is treated in
this chapter. �

Exercise 1.17. Find errors in the coding of a formula.
Given a quadratic equation,

ax2 + bx+ c = 0,

the two roots are

x1 =
−b+

√
b2 − 4ac

2a
, x2 =

−b−
√
b2 − 4ac

2a
. (1.17)

What are the problems with the following program?

a = 2; b = 1; c = 2
from math import sqrt
q = sqrt(b*b - 4*a*c)
x1 = (-b + q)/2*a
x2 = (-b - q)/2*a
print x1, x2

Hint: Compute all terms in (1.17) with the aid of a calculator, and
compare with the corresponding intermediate results computed in the
program (you need to add some print statements to see the result of
q, -b+q, and 2*a). �

Loops and Lists 2

This chapter shows how repetitive tasks in a program can be automated
by loops. We also introduce list objects for storing and processing col-
lections of data with a specific order. Loops and lists, together with
functions and if-tests from Chapter 3, lay the fundamental program-
ming foundation for the rest of the book. The programs associated with
the chapter are found in the folder src/looplist.

2.1 While Loops

Our task now is to print out a conversion table with Celsius degrees in
the first column of the table and the corresponding Fahrenheit degrees
in the second column. Such a table may look like this:

-20 -4.0
-15 5.0
-10 14.0
-5 23.0
0 32.0
5 41.0
10 50.0
15 59.0
20 68.0
25 77.0
30 86.0
35 95.0
40 104.0

2.1.1 A Naive Solution

Since we know how to evaluate the formula (1.2) for one value of C,
we can just repeat these statements as many times as required for
the table above. Using three statements per line in the program, for
compact layout of the code, we can write the whole program as

H.P. Langtangen, A Primer on Scientific Programming with Python,
Texts in Computational Science and Engineering 6,

DOI 10.1007/978-3-642-30293-0 2, c© Springer-Verlag Berlin Heidelberg 2012

49

http://dx.doi.org/10.1007/978-3-642-30293-0_2

50 2 Loops and Lists

C = -20; F = 9.0/5*C + 32; print C, F
C = -15; F = 9.0/5*C + 32; print C, F
C = -10; F = 9.0/5*C + 32; print C, F
C = -5; F = 9.0/5*C + 32; print C, F
C = 0; F = 9.0/5*C + 32; print C, F
C = 5; F = 9.0/5*C + 32; print C, F
C = 10; F = 9.0/5*C + 32; print C, F
C = 15; F = 9.0/5*C + 32; print C, F
C = 20; F = 9.0/5*C + 32; print C, F
C = 25; F = 9.0/5*C + 32; print C, F
C = 30; F = 9.0/5*C + 32; print C, F
C = 35; F = 9.0/5*C + 32; print C, F
C = 40; F = 9.0/5*C + 32; print C, F

Running this program, which is stored in the file c2f_table_repeat.

py, demonstrates that the output becomes
-20 -4.0
-15 5.0
-10 14.0
-5 23.0
0 32.0
5 41.0
10 50.0
15 59.0
20 68.0
25 77.0
30 86.0
35 95.0
40 104.0

This output suffers from somewhat ugly formatting, but that problem
can quickly be fixed by replacing print C, F by a print statement
based on printf formatting. We will return to this detail later.

The main problem with the program above is that lots of statements
are identical and repeated. First of all it is boring to write this sort of
repeated statements, especially if we want many more C and F values
in the table. Second, the idea of the computer is to automate repetition.
Therefore, all computer languages have constructs to efficiently express
repetition. These constructs are called loops and come in two variants
in Python: while loops and for loops. Most programs in this book
employ loops, so this concept is extremely important to learn.

2.1.2 While Loops

The while loop is used to repeat a set of statements as long as a condi-
tion is true. We shall introduce this kind of loop through an example.
The task is to generate the rows of the table of C and F values. The
C value starts at −20 and is incremented by 5 as long as C ≤ 40. For
each C value we compute the corresponding F value and write out the
two temperatures. In addition, we also add a line of hyphens above and
below the table. We postpone to nicely format the C and F columns
of numbers and perform for simplicity a plain print C, F statement
inside the loop.

Using a mathematical type of notation, we could write the while

loop as follows:

2.1 While Loops 51

C = −20
while C ≤ 40 repeat the following:

F = 9
5C + 32

print C, F
set C to C + 5

The three lines after the “while” line are to be repeated as long as the
condition C ≤ 40 is true. This algorithm will then produce a table of
C and corresponding F values.

A complete Python program, implementing the repetition algorithm
above, looks quite similar1:

print ’------------------’ # table heading
C = -20 # start value for C
dC = 5 # increment of C in loop
while C <= 40: # loop heading with condition

F = (9.0/5)*C + 32 # 1st statement inside loop
print C, F # 2nd statement inside loop
C = C + dC # 3rd statement inside loop

print ’------------------’ # end of table line (after loop)

A very important feature of Python is now encountered: The block
of statements to be executed in each pass of the while loop must be
indented. In the example above the block consists of three lines, and
all these lines must have exactly the same indentation. Our choice of
indentation in this book is four spaces. The first statement whose in-
dentation coincides with that of the while line marks the end of the
loop and is executed after the loop has terminated. In this example
this is the final print statement. You are encouraged to type in the
code above in a file, indent the last line four spaces, and observe what
happens (you will experience that lines in the table are separated by a
line of dashes: --------).

Many novice Python programmers forget the colon at the end of
the while line – this colon is essential and marks the beginning of the
indented block of statements inside the loop. Later, we will see that
there are many other similar program constructions in Python where
there is a heading ending with a colon, followed by an indented block
of statements.

Programmers need to fully understand what is going on in a program
and be able to simulate the program by hand. Let us do this with the
program segment above. First, we define the start value for the sequence
of Celsius temperatures: C = -20. We also define the increment dC that
will be added to C inside the loop. Then we enter the loop condition C

<= 40. The first time C is -20, which implies that C <= 40 (equivalent
to C ≤ 40 in mathematical notation) is true. Since the loop condition
is true, we enter the loop and execute all the indented statements.

1 For this table we also add (of teaching purposes) a line above and below the table.

52 2 Loops and Lists

That is, we compute F corresponding to the current C value, print the
temperatures, and increment C by dC.

Thereafter, we enter the second pass in the loop. First we check the
condition: C is -15 and C <= 40 is still true. We execute the statements
in the indented loop block, C becomes -10, this is still less than or equal
to 40, so we enter the loop block again. This procedure is repeated until
C is updated from 40 to 45 in the final statement in the loop block. When
we then test the condition, C <= 40, this condition is no longer true,
and the loop is terminated. We proceed with the next statement that
has the same indentation as the while statement, which is the final
print statement in this example.

Newcomers to programming are sometimes confused by statements
like

C = C + dC

This line looks erroneous from a mathematical viewpoint, but the state-
ment is perfectly valid computer code, because we first evaluate the
expression on the right-hand side of the equality sign and then let the
variable on the left-hand side refer to the result of this evaluation. In
our case, C and dC are two different int objects. The operation C+dC

results in a new int object, which in the assignment C = C+dC is bound
to the name C. Before this assignment, C was already bound to a int

object, and this object is automatically destroyed when C is bound to
a new object and there are no other names (variables) referring to this
previous object2.

Since incrementing the value of a variable is frequently done in com-
puter programs, there is a special short-hand notation for this and
related operations:

C += dC # equivalent to C = C + dC
C -= dC # equivalent to C = C - dC
C *= dC # equivalent to C = C*dC
C /= dC # equivalent to C = C/dC

2.1.3 Boolean Expressions

In our first example on a while loop, we worked with a condition C <=

40, which evaluates to either true or false, written as True or False in
Python. Other comparisons are also useful:

C == 40 # C equals 40
C != 40 # C does not equal 40
C >= 40 # C is greater than or equal to 40
C > 40 # C is greater than 40
C < 40 # C is less than 40

2 If you did not get the last point here, just relax and continue reading.

2.1 While Loops 53

Not only comparisons between numbers can be used as conditions in
while loops: Any expression that has a boolean (True or False) value
can be used. Such expressions are known as logical or boolean expres-
sions.

The keyword not can be inserted in front of the boolean expression to
change the value from True to False or from False to True. To evaluate
not C == 40, we first evaluate C == 40, for C = 1 this is False, and then
not turns the value into True. On the opposite, if C == 40 is True, not C

== 40 becomes False. Mathematically it is easier to read C != 40 than
not C == 40, but these two boolean expressions are equivalent.

Boolean expressions can be combined with and and or to form new
compound boolean expressions, as in

while x > 0 and y <= 1:
print x, y

If cond1 and cond2 are two boolean expressions with values True or
False, the compound boolean expression cond1 and cond2 is True if
both cond1 and cond2 are True. On the other hand, cond1 or cond2 is
True if at least one of the conditions, cond1 or cond2, is True3

Here are some more examples from an interactive session where we
just evaluate the boolean expressions themselves without using them
in loop conditions:

>>> x = 0; y = 1.2
>>> x >= 0 and y < 1
False
>>> x >= 0 or y < 1
True
>>> x > 0 or y > 1
True
>>> x > 0 or not y > 1
False
>>> -1 < x <= 0 # -1 < x and x <= 0
True
>>> not (x > 0 or y > 0)
False

In the last sample expression, not applies to the value of the boolean
expression inside the parentheses: x>0 is False, y>0 is True, so the com-
bined expression with or is True, and not turns this value to False.

The common4 boolean values in Python are True, False, 0 (false),
and any integer different from zero (true). To see such values in action,
we recommend to do Exercises 2.25 and 2.21.

3 In Python, cond1 and cond2 or cond1 or cond2 returns one of the operands and not just

True or False values as in most other computer languages. The operands cond1 or cond2

can be expressions or objects. In case of expressions, these are first evaluated to an object
before the compound boolean expression is evaluated. For example, (5+1) or -1 evaluates

to 6 (the second operand is not evaluated when the first one is True), and (5+1) and -1

evaluates to -1.
4 All objects in Python can in fact be evaluated in a boolean context, and all are True

except False, zero numbers, and empty strings, lists, and dictionaries. See Exercise 6.24 for

more details.

54 2 Loops and Lists

Erroneous thinking about boolean expressions is one of the most
common sources of errors in computer programs, so you should be
careful every time you encounter a boolean expression and check that
it is correctly stated.

2.1.4 Loop Implementation of a Sum

Summations frequently appear in mathematics. For instance, the sine
function can be calculated as a polynomial:

sin(x) ≈ x− x3

3!
+

x5

5!
− x7

7!
+ · · · , (2.1)

where 3! = 3 · 2 · 1, 5! = 5 · 4 · 3 · 2 · 1, etc., are factorials. The expression
k! = k(k − 1)(k − 2) · · · 2 · 1 can be computed by math.factorial(k).

An infinite number of terms are needed on the right-hand side of
(2.1) for the equality sign to hold. With a finite number of terms,
we obtain an approximation to sin(x), which is well suited for being
calculated in a program since only powers and the basic four arithmetic
operations are involved. Say we want to compute the right-hand side
of (2.1) for powers up to N = 25. Writing out and implementing each
one of these terms is a tedious job that can easily be automated by a
loop.

Computation of the sum in (2.1) by a while loop in Python, makes
use of (i) a counter k that runs through odd numbers from 1 up to some
given maximum power N, and (ii) a summation variable, say s, which
accumulates the terms, one at a time. The purpose of each pass of the
loop is to compute a new term and add it to s. Since the sign of each
term alternates, we introduce a variable sign that changes between −1
and 1 in each pass of the loop.

The previous paragraph can be precisely expressed by this piece of
Python code:

x = 1.2 # assign some value
N = 25 # maximum power in sum
k = 1
s = x
sign = 1.0
import math

while k < N:
sign = - sign
k = k + 2
term = sign*x**k/math.factorial(k)
s = s + term

print ’sin(%g) = %g (approximation with %d terms)’ % (x, s, N)

The best way to understand such a program is to simulate it by hand.
That is, we go through the statements, one by one, and write down on
a piece of paper what the state of each variable is.

2.2 Lists 55

When the loop is first entered, k < N implies 1 < 25, which is True

so we enter the loop block. There, we compute sign = -1.0, k = 3,
term = -1.0*x**3/(3*2*1)) (note that sign is float so we always have
float divided by int), and s = x - x**3/6, which equals the first
two terms in the sum. Then we test the loop condition: 3 < 25 is
True so we enter the loop block again. This time we obtain term

= 1.0*x**5/math.factorial(5), which correctly implements the third
term in the sum. At some point, k is updated to from 23 to 25 in-
side the loop and the loop condition then becomes 25 < 25, which is
False, implying that the program jumps over the loop block and con-
tinues with the print statement (which has the same indentation as
the while statement).

2.2 Lists

Up to now a variable has typically contained a single number. Some-
times numbers are naturally grouped together. For example, all Celsius
degrees in the first column of our table from Chapter 2.1.2 could be
conveniently stored together as a group. A Python list can be used to
represent such a group of numbers in a program. With a variable that
refers to the list, we can work with the whole group at once, but we
can also access individual elements of the group. Figure 2.1 illustrates
the difference between an int object and a list object. In general, a list
may contain a sequence of arbitrary objects in a given order. Python
has great functionality for examining and manipulating such sequences
of objects, which will be demonstrated below.

Fig. 2.1 Illustration of two variables: var1 refers to an int object with value 21, created

by the statement var1 = 21, and var2 refers to a list object with value [20, 21, 29,

4.0], i.e., three int objects and one float object, created by the statement var2 = [20,

21, 29, 4.0].

2.2.1 Basic List Operations

To create a list with the numbers from the first column in our table,
we just put all the numbers inside square brackets and separate the

56 2 Loops and Lists

numbers by commas:

C = [-20, -15, -10, -5, 0, 5, 10, 15, 20, 25, 30, 35, 40]

The variable C now refers to a list object holding 13 list elements. All
list elements are in this case int objects.

Every element in a list is associated with an index, which reflects the
position of the element in the list. The first element has index 0, the
second index 1, and so on. Associated with the C list above we have 13
indices, starting with 0 and ending with 12. To access the element with
index 3, i.e., the fourth element in the list, we can write C[3]. As we
see from the list, C[3] refers to an int object with the value −5.

Elements in lists can be deleted, and new elements can be inserted
anywhere. The functionality for doing this is built into the list object
and accessed by a dot notation. Two examples are C.append(v), which
appends a new element v to the end of the list, and C.insert(i,v),
which inserts a new element v in position number i in the list. The
number of elements in a list is given by len(C). Let us exemplify some
list operations in an interactive session to see the effect of the opera-
tions:

>>> C = [-10, -5, 0, 5, 10, 15, 20, 25, 30] # create list
>>> C.append(35) # add new element 35 at the end
>>> C # view list C
[-10, -5, 0, 5, 10, 15, 20, 25, 30, 35]

Two lists can be added:

>>> C = C + [40, 45] # extend C at the end
>>> C
[-10, -5, 0, 5, 10, 15, 20, 25, 30, 35, 40, 45]

What adding two lists means is up to the list object to define5, but not
surprisingly, addition of two lists is defined as appending the second
list to the first. The result of C + [40,45] is a new list object, which
we then assign to C such that this name refers to this new list.

New elements can in fact be inserted anywhere in the list (not only
at the end as we did with C.append):

>>> C.insert(0, -15) # insert new element -15 as index 0
>>> C
[-15, -10, -5, 0, 5, 10, 15, 20, 25, 30, 35, 40, 45]

5 Every object in Python and everything you can do with them is defined by programs
made by humans. With the techniques of Chapter 7 you can create your own objects and

define (if desired) what it means to add such objects. All this gives enormous power in the
hands of programmers. As one example, you can easily define your own list objects if you

are not satisfied with Python’s own lists.

2.2 Lists 57

With del C[i] we can remove an element with index i from the list C.
Observe that this changes the list, so C[i] refers to another (the next)
element after the removal:

>>> del C[2] # delete 3rd element
>>> C
[-15, -10, 0, 5, 10, 15, 20, 25, 30, 35, 40, 45]
>>> del C[2] # delete what is now 3rd element
>>> C
[-15, -10, 5, 10, 15, 20, 25, 30, 35, 40, 45]
>>> len(C) # length of list
11

The command C.index(10) returns the index corresponding to the first
element with value 10 (this is the 4th element in our sample list, with
index 3):

>>> C.index(10) # find index for an element (10)
3

To just test if an object with the value 10 is an element in the list, one
can write the boolean expression 10 in C:

>>> 10 in C # is 10 an element in C?
True

Python allows negative indices, which “count from the right”. As
demonstrated below, C[-1] gives the last element of the list C. C[-2] is
the element before C[-1], and so forth.

>>> C[-1] # view the last list element
45
>>> C[-2] # view the next last list element
40

Building long lists by writing down all the elements separated by com-
mas is a tedious process that can easily be automated by a loop, using
ideas from Chapter 2.1.4. Say we want to build a list of degrees from
−50 to 200 in steps of 2.5 degrees. We then start with an empty list
and use a while loop to append one element at a time:

C = []
C_value = -50
C_max = 200
while C_value <= C_max:

C.append(C_value)
C_value += 2.5

In the next sections, we shall see how we can express these six lines of
code with just one single statement.

There is a compact syntax for creating variables that refer to the
various list elements. Simply list a sequence of variables on the left-
hand side of an assignment to a list:

58 2 Loops and Lists

>>> somelist = [’book.tex’, ’book.log’, ’book.pdf’]
>>> texfile, logfile, pdf = somelist
>>> texfile
’book.tex’
>>> logfile
’book.log’
>>> pdf
’book.pdf’

The number of variables on the left-hand side must match the number
of elements in the list, otherwise an error occurs.

A final comment regards the syntax: some list operations are reached
by a dot notation, as in C.append(e), while other operations requires
the list object as an argument to a function, as in len(C). Although
C.append for a programmer behaves as a function, it is a function that
is reached through a list object, and it is common to say that append is
a method in the list object, not a function. There are no strict rules in
Python whether functionality regarding an object is reached through
a method or a function.

2.2.2 For Loops

The Nature of For Loops. When data are collected in a list, we often
want to perform the same operations on each element in the list. We
then need to walk through all list elements. Computer languages have
a special construct for doing this conveniently, and this construct is in
Python and many other languages called a for loop. Let us use a for

loop to print out all list elements:

degrees = [0, 10, 20, 40, 100]
for C in degrees:

print ’list element:’, C
print ’The degrees list has’, len(degrees), ’elements’

The for C in degrees construct creates a loop over all elements in the
list degrees. In each pass of the loop, the variable C refers to an element
in the list, starting with degrees[0], proceeding with degrees[1], and
so on, before ending with the last element degrees[n-1] (if n denotes
the number of elements in the list, len(degrees)).

The for loop specification ends with a colon, and after the colon
comes a block of statements which does something useful with the
current element. Each statement in the block must be indented, as we
explained for while loops. In the example above, the block belonging
to the for loop contains only one statement. The final print statement
has the same indentation (none in this example) as the for statement
and is executed as soon as the loop is terminated.

As already mentioned, understanding all details of a program by
following the program flow by hand is often a very good idea. Here, we
first define a list degrees containing 5 elements. Then we enter the for

2.2 Lists 59

loop. In the first pass of the loop, C refers to the first element in the
list degrees, i.e., the int object holding the value 0. Inside the loop we
then print out the text ’list element:’ and the value of C, which is 0.
There are no more statements in the loop block, so we proceed with
the next pass of the loop. C then refers to the int object 10, the output
now prints 10 after the leading text, we proceed with C as the integers
20 and 40, and finally C is 100. After having printed the list element
with value 100, we move on to the statement after the indented loop
block, which prints out the number of list elements. The total output
becomes

list element: 0
list element: 10
list element: 20
list element: 40
list element: 100
The degrees list has 5 elements

Correct indentation of statements is crucial in Python, and we therefore
strongly recommend you to work through Exercise 2.26 to learn more
about this topic.

Making the Table. Our knowledge of lists and for loops over elements
in lists puts us in a good position to write a program where we collect
all the Celsius degrees to appear in the table in a list Cdegrees, and then
use a for loop to compute and write out the corresponding Fahrenheit
degrees. The complete program may look like this:

Cdegrees = [-20, -15, -10, -5, 0, 5, 10, 15, 20, 25, 30, 35, 40]
for C in Cdegrees:

F = (9.0/5)*C + 32
print C, F

The print C, F statement just prints the value of C and F with a default
format, where each number is separated by one space character (blank).
This does not look like a nice table (the output is identical to the
one shown on page 50). Nice formatting is obtained by forcing C and
F to be written in fields of fixed width and with a fixed number of
decimals. An appropriate printf format is %5d (or %5.0f) for C and %5.1f

for F. We may also add a headline to the table. The complete program
becomes:

Cdegrees = [-20, -15, -10, -5, 0, 5, 10, 15, 20, 25, 30, 35, 40]
print ’ C F’
for C in Cdegrees:

F = (9.0/5)*C + 32
print ’%5d %5.1f’ % (C, F)

This code is found in the file c2f_table_list.py and its output be-
comes

C F
-20 -4.0
-15 5.0
-10 14.0

60 2 Loops and Lists

-5 23.0
0 32.0
5 41.0

10 50.0
15 59.0
20 68.0
25 77.0
30 86.0
35 95.0
40 104.0

2.3 Alternative Implementations with Lists and Loops

We have already solved the problem of printing out a nice-looking con-
version table for Celsius and Fahrenheit degrees. Nevertheless, there are
usually many alternative ways to write a program that solves a spe-
cific problem. The next paragraphs explore some other possible Python
constructs and programs to store numbers in lists and print out tables.
The various code snippets are collected in the program file session.py.

2.3.1 While Loop Implementation of a For Loop

Any for loop can be implemented as a while loop. The general code

for element in somelist:
<process element>

can be transformed to this while loop:

index = 0
while index < len(somelist):

element = somelist[index]
<process element>
index += 1

In particular, the example involving the printout of a table of Celsius
and Fahrenheit degrees can be implemented as follows in terms of a
while loop:

Cdegrees = [-20, -15, -10, -5, 0, 5, 10, 15, 20, 25, 30, 35, 40]
index = 0
print ’ C F’
while index < len(Cdegrees):

C = Cdegrees[index]
F = (9.0/5)*C + 32
print ’%5d %5.1f’ % (C, F)
index += 1

2.3.2 The Range Construction

It is tedious to write the many elements in the Cdegrees in the previ-
ous programs. We should use a loop to automate the construction of

2.3 Alternative Implementations with Lists and Loops 61

the Cdegrees list. The range construction is particularly useful in this
regard:

• range(n) generates integers 0, 1, 2, ..., n-1.
• range(start, stop, step) generates a sequence if integers start,
start+step, start+2*step, and so on up to, but not including, stop.
For example, range(2, 8, 3) returns 2 and 5 (and not 8), while
range(1, 11, 2) returns 1, 3, 5, 7, 9.

• range(start, stop) is the same as range(start, stop, 1).

A for loop over integers are written as

for i in range(start, stop, step):
...

We can use this construction to create a Cdegrees list of the values
−20,−15, . . . , 40:

Cdegrees = []
for C in range(-20, 45, 5):

Cdegrees.append(C)

Note that the upper limit must be greater than 40 to ensure that 40 is
included in the range of integers.

Suppose we want to create Cdegrees as −10,−7.5,−5, . . . , 40. This
time we cannot use range directly, because range can only create inte-
gers and we have decimal degrees such as −7.5 and 1.5. In this case,
we introduce an integer counter i and generate the C values by the
formula C = −10 + i · 2.5 for i = 0, 1, . . . , 20. The following Python
code implements this task:

Cdegrees = []
for i in range(0, 21):

C = -10 + i*2.5
Cdegrees.append(C)

2.3.3 For Loops with List Indices

Instead of iterating over a list directly with the construction

for element in somelist:
...

we can equivalently iterate of the list indices and index the list inside
the loop:

for i in range(len(somelist)):
element = somelist[i]
...

Since len(somelist) returns the length of somelist and the largest
legal index is len(somelist)-1, because indices always start at 0,

62 2 Loops and Lists

range(len(somelist)) will generate all the correct indices: 0, 1, . . .,
len(somelist)-1.

Programmers coming from other languages, such as Fortran, C,
C++, Java, and C#, are very much used to for loops with integer
counters and usually tend to use for i in range(len(somelist)) and
work with somelist[i] inside the loop. This might be necessary or con-
venient, but if possible, Python programmers are encouraged to use for
element in somelist, which is more elegant to read.

Iterating over loop indices is useful when we need to process two
lists simultaneously. As an example, we first create two Cdegrees and
Fdegrees lists, and then we make a list to write out a table with
Cdegrees and Fdegrees as the two columns of the table. Iterating over
a loop index is convenient in the final list:

Cdegrees = []
n = 21
C_min = -10
C_max = 40
dC = (C_max - C_min)/float(n-1) # increment in C
for i in range(0, n):

C = -10 + i*dC
Cdegrees.append(C)

Fdegrees = []
for C in Cdegrees:

F = (9.0/5)*C + 32
Fdegrees.append(F)

for i in range(len(Cdegrees)):
C = Cdegrees[i]
F = Fdegrees[i]
print ’%5.1f %5.1f’ % (C, F)

Instead of appending new elements to the lists, we can start with lists
of the right size, containing zeros, and then index the lists to fill in the
right values. Creating a list of length n consisting of zeros (for instance)
is done by

somelist = [0]*n

With this construction, the program above can use for loops over in-
dices everywhere:

n = 21
C_min = -10
C_max = 40
dC = (C_max - C_min)/float(n-1) # increment in C

Cdegrees = [0]*n
for i in range(len(Cdegrees)):

Cdegrees[i] = -10 + i*dC

Fdegrees = [0]*n
for i in range(len(Cdegrees)):

Fdegrees[i] = (9.0/5)*Cdegrees[i] + 32

2.3 Alternative Implementations with Lists and Loops 63

for i in range(len(Cdegrees)):
print ’%5.1f %5.1f’ % (Cdegrees[i], Fdegrees[i])

Note that we need the construction [0]*n to create a list of the right
length, otherwise the index [i] will be illegal.

2.3.4 Changing List Elements

We have two seemingly alternative ways to traverse a list, either a loop
over elements or over indices. Suppose we want to change the Cdegrees

list by adding 5 to all elements. We could try

for c in Cdegrees:
c += 5

but this loop leaves Cdegrees unchanged, while

for i in range(len(Cdegrees)):
Cdegrees[i] += 5

works as intended. What is wrong with the first loop? The problem is
that c is an ordinary variable which refers to a list element in the loop,
but when we execute c += 5, we let c refer to a new float object (c+5).
This object is never “inserted” in the list. The first two passes of the
loop are equivalent to

c = Cdegrees[0] # automatically done in the for statement
c += 5
c = Cdegrees[1] # automatically done in the for statement
c += 5

The variable c can only be used to read list elements and never to
change them. Only an assignment of the form

Cdegrees[i] = ...

can change a list element.
There is a way of traversing a list where we get both the index and

an element in each pass of the loop:

for i, c in enumerate(Cdegrees):
Cdegrees[i] = c + 5

This loop also adds 5 to all elements in the list.

2.3.5 List Comprehension

Because running through a list and for each element creating a new
element in another list is a frequently encountered task, Python has a
special compact syntax for doing this, called list comprehension. The
general syntax reads

64 2 Loops and Lists

newlist = [E(e) for e in list]

where E(e) represents an expression involving element e. Here are three
examples:

Cdegrees = [-5 + i*0.5 for i in range(n)]
Fdegrees = [(9.0/5)*C + 32 for C in Cdegrees]
C_plus_5 = [C+5 for C in Cdegrees]

List comprehensions are recognized as a for loop inside square brackets
and will be frequently exemplified throughout the book.

2.3.6 Traversing Multiple Lists Simultaneously

We may use the Cdegrees and Fdegrees lists to make a table. To this
end, we need to traverse both arrays. The for element in list con-
struction is not suitable in this case, since it extracts elements from
one list only. A solution is to use a for loop over the integer indices so
that we can index both lists:

for i in range(len(Cdegrees)):
print ’%5d %5.1f’ % (Cdegrees[i], Fdegrees[i])

It happens quite frequently that two or more lists need to be traversed
simultaneously. As an alternative to the loop over indices, Python offers
a special nice syntax that can be sketched as

for e1, e2, e3, ... in zip(list1, list2, list3, ...):
work with element e1 from list1, element e2 from list2,
element e3 from list3, etc.

The zip function turns n lists (list1, list2, list3, ...) into one list
of n-tuples, where each n-tuple (e1,e2,e3,...) has its first element (e1)
from the first list (list1), the second element (e2) from the second list
(list2), and so forth. The loop stops when the end of the shortest list
is reached. In our specific case of iterating over the two lists Cdegrees

and Fdegrees, we can use the zip function:

for C, F in zip(Cdegrees, Fdegrees):
print ’%5d %5.1f’ % (C, F)

It is considered more “Pythonic” to iterate over list elements, here C and
F, rather than over list indices as in the for i in range(len(Cdegrees))

construction.

2.4 Nested Lists

Nested lists are list objects where the elements in the lists can be lists
themselves. A couple of examples will motivate for nested lists and
illustrate the basic operations on such lists.

2.4 Nested Lists 65

2.4.1 A Table as a List of Rows or Columns

Our table data have so far used one separate list for each column. If
there were n columns, we would need n list objects to represent the data
in the table. However, we think of a table as one entity, not a collection
of n columns. It would therefore be natural to use one argument for
the whole table. This is easy to achieve using a nested list , where each
entry in the list is a list itself. A table object, for instance, is a list of
lists, either a list of the row elements of the table or a list of the column
elements of the table. Here is an example where the table is a list of
two columns, and each column is a list of numbers6:

Cdegrees = range(-20, 41, 5) # -20, -15, ..., 35, 40
Fdegrees = [(9.0/5)*C + 32 for C in Cdegrees]

table = [Cdegrees, Fdegrees]

With the subscript table[0] we can access the first element (the
Cdegrees list), and with table[0][2] we reach the third element in
the list that constitutes the first element in table (this is the same as
Cdegrees[2]).

Fig. 2.2 Two ways of creating a table as a nested list: (a) table of columns C and F (C and

F are lists); (b) table of rows ([C, F] lists of two floats).

However, tabular data with rows and columns usually have the con-
vention that the underlying data is a nested list where the first index
counts the rows and the second index counts the columns. To have
table on this form, we must construct table as a list of [C, F] pairs.
The first index will then run over rows [C, F]. Here is how we may
construct the nested list:

6 Any value in [41, 45] can be used as second argument (stop value) to range and will ensure

that 40 is included in the range of generate numbers.

66 2 Loops and Lists

table = []
for C, F in zip(Cdegrees, Fdegrees):

table.append([C, F])

We may shorten this code segment by introducing a list comprehen-
sion:

table = [[C, F] for C, F in zip(Cdegrees, Fdegrees)]

This construction loops through pairs C and F, and for each pass in the
loop we create a list element [C, F].

The subscript table[1] refers to the second element in table, which
is a [C, F] pair, while table[1][0] is the C value and table[1][1] is
the F value. Figure 2.2 illustrates both a list of columns and a list of
pairs. Using this figure, you can realize that the first index looks up
the “main list”, while the second index looks up the “sublist”.

2.4.2 Printing Objects

Modules for Pretty Print of Objects. We may write print table to im-
mediately view the nested list table from the previous section. In fact,
any Python object obj can be printed to the screen by the command
print obj. The output is usually one line, and this line may become
very long if the list has many elements. For example, a long list like
our table variable, demands a quite long line when printed.

[[-20, -4.0], [-15, 5.0], [-10, 14.0],, [40, 104.0]]

Splitting the output over several shorter lines makes the layout nicer
and more readable. The pprint module offers a “pretty print” func-
tionality for this purpose. The usage of pprint looks like

import pprint
pprint.pprint(table)

and the corresponding output becomes

[[-20, -4.0],
[-15, 5.0],
[-10, 14.0],
[-5, 23.0],
[0, 32.0],
[5, 41.0],
[10, 50.0],
[15, 59.0],
[20, 68.0],
[25, 77.0],
[30, 86.0],
[35, 95.0],
[40, 104.0]]

With this book comes a slightly modified pprint module having
the name scitools.pprint2. This module allows full format con-
trol of the printing of the float objects in lists by specifying

2.4 Nested Lists 67

scitools.pprint2.float_format as a printf format string. The fol-
lowing example demonstrates how the output format of real numbers
can be changed:

>>> import pprint, scitools.pprint2
>>> somelist = [15.8, [0.2, 1.7]]
>>> pprint.pprint(somelist)
[15.800000000000001, [0.20000000000000001, 1.7]]
>>> scitools.pprint2.pprint(somelist)
[15.8, [0.2, 1.7]]
>>> # default output is ’%g’, change this to
>>> scitools.pprint2.float_format = ’%.2e’
>>> scitools.pprint2.pprint(somelist)
[1.58e+01, [2.00e-01, 1.70e+00]]

As can be seen from this session, the pprint module writes floating-
point numbers with a lot of digits, in fact so many that we explicitly
see the round-off errors. Many find this type of output is annoying and
that the default output from the scitools.pprint2 module is more like
one would desire and expect.

The pprint and scitools.pprint2 modules also have a function
pformat, which works as the pprint function, but it returns a pretty
formatted string rather than printing the string:

s = pprint.pformat(somelist)
print s

This last print statement prints the same as pprint.pprint(somelist).

Manual Printing. Many will argue that tabular data such as those
stored in the nested table list are not printed in a particularly pretty
way by the pprint module. One would rather expect pretty output to
be a table with two nicely aligned columns. To produce such output
we need to code the formatting manually. This is quite easy: We loop
over each row, extract the two elements C and F in each row, and print
these in fixed-width fields using the printf syntax. The code goes as
follows:

for C, F in table:
print ’%5d %5.1f’ % (C, F)

2.4.3 Extracting Sublists

Python has a nice syntax for extracting parts of a list structure. Such
parts are known as sublists or slices :

A[i:] is the sublist starting with index i in A and continuing to the
end of A:

68 2 Loops and Lists

>>> A = [2, 3.5, 8, 10]
>>> A[2:]
[8, 10]

A[i:j] is the sublist starting with index i in A and continuing up to
and including index j-1. Make sure you remember that the element
corresponding to index j is not included in the sublist:

>>> A[1:3]
[3.5, 8]

A[:i] is the sublist starting with index 0 in A and continuing up to and
including the element with index i-1:

>>> A[:3]
[2, 3.5, 8]

A[1:-1] extracts all elements except the first and the last (recall that
index -1 refers to the last element), and A[:] is the whole list:

>>> A[1:-1]
[3.5, 8]
>>> A[:]
[2, 3.5, 8, 10]

In nested lists we may use slices in the first index, e.g.,

>>> table[4:]
[[0, 32.0], [5, 41.0], [10, 50.0], [15, 59.0], [20, 68.0],
[25, 77.0], [30, 86.0], [35, 95.0], [40, 104.0]]

We can also slice the second index, or both indices:

>>> table[4:7][0:2]
[[0, 32.0], [5, 41.0]]

Observe that table[4:7] makes a list [[0, 32.0], [5, 41.0], [10,

50.0]] with three elements. The slice [0:2] acts on this sublist and
picks out its first two elements, with indices 0 and 1.

Sublists are always copies of the original list, so if you modify the
sublist the original list remains unaltered and vice versa:

>>> l1 = [1, 4, 3]
>>> l2 = l1[:-1]
>>> l2
[1, 4]
>>> l1[0] = 100
>>> l1 # l1 is modified
[100, 4, 3]
>>> l2 # l2 is not modified
[1, 4]

The fact that slicing makes a copy can also be illustrated by the fol-
lowing code:

2.4 Nested Lists 69

>>> B = A[:]
>>> C = A
>>> B == A
True
>>> B is A
False
>>> C is A
True

The B == A boolean expression is true if all elements in B are equal to
the corresponding elements in A. The test B is A is true if A and B are
names for the same list. Setting C = A makes C refer to the same list
object as A, while B = A[:] makes B refer to a copy of the list referred
to by A.

Example. We end this information on sublists by writing out the part
of the table list of [C, F] rows (cf. Chapter 2.4) where the Celsius
degrees are between 10 and 35 (not including 35):

>>> for C, F in table[Cdegrees.index(10):Cdegrees.index(35)]:
... print ’%5.0f %5.1f’ % (C, F)
...

10 50.0
15 59.0
20 68.0
25 77.0
30 86.0

You should always stop reading and convince yourself that you under-
stand why a code segment produces the printed output. In this latter
example, Cdegrees.index(10) returns the index corresponding to the
value 10 in the Cdegrees list. Looking at the Cdegrees elements, one
realizes (do it!) that the for loop is equivalent to

for C, F in table[6:11]:

This loop runs over the indices 6, 7, . . . , 10 in table.

2.4.4 Traversing Nested Lists

We have seen that traversing the nested list table could be done by a
loop of the form

for C, F in table:
process C and F

This is natural code when we know that table is a list of [C, F] lists.
Now we shall address more general nested lists where we do not nec-
essarily know how many elements there are in each list element of the
list.

Suppose we use a nested list scores to record the scores of players
in a game: scores[i] holds a list of the historical scores obtained by

70 2 Loops and Lists

player number i. Different players have played the game a different
number of times, so the length of scores[i] depends on i. Some code
may help to make this clearer:

scores = []
score of player no. 0:
scores.append([12, 16, 11, 12])
score of player no. 1:
scores.append([9])
score of player no. 2:
scores.append([6, 9, 11, 14, 17, 15, 14, 20])

The list scores has three elements, each element corresponding to a
player. The element no. g in the list scores[p] corresponds to the score
obtained in game number g played by player number p. The length of
the lists scores[p] varies and equals 4, 1, and 8 for p equal to 0, 1, and
2, respectively.

In the general case we may have n players, and some may have
played the game a large number of times, making scores potentially
a big nested list. How can we traverse the scores list and write it
out in a table format with nicely formatted columns? Each row in the
table corresponds to a player, while columns correspond to scores. For
example, the data initialized above can be written out as

12 16 11 12
9
6 9 11 14 17 15 14 20

In a program, we must use two nested loops , one for the elements in
scores and one for the elements in the sublists of scores. The example
below will make this clear.

There are two basic ways of traversing a nested list: either we use
integer indices for each index, or we use variables for the list elements.
Let us first exemplify the index-based version:

for p in range(len(scores)):
for g in range(len(scores[p])):

score = scores[p][g]
print ’%4d’ % score,

print

With the trailing comma after the print string, we avoid a newline so
that the column values in the table (i.e., scores for one player) appear
at the same line. The single print command after the loop over c adds
a newline after each table row. The reader is encouraged to go through
the loops by hand and simulate what happens in each statement (use
the simple scores list initialized above).

The alternative version where we use variables for iterating over the
elements in the scores list and its sublists looks like this:

for player in scores:
for game in player:

print ’%4d’ % game,
print

2.5 Tuples 71

Again, the reader should step through the code by hand and realize
what the values of player and game are in each pass of the loops.

In the very general case we can have a nested list with many indices:
somelist[i1][i2][i3].... To visit each of the elements in the list, we
use as many nested for loops as there are indices. With four indices,
iterating over integer indices look as

for i1 in range(len(somelist)):
for i2 in range(len(somelist[i1])):

for i3 in range(len(somelist[i1][i2])):
for i4 in range(len(somelist[i1][i2][i3])):

value = somelist[i1][i2][i3][i4]
work with value

The corresponding version iterating over sublists becomes

for sublist1 in somelist:
for sublist2 in sublist1:

for sublist3 in sublist2:
for sublist4 in sublist3:

value = sublist4
work with value

We recommend to do Exercise 2.27 to get a better understanding of
nested for loops.

2.5 Tuples

Tuples are very similar to lists, but tuples cannot be changed. That is,
a tuple can be viewed as a “constant list”. While lists employ square
brackets, tuples are written with standard parentheses:

>>> t = (2, 4, 6, ’temp.pdf’) # define a tuple with name t

One can also drop the parentheses in many occasions:

>>> t = 2, 4, 6, ’temp.pdf’
>>> for element in ’myfile.txt’, ’yourfile.txt’, ’herfile.txt’:
... print element,
...
myfile.txt yourfile.txt herfile.txt

The for loop here is over a tuple, because a comma separated sequence
of objects, even without enclosing parentheses, becomes a tuple. Note
the trailing comma in the print statement. This comma suppresses the
final newline that the print command automatically adds to the output
string. This is the way to make several print statements build up one
line of output.

72 2 Loops and Lists

Much functionality for lists is also available for tuples, for example:

>>> t = t + (-1.0, -2.0) # add two tuples
>>> t
(2, 4, 6, ’temp.pdf’, -1.0, -2.0)
>>> t[1] # indexing
4
>>> t[2:] # subtuple/slice
(6, ’temp.pdf’, -1.0, -2.0)
>>> 6 in t # membership
True

Any list operation that changes the list will not work for tuples:

>>> t[1] = -1
...
TypeError: object does not support item assignment

>>> t.append(0)
...
AttributeError: ’tuple’ object has no attribute ’append’

>>> del t[1]
...
TypeError: object doesn’t support item deletion

Some list methods, like index, are not available for tuples. So why do
we need tuples when lists can do more than tuples?

• Tuples protect against accidental changes of their contents.
• Code based on tuples is faster than code based on lists.
• Tuples are frequently used in Python software that you certainly
will make use of, so you need to know this data type.

There is also a fourth argument, which is important for a data type
called dictionaries (introduced in Chapter 6.2): tuples can be used as
keys in dictionaries while lists can not.

2.6 Summary

2.6.1 Chapter Topics

While Loops. Loops are used to repeat a collection of program state-
ments several times. The statements that belong to the loop must be
consistently indented in Python. A while loop runs as long as a condi-
tion evaluates to True:

>>> t = 0; dt = 0.5; T = 2
>>> while t <= T:
... print t
... t += dt
...
0
0.5
1.0
1.5
2.0
>>> print ’Final t:’, t, ’; t <= T is’, t <= T
Final t: 2.5 ; t <= T is False

2.6 Summary 73

Lists. A list is used to collect a number of values or variables in an
ordered sequence.

>>> mylist = [t, dt, T, ’mynumbers.dat’, 100]

A list element can be any Python object, including numbers, strings,
functions, and other lists, for instance. Table 2.1 shows some important
list operations (only a subset of these are explained in the present
chapter).

Table 2.1 Summary of important functionality for list objects.

a = [] initialize an empty list

a = [1, 4.4, ’run.py’] initialize a list
a.append(elem) add elem object to the end

a + [1,3] add two lists
a.insert(i, e) insert element e before index i

a[3] index a list element
a[-1] get last list element

a[1:3] slice: copy data to sublist (here: index 1, 2)
del a[3] delete an element (index 3)

a.remove(e) remove an element with value e

a.index(’run.py’) find index corresponding to an element’s value

’run.py’ in a test if a value is contained in the list
a.count(v) count how many elements that have the value v

len(a) number of elements in list a

min(a) the smallest element in a

max(a) the largest element in a

sum(a) add all elements in a

sorted(a) return sorted version of list a

reversed(a) return reversed sorted version of list a
b[3][0][2] nested list indexing

isinstance(a, list) is True if a is a list
type(a) is list is True if a is a list

Nested Lists. If the list elements are also lists, we have a nested list.
The following session summarizes indexing and loop traversal of nested
lists:

>>> nl = [[0, 0, 1], [-1, -1, 2], [-10, 10, 5]]
>>> nl[0]
[0, 0, 1]
>>> nl[-1]
[-10, 10, 5]
>>> nl[0][2]
1
>>> nl[-1][0]
-10
>>> for p in nl:
... print p
...
[0, 0, 1]
[-1, -1, 2]
[-10, 10, 5]
>>> for a, b, c in nl:

74 2 Loops and Lists

... print ’%3d %3d %3d’ % (a, b, c)

...
0 0 1

-1 -1 2
-10 10 5

Tuples. A tuple can be viewed as a constant list: no changes in the
contents of the tuple is allowed. Tuples employ standard parentheses
or no parentheses, and elements are separated with comma as in lists:

>>> mytuple = (t, dt, T, ’mynumbers.dat’, 100)
>>> mytuple = t, dt, T, ’mynumbers.dat’, 100

Many list operations are also valid for tuples. In Table 2.1, all opera-
tions can be applied to a tuple a, except those involving append, del,
remove, index, and sort.

An object a containing an ordered collection of other objects such
that a[i] refers to object with index i in the collection, is known as a
sequence in Python. Lists, tuples, strings, and arrays (Chapter 5) are
examples on sequences. You choose a sequence type when there is a
natural ordering of elements. For a collection of unordered objects a
dictionary (introduced in Chapter 6.2) is often more convenient.

For Loops. A for loop is used to run through the elements of a list or
a tuple:

>>> for elem in [10, 20, 25, 27, 28.5]:
... print elem,
...
10 20 25 27 28.5

The trailing comma after the print statement prevents the newline
character which print otherwise adds to the character.

The range function is frequently used in for loops over a sequence
of integers. Recall that range(start, stop, inc) does not include the
“end value” stop in the list.

>>> for elem in range(1, 5, 2):
... print elem,
...
1 3
>>> range(1, 5, 2)
[1, 3]

Implementation of a sum
∑N

j=M q(j), where q(j) is some mathematical
expression involving the integer counter j, is normally implemented
using a for loop. Choosing, e.g., q(j) = 1/j2, the sum is calculated
by

s = 0 # accumulation variable
for j in range(M, N+1, 1):

s += 1./j**2

2.6 Summary 75

Pretty Print. To print a list a, print a can be used, but the pprint

and scitools.pprint2 modules and their pprint function give a nicer
layout of the output for long and nested lists. The scitools.pprint2

module has the possibility to control the formatting of floating-point
numbers.

Terminology. The important computer science terms in this chapter
are

• list,
• tuple,
• nested list (and nested tuple),
• sublist (subtuple) or slice,
• while loop,
• for loop,
• list comprehension,
• boolean expression.

2.6.2 Example: Analyzing List Data

Problem. The file src/misc/Oxford_sun_hours.txt contains data of the
number of sun hours in Oxford, UK, for every month since January
1929. The data are already on a suitable nested list format7:

[
[43.8, 60.5, 190.2, ...],
[49.9, 54.3, 109.7, ...],
[63.7, 72.0, 142.3, ...],
...
]

The list in every line holds the number of sun hours for each of the
year’s 12 months. That is, the first index in the nested list corresponds
to year and the second index corresponds to the month number. More
precisely, the double index [i][j] corresponds to year 1929 + i and
month 1 + j (January being month number 1).

The task is to define this nested list in a program and do the following
data analysis.

1. Compute the average number of sun hours for each month during
the total data period (1929–2009).

2. Which month has the best weather according to the means found in
the preceding task?

3. For each decade, 1930–1939, 1949–1949, . . . , 2000–2009, compute the
average number of sun hours per day in January and December. For
example, use December 1949, January 1950, . . . , December 1958,
and January 1959 as data for the decade 1950–1959. Are there any
noticeable differences between the decades?

7 Actually, the data are taken from a web page as explained in Chapter 6.4.3 and easily

written out in the list format shown here.

76 2 Loops and Lists

Solution. Initializing the data is easy: just copy the data from the
Oxford_sun_hours.txt file into the program file and set a variable name
on the left hand side (the long and wide code is only indicated here):

data = [
[43.8, 60.5, 190.2, ...],
[49.9, 54.3, 109.7, ...],
[63.7, 72.0, 142.3, ...],
...
]

For task 1, we need to establish a list monthly_mean with the results from
the computation, i.e., monthly_mean[2] holds the average number of sun
hours for March in the period 1929–2009. The average is computed in
the standard way: for each month, we run through all the years, sum up
the values, and finally divide by the number of years (2009−1929+1).

When looping over years and months it is convenient to have loop
variables running over the true years (1929 to 2009) and the standard
month number (1 to 12). These variables must be correctly translated
to indices in the data list such that all indices start at 0. The following
code produces the answers to task 1:

monthly_mean = [0]*12 # list with 12 elements
for month in range(1, 13):

m = month - 1 # corresponding list index (starts at 0)
s = 0 # sum
n = 2009 - 1929 + 1 # no of years
for year in range(1929, 2010):

y = year - 1929 # corresponding list index (starts at 0)
s += data[y][m]

monthly_mean[m] = s/n

An alternative solution would be to introduce separate variables for the
monthly averages, say Jan_mean, Feb_mean, etc. The reader should as an
exercise write the code associated with such a solution and realize that
using the monthly_mean list is more elegant and yields much simpler
and shorter code. Separate variables might be an okay solution for 2–3
variables, but as many as 12.

Perhaps we want a nice-looking printout of the results. This can
elegantly be created by first defining a tuple (or list) of the names
of the months and then running through this list in parallel with
monthly_mean:

month_names = ’Jan’, ’Feb’, ’Mar’, ’Apr’, ’May’, ’Jun’,\
’Jul’, ’Aug’, ’Sep’, ’Oct’, ’Nov’, ’Dec’

for name, value in zip(month_names, monthly_mean):
print ’%s: %.1f’ % (name, value)

The printout becomes

Jan: 55.9
Feb: 71.8
Mar: 115.1
Apr: 151.3

2.6 Summary 77

May: 188.7
Jun: 196.1
Jul: 191.4
Aug: 182.1
Sep: 136.7
Oct: 103.4
Nov: 66.6
Dec: 51.7

Task 2 can be solved by pure inspection of the above printout, which
reveals that June is the winner. However, since we are learning pro-
gramming, we should be able to replace our eyes with some computer
code to automate the task. The maximum value max_value of a list
like monthly_mean is simply obtained by max(monthly_mean). The cor-
responding index, needed to find the right name of the corresponding
month, is found from monthly_mean.index(max_value). The code for
task 2 is then

max_value = max(monthly_mean)
month = month_names[monthly_mean.index(max_value)]
print ’%s has best weather with %.1f sun hours on average’ % \

(month, max_value)

(Instead of using the Python’s max and index functionality, we could
code everything ourselves to get some training, see Exercise 3.22 for
ideas.)

Task 3 requires us to first develop an algorithm for how to com-
pute the decade averages. The algorithm, expressed with words, goes
as follows. We loop over the decades, and for each decade, we loop over
its years, and for each year, we add the December data of the previ-
ous year and the January data of the current year to an accumulation
variable. Dividing this accumulation variable by 10 · 2 · 30 gives the
average number of sun hours per day in the winter time for the partic-
ular decade. The code segment below expresses this algorithm in the
Python language:

decade_mean = []
for decade_start in range(1930, 2010, 10):

Jan_index = 0; Dec_index = 11 # indices
s = 0
for year in range(decade_start, decade_start+10):

y = year - 1929 # list index
print data[y-1][Dec_index] + data[y][Jan_index]
s += data[y-1][Dec_index] + data[y][Jan_index]

decade_mean.append(s/(20.*30))
for i in range(len(decade_mean)):

print ’Decade %d-%d: %.1f’ % \
(1930+i*10, 1939+i*10, decade_mean[i])

The output becomes

Decade 1930-1939: 1.7
Decade 1940-1949: 1.8
Decade 1950-1959: 1.8
Decade 1960-1969: 1.8
Decade 1970-1979: 1.6
Decade 1980-1989: 2.0

78 2 Loops and Lists

Decade 1990-1999: 1.8
Decade 2000-2009: 2.1

The complete code is found in the file sun_data.py.

2.6.3 How to Find More Python Information

This book contains only fragments of the Python language. When doing
your own projects or exercises you will certainly feel the need for looking
up more detailed information on modules, objects, etc. Fortunately,
there is a lot of excellent documentation on the Python programming
language.

The primary reference is the official Python documentation website:
docs.python.org. Here you can find a Python tutorial, the very use-
ful Python Library Reference, an index of all modules that come with
the basic Python distribution, and a Language Reference, to mention
some key documents. You should in particular discover the index of the
Python Library Reference. When you wonder what functions you can
find in a module, say the math module, you should go to this index,
find the “math” keyword, and press the link. This brings you right to
the official documentation of the math module. Similarly, if you want
to look up more details of the printf formatting syntax, go to the index
and follow the “printf-style formatting” index.

A word of caution is probably necessary here. Reference manuals,
such as the Python Library Reference, are very technical and written
primarily for experts, so it can be quite difficult for a newbie to under-
stand the information. An important ability is to browse such manuals
and dig out the key information you are looking for, without being
annoyed by all the text you do not understand. As with programming,
reading manuals efficiently requires a lot of training.

A tool somewhat similar to the Python Library Reference is the
pydoc program. In a terminal window you write

Terminal

Terminal> pydoc math

In Python there are two possibilities, either8

In [1]: !pydoc math

or

In [2]: import math
In [3]: help(math)

8 Any command you can run in the terminal window can also be run inside IPython if you

start the command with an exclamation mark.

http://docs.python.org/index.html
http://docs.python.org/lib/genindex.html

2.7 Exercises 79

The documentation of the complete math module is shown as plain text.
If a specific function is wanted, we can ask for that directly, e.g., pydoc
math.tan. Since pydoc is very fast, many prefer pydoc over web pages,
but pydoc has often less information compared to the Python Library
Reference.

There are also numerous books about Python. Beazley [1] is an excel-
lent reference that improves and extends the information in the Python
Library Reference. The “Learning Python” book [8] has been very pop-
ular for many years as an introduction to the language. There is a spe-
cial web page http://wiki.python.org/moin/PythonBooks listing most
Python books on the market. A comprehensive book on the use of
Python for doing scientific research is [5].

Quick references, which list “all” Python functionality in compact
tabular form, are very handy. We recommend in particular the one by
Richard Gruet: http://rgruet.free.fr/#QuickRef.

The website http://www.python.org/doc/ contains a list of useful
Python introductions and reference manuals.

2.7 Exercises

Exercise 2.1. Make a Fahrenheit–Celsius conversion table.
Write a program that prints out a table with Fahrenheit degrees

0, 10, 20, . . . , 100 in the first column and the corresponding Celsius de-
grees in the second column. Hint: Modify the c2f_table_while.py pro-
gram from Chapter 2.1.2. Name of program file: f2c_table_while.py.
�
Exercise 2.2. Write an approximate Fahrenheit–Celsius conversion
table.

Many people use an approximate formula for quickly converting
Fahrenheit (F) to Celsius (C) degrees:

C ≈ Ĉ = (F − 30)/2 (2.2)

Modify the program from Exercise 2.1 so that it prints three
columns: F , C, and the approximate value Ĉ. Name of program
file: f2c_approx_table.py. �
Exercise 2.3. Generate odd numbers.

Write a program that generates all odd numbers from 1 to n. Set n

in the beginning of the program and use a while loop to compute the
numbers. (Make sure that if n is an even number, the largest generated
odd number is n-1.) Name of program file: odd.py. �
Exercise 2.4. Store odd numbers in a list.

Modify the program from Exercise 2.3 to store the generated odd
numbers in a list. Start with an empty list and use a while loop

http://wiki.python.org/moin/PythonBooks
http://rgruet.free.fr/#QuickRef
http://www.python.org/doc/

80 2 Loops and Lists

where you in each pass of the loop append a new element to the list.
Finally, print the list elements to the screen. Name of program file:
odd_list1.py. �

Exercise 2.5. Generate odd numbers by a list comprehension.
Solve Exercise 2.4 using a list comprehension (with for and range).

Name of program file: odd_list2.py. �

Exercise 2.6. Make a table of values from a formula.
Write a program that prints a nicely formatted table of t and y(t)

values, where

y(t) = v0t−
1

2
gt2.

Use n uniformly spaced t values throughout the interval [0, 2v0/g]. Set
v0 = 1 and n = 11. Name of program file: ball_table1.py. �

Exercise 2.7. Store values from a formula in lists.
Modify the program from Exercise 2.6 so that the t and y values are

stored in two lists t and y. Thereafter, transverse the lists with a for

loop and write out a nicely formatted table of t and y values (using
either a zip or range construction). Set v0 = 10 and n = 81. Name of
program file: ball_table2.py. �

Exercise 2.8. Work with a list.
Set a variable primes to a list containing the numbers 2, 3, 5, 7,

11, and 13. Write out each list element in a for loop. Assign 17 to a
variable p and add p to the end of the list. Print out the whole new
list. Name of program file: primes.py. �

Exercise 2.9. Simulate operations on lists by hand.
You are given the following program:

a = [1, 3, 5, 7, 11]
b = [13, 17]
c = a + b
print c
b[0] = -1
d = [e+1 for e in a]
print d
d.append(b[0] + 1)
d.append(b[-1] + 1)
print d[-2:]

Go through each statement and explain what is printed by the program.
�

Exercise 2.10. Generate equally spaced coordinates.
We want to generate x coordinates between 1 and 2 with spacing

0.01. The coordinates are given by the formula xi = 1 + ih, where
h = 0.01 and i runs over integers 0, 1, . . . , 100. Compute the xi values
and store them in a list (use a for loop, and append each new xi value
to a list, which is empty initially). Name of program file: coor1.py. �

2.7 Exercises 81

Exercise 2.11. Use a list comprehension to solve Exer. 2.10.
The problem is the same as in Exercise 2.10, but now we want the xi

values to be stored in a list using a list comprehension construct (see
Chapter 2.3.5). Name of program file: coor2.py. �

Exercise 2.12. Compute a mathematical sum.
The following code is supposed to compute the sum s =

∑M
k=1

1
k :

s = 0; k = 1; M = 100
while k < M:

s += 1/k
print s

This program does not work correctly. What are the three errors? (If
you try to run the program, nothing will happen on the screen. Type
Ctrl-C, i.e., hold down the Control (Ctrl) key and then type the c key,
to stop a program.) Write a correct program. Name of program file:
sum_while.py.

There are two basic ways to find errors in a program: (i) read the
program carefully and think about the consequences of each statement,
and (ii) print out intermediate results and compare with hand calcula-
tions. First, try method (i) and find as many errors as you can. Then,
try method (ii) for M = 3 and compare the evolution of s with your
own hand calculations. �

Exercise 2.13. Use a for loop in Exer. 2.12.
Rewrite the corrected version of the program in Exercise 2.12 using

a for loop over k values instead of a while loop. Name of program file:
sum_for.py. �

Exercise 2.14. Simulate a program by hand.
Consider the following program for computing with interest rates:

initial_amount = 100
p = 5.5 # interest rate
amount = initial_amount
years = 0
while amount <= 1.5*initial_amount:

amount = amount + p/100*amount
years = years + 1

print years

Explain with words what type of mathematical problem that is solved
by this program. Compare this computerized solution with the tech-
nique your high school math teacher would prefer.

Use a pocket calculator (or use an interactive Python shell as sub-
stitute) and work through the program by hand. Write down the value
of amount and years in each pass of the loop.

Change the value of p to 5. Why will the loop now run forever? (See
Exercise 2.12 for how to stop the program if you try to run it.) Make
the program more robust against such errors.

82 2 Loops and Lists

Make use of the operator += wherever possible in the program.
Insert the text for the answers to (a) and (b) in a multi-line string

in the program file. Name of program file: interest_rate_loop.py. �

Exercise 2.15. Explore the Python Library Reference.
Suppose you want to compute the inverse sine function: sin−1 x. The

math module has a function for computing sin−1 x, but what is the right
name of this function? Read Chapter 2.6.3 and use the math entry in
the index of the Python Library Reference to find out how to compute
sin−1 x. Make a program where you compute sin−1 x for n x values
uniformly distributed between 0 and 1, and write out the results in a
nicely formatted table. For each x value, check that the sine of sin−1 x
equals x. Name of program file: inverse_sine.py. �

Exercise 2.16. Index a nested lists.
We define the following nested list:

q = [[’a’, ’b’, ’c’], [’d’, ’e’, ’f’], [’g’, ’h’]]

Index this list to extract 1) the letter a; 2) the list [’d’, ’e’, ’f’];
3) the last element h; 4) the d element. Explain why q[-1][-2] has the
value g. Name of program file: index_nested_list.py. �

Exercise 2.17. Construct a double for loop over a nested list.
Consider the list from Exercise 2.16. We can visit all elements of q

using this nested for loop:

for i in q:
for j in range(len(i)):

print i[j]

What type of objects are i and j? Name of program file:
nested_list_iter.py. �

Exercise 2.18. Store data in lists in Exercise 2.2.
Modify the program from Exercise 2.2 so that all the F , C, and Ĉ

values are stored in separate lists F, C, and C_approx, respectively. Then
make a nested list conversion so that conversion[i] holds a row in the
table: [F[i], C[i], C_approx[i]]. Finally, let the program traverse the
conversion list and write out the same table as in Exercise 2.2. Name
of program file: f2c_approx_lists.py. �

Exercise 2.19. Store data from Exer. 2.7 in a nested list.
After having computed the two lists of t and y values in the program

from Exercise 2.7, store the two lists in a new list ty1. Write out a table
of t and y values by traversing the data in the ty1 list. Thereafter, make
a list ty2 which holds each row in the table of t and y values (ty1 is a
list of table columns while ty2 is a list of table rows, as explained in
Chapter 2.4). Write out the table by traversing the ty2 list. Name of
program file: ball_table3.py. �

2.7 Exercises 83

Exercise 2.20. Convert nested list comprehensions to nested standard
loops.

Rewrite the generation of the nested list q,

q = [r**2 for r in [10**i for i in range(5)]]

by using standard for loops instead of list comprehensions. Name of
program file: listcomp2for.py. �

Exercise 2.21. Values of boolean expressions.
Explain the outcome of each of the following boolean expressions:

C = 41
C == 40
C != 40 and C < 41
C != 40 or C < 41
not C == 40
not C > 40
C <= 41
not False
True and False
False or True
False or False or False
True and True and False
False == 0
True == 0
True == 1

Note: It makes sense to compare True and False to the integers 0 and
1, but not other integers (e.g., True == 12 is False although the integer
12 evaluates to True in a boolean context, as in bool(12) or if 12). �

Exercise 2.22. Explore round-off errors from a large number of in-
verse operations.

Maybe you have tried to hit the square root key on a calculator
multiple times and then squared the number again an equal number of
times. These set of inverse mathematical operations should of course
bring you back to the starting value for the computations, but this
does not always happen. To avoid tedious pressing of calculator keys
we can let a computer automate the process. Here is an appropriate
program:

from math import sqrt
for n in range(1, 60):

r = 2.0
for i in range(n):

r = sqrt(r)
for i in range(n):

r = r**2
print ’%d times sqrt and **2: %.16f’ % (n, r)

Explain with words what the program does. Then run the program.
Round-off errors are here completely destroying the calculations when
n is large enough! Investigate the case when we come back to 1 instead
of 2 by fixing the n value and printing out r in both for loops over i.

84 2 Loops and Lists

Can you now explain why we come back to 1 and not 2? Name of
program file: repeated_sqrt.py. �

Exercise 2.23. Explore what zero can be on a computer.
Type in the following code and run it:

eps = 1.0
while 1.0 != 1.0 + eps:

print ’...............’, eps
eps = eps/2.0

print ’final eps:’, eps

Explain with words what the code is doing, line by line. Then examine
the output. How can it be that the “equation” 1 �= 1+ eps is not true?
Or in other words, that a number of approximately size 10−16 (the final
eps value when the loop terminates) gives the same result as if eps9

were zero? Name of program file: machine_zero.py.
If somebody shows you this interactive session

>>> 0.5 + 1.45E-22
0.5

and claims that Python cannot add numbers correctly, what is your
answer? �

Exercise 2.24. Compare two real numbers on a computer.
Consider the following simple program inspired by Chapter 1.4.3:

a = 1/947.0*947
b = 1
if a != b:

print ’Wrong result!’

Try to run this example!
One should never compare two floating-point objects directly using

== or !=, because round-off errors quickly make two identical mathe-
matical values different on a computer. A better result is to test if |a−b|
is sufficiently small, i.e., if a and b are “close enough” to be considered
equal. Modify the test according to this idea.

Thereafter, read the documentation of the function float_eq from
SciTools: scitools.std.float_eq (see page 78 for how to bring up the
documentation of a module or a function in a module). Use this function
to check whether two real numbers are equal within a tolerance. Name
of program file: compare_float.py. �

Exercise 2.25. Interpret a code.
The function time in the module time returns the number of sec-

onds since a particular date (called the Epoch, which is January 1,

9 This nonzero eps value is called machine epsilon or machine zero and is an important
parameter to know, especially when certain mathematical techniques are applied to control

round-off errors.

2.7 Exercises 85

1970, on many types of computers). Python programs can therefore use
time.time() to mimic a stop watch. Another function, time.sleep(n)
causes the program to “sleep” for n seconds and is handy for inserting a
pause. Use this information to explain what the following code does:

import time
t0 = time.time()
while time.time() - t0 < 10:

print ’....I like while loops!’
time.sleep(2)

print ’Oh, no - the loop is over.’

How many times is the print statement inside the loop executed? Now,
copy the code segment and change the < sign in the loop condition to a
> sign. Explain what happens now. Name of program: time_while.py.
�

Exercise 2.26. Explore problems with inaccurate indentation.
Type in the following program in a file and check carefully that you

have exactly the same spaces:

C = -60; dC = 2
while C <= 60:

F = (9.0/5)*C + 32
print C, F

C = C + dC

Run the program. What is the first problem? Correct that error. What
is the next problem? What is the cause of that problem? (See Exer-
cise 2.12 for how to stop a hanging program.)

The lesson learned from this exercise is that one has to be very care-
ful with indentation in Python programs! Other computer languages
usually enclose blocks belonging to loops in curly braces, parentheses,
or BEGIN-END marks. Python’s convention with using solely inden-
tation contributes to visually attractive, easy-to-read code, at the cost
of requiring a pedantic attitude to blanks from the programmer. �

Exercise 2.27. Simulate nested loops by hand.
Go through the code below by hand, statement by statement, and

calculate the numbers that will be printed.

n = 3
for i in range(-1, n):

if i != 0:
print i

for i in range(1, 13, 2*n):
for j in range(n):

print i, j

for i in range(1, n+1):
for j in range(i):

if j:
print i, j

86 2 Loops and Lists

for i in range(1, 13, 2*n):
for j in range(0, i, 2):

for k in range(2, j, 1):
b = i > j > k
if b:

print i, j, k

You may use a debugger, see Appendix F.1, to see what happens when
you step through the code. �

Exercise 2.28. Explore punctuation in Python programs.
Some of the following assignments work and some do not. Explain

in each case why the assignment works/fails and, if it works, what kind
of object x refers to and what the value is if we do a print x.

x = 1
x = 1.
x = 1;
x = 1!
x = 1?
x = 1:
x = 1,

Hint: Explore the statements in an interactive Python shell. �

Exercise 2.29. Investigate a for loop over a changing list.
Study the following interactive session and explain in detail what

happens in each pass of the loop, and use this explanation to under-
stand the output.

>>> numbers = range(10)
>>> print numbers
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> for n in numbers:
... i = len(numbers)/2
... del numbers[i]
... print ’n=%d, del %d’ % (n,i), numbers
...
n=0, del 5 [0, 1, 2, 3, 4, 6, 7, 8, 9]
n=1, del 4 [0, 1, 2, 3, 6, 7, 8, 9]
n=2, del 4 [0, 1, 2, 3, 7, 8, 9]
n=3, del 3 [0, 1, 2, 7, 8, 9]
n=8, del 3 [0, 1, 2, 8, 9]

The message in this exercise is to never modify a list that is used in
a for loop. Modification is indeed technically possible, as we show
above, but you really need to know what you are dingo – to avoid
getting frustrated by strange program behavior. �

Functions and Branching 3

This chapter introduces two fundamental and extremely useful concepts
in programming: user-defined functions and branching of program flow,
the latter often referred to as “if tests”. The programs associated with
the chapter are found in src/funcif.

3.1 Functions

In a computer language like Python, the term function means more
than just a mathematical function. A function is a collection of state-
ments that you can execute wherever and whenever you want in the
program. You may send variables to the function to influence what is
getting computed by statements in the function, and the function may
return new objects. In particular, functions help to avoid duplicating
code snippets by putting all similar snippets in a common place. This
strategy saves typing and makes it easier to change the program later.
Functions are also often used to just split a long program into smaller,
more manageable pieces, so the program and your own thinking about
it become clearer. Python comes with lots of functions (math.sqrt,
range, and len are examples we have met so far). This section outlines
how you can define your own functions.

3.1.1 Functions of One Variable

Let us start with making a Python function that evaluates a math-
ematical function, more precisely the function F (C) defined in (1.2):
F (C) = 9

5C + 32. The corresponding Python function must take C as
argument and return the value F (C). The code for this looks like

H.P. Langtangen, A Primer on Scientific Programming with Python,
Texts in Computational Science and Engineering 6,

DOI 10.1007/978-3-642-30293-0 3, c© Springer-Verlag Berlin Heidelberg 2012

87

http://dx.doi.org/10.1007/978-3-642-30293-0_3

88 3 Functions and Branching

def F(C):
return (9.0/5)*C + 32

All Python functions begin with def, followed by the function name,
and then inside parentheses a comma-separated list of function argu-
ments. Here we have only one argument C. This argument acts as a
standard variable inside the function. The statements to be performed
inside the function must be indented. At the end of a function it is
common to return a value, that is, send a value “out of the function”.
This value is normally associated with the name of the function, as in
the present case where the returned value is F (C).

The def line with the function name and arguments is often referred
to as the function header , while the indented statements constitute the
function body .

To use a function, we must call1 it. Because the function returns a
value, we need to store this value in a variable or make use of it in
other ways. Here are some calls to F:

a = 10
F1 = F(a)
temp = F(15.5)
print F(a+1)
sum_temp = F(10) + F(20)

The returned object from F(C) is in our case a float object. The call
F(C) can therefore be placed anywhere in a code where a float object
would be valid. The print statement above is one example. As another
example, say we have a list Cdegrees of Celsius degrees and we want
to compute a list of the corresponding Fahrenheit degrees using the F

function above in a list comprehension:

Fdegrees = [F(C) for C in Cdegrees]

As an example of a slight variation of our F(C) function, we may
return a formatted string instead of a real number:

>>> def F2(C):
... F_value = (9.0/5)*C + 32
... return ’%.1f degrees Celsius corresponds to ’\
... ’%.1f degrees Fahrenheit’ % (C, F_value)
...
>>> s1 = F2(21)
>>> s1
’21.0 degrees Celsius corresponds to 69.8 degrees Fahrenheit’

The assignment to F_value demonstrates that we can create variables
inside a function as needed.

1 Sometimes the word invoke is used as an alternative to call.

3.1 Functions 89

3.1.2 Local and Global Variables

Let us reconsider the F2(C) function from the previous section. The
variable F_value is a local variable in the function, and a local variable
does not exist outside the function. We can easily demonstrate this fact
by continuing the previous interactive session:

>>> c1 = 37.5
>>> s2 = F2(c1)
>>> F_value
...
NameError: name ’F_value’ is not defined

The surrounding program outside the function is not aware of F_value.
Also the argument to the function, C, is a local variable that we cannot
access outside the function:

>>> C
...
NameError: name ’C’ is not defined

On the contrary, the variables defined outside of the function, like s1,
s2, and c1 in the above session, are global variables. These can be
accessed everywhere in a program.

Local variables are created inside a function and destroyed when
we leave the function. To learn more about this fact, we may study
the following session where we write out F_value, C, and some global
variable r inside the function:

>>> def F3(C):
... F_value = (9.0/5)*C + 32
... print ’Inside F3: C=%s F_value=%s r=%s’ % (C, F_value, r)
... return ’%.1f degrees Celsius corresponds to ’\
... ’%.1f degrees Fahrenheit’ % (C, F_value)
...
>>> C = 60 # make a global variable C
>>> r = 21 # another global variable
>>> s3 = F3(r)
Inside F3: C=21 F_value=69.8 r=21
>>> s3
’21.0 degrees Celsius corresponds to 69.8 degrees Fahrenheit’
>>> C
60

This example illustrates that there are two C variables, one global,
defined in the main program with the value 60 (an int object), and one
local, living when the program flow is inside the F3 function. The value
of this C is given in the call to the F3 function (also an int object in this
case). Inside the F3 function the local C “hides” the global C variable in
the sense that when we refer to C we access the local variable2.

The more general rule, when you have several variables with the same
name, is that Python first tries to look up the variable name among

2 The global C can technically be accessed as globals()[’C’], but one should avoid working

with local and global variables with the same names at the same time!

90 3 Functions and Branching

the local variables, then there is a search among global variables, and
finally among built-in Python functions. Here is a complete sample
program with several versions of a variable sum which aims to illustrate
this rule:

print sum # sum is a built-in Python function
sum = 500 # rebind the name sum to an int
print sum # sum is a global variable

def myfunc(n):
sum = n + 1
print sum # sum is a local variable
return sum

sum = myfunc(2) + 1 # new value in global variable sum
print sum

In the first line, there are no local variables, so Python searches for a
global value with name sum, but cannot find any, so the search proceeds
with the built-in functions, and among them Python finds a function
with name sum. The printout of sum becomes something like <built-in

function sum>.
The second line rebinds the global name sum to an int object. When

trying to access sum in the next print statement, Python searches
among the global variables (no local variables so far) and finds one. The
printout becomes 500. The call myfunc(2) invokes a function where sum

is a local variable. Doing a print sum in this function makes Python
first search among the local variables, and since sum is found there,
the printout becomes 3 (and not 500, the value of the global variable
sum). The value of the local variable sum is returned, added to 1, to
form an int object with value 4. This int object is then bound to the
global variable sum. The final print sum leads to a search among global
variables, and we find one with value 4.

The values of global variables can be accessed inside functions, but
the values cannot be changed unless the variable is declared as global:

a = 20; b = -2.5 # global variables

def f1(x):
a = 21 # this is a new local variable
return a*x + b # 21*x - 2.5

print a # yields 20

def f2(x):
global a
a = 21 # the global a is changed
return a*x + b # 21*x - 2.5

f1(3); print a # 20 is printed
f2(3); print a # 21 is printed

Note that in the f1 function, a = 21 creates a local variable a. As a
programmer you may think you change the global a, but it does not

3.1 Functions 91

happen! Normally, this feature is advantageous because changing global
variables often leads to errors in programs.

3.1.3 Multiple Arguments

The previous F(C) and F2(C) functions are functions of one variable,
C, or as we phrase it in computer science: the functions take one ar-
gument (C). Functions can have as many arguments as desired; just
separate the argument names by commas.

Consider the function

y(t) = v0t−
1

2
gt2.

A possible Python implementation is a function with two arguments:

def yfunc(t, v0):
g = 9.81
return v0*t - 0.5*g*t**2

Note that g is a local variable with a fixed value, while t and v0 are
arguments and therefore also local variables. Examples on valid calls
are

y = yfunc(0.1, 6)
y = yfunc(0.1, v0=6)
y = yfunc(t=0.1, v0=6)
y = yfunc(v0=6, t=0.1)

The possibility to write argument=value in the call makes it easier to
read and understand the call statement. With the argument=value syn-
tax for all arguments, the sequence of the arguments does not matter
in the call, which here means that we may put v0 before t. When omit-
ting the argument= part, the sequence of arguments in the call must
perfectly match the sequence of arguments in the function definition.
The argument=value arguments must appear after all the arguments
where only value is provided (e.g., yfunc(t=0.1, 6) is illegal).

Whether we write yfunc(0.1, 6) or yfunc(v0=6, t=0.1), the argu-
ments are initialized as local variables in the function in the same way
as when we assign values to variables:

t = 0.1
v0 = 6

These statements are not visible in the code, but a call to a function
automatically initializes the arguments in this way.

Some may argue that yfunc should be a function of t only, because
we mathematically think of y as a function of t and write y(t). This is
easy to reflect in Python:

92 3 Functions and Branching

def yfunc(t):
g = 9.81
return v0*t - 0.5*g*t**2

The main difference is that v0 now must be a global variable, which
needs to be initialized before we call yfunc. The next session demon-
strates what happens if we fail to initialize such a global variable:

>>> def yfunc(t):
... g = 9.81
... return v0*t - 0.5*g*t**2
...
>>> yfunc(0.6)
...
NameError: global name ’v0’ is not defined

The remedy is to define v0 as a global variable prior to calling yfunc:

>>> v0 = 5
>>> yfunc(0.6)
1.2342

So far our Python functions have typically computed some mathemat-
ical function, but the usefulness of Python functions goes far beyond
mathematical functions. Any set of statements that we want to repeat-
edly execute under slightly different circumstances is a candidate for
a Python function. Say we want to make a list of numbers starting
from some value and stopping at another value, with increments of a
given size. With corresponding variables start=2, stop=8, and inc=2,
we should produce the numbers 2, 4, 6, and 8. Our tables in this chap-
ter typically needs such functionality for creating a list of C values or
a list of t values. Let us therefore write a function doing the task3,
together with a couple of statements that demonstrate how we call the
function:

def makelist(start, stop, inc):
value = start
result = []
while value <= stop:

result.append(value)
value = value + inc

return result

mylist = makelist(0, 100, 0.2)
print mylist # will print 0, 0.2, 0.4, 0.6, ... 99.8, 100

The makelist function has three arguments: start, stop, and inc, which
become local variables in the function. Also value and result are lo-
cal variables. In the surrounding program we define only one variable,
mylist, and this is then a global variable.

3 You might think that range(start, stop, inc) makes the makelist function redundant,
but range can only generate integers, while makelist can generate real numbers too – and

more, see Exercise 3.38.

3.1 Functions 93

3.1.4 Multiple Return Values

Python functions may return more than one value. Suppose we are
interested in evaluating both y(t) and y′(t):

y(t) = v0t−
1

2
gt2,

y′(t) = v0 − gt.

In the current application where y(t) is the vertical position of a ball
thrown up in the air, y′(t) is the ball’s velocity. To return both y and
y′ we simply separate their corresponding variables by a comma in the
return statement:

def yfunc(t, v0):
g = 9.81
y = v0*t - 0.5*g*t**2
dydt = v0 - g*t
return y, dydt

When we call this latter yfunc function, we need two values on the
left-hand side of the assignment operator because the function returns
two values:

position, velocity = yfunc(0.6, 3)

Here is an application of the yfunc function for producing a nicely
formatted table of positions and velocities of a ball thrown up in the
air:

t_values = [0.05*i for i in range(10)]
for t in t_values:

pos, vel = yfunc(t, v0=5)
print ’t=%-10g position=%-10g velocity=%-10g’ % (t, pos, vel)

The format %-10g prints a real number as compactly as possible (dec-
imal or scientific notation) in a field of width 10 characters. The mi-
nus (“-”) sign after the percentage sign implies that the number is
left-adjusted in this field, a feature that is important for creating nice-
looking columns in the output:

t=0 position=0 velocity=5
t=0.05 position=0.237737 velocity=4.5095
t=0.1 position=0.45095 velocity=4.019
t=0.15 position=0.639638 velocity=3.5285
t=0.2 position=0.8038 velocity=3.038
t=0.25 position=0.943437 velocity=2.5475
t=0.3 position=1.05855 velocity=2.057
t=0.35 position=1.14914 velocity=1.5665
t=0.4 position=1.2152 velocity=1.076
t=0.45 position=1.25674 velocity=0.5855

When a function returns multiple values, separated by a comma in
the return statement, a tuple (Chapter 2.5) is actually returned. We
can demonstrate that fact by the following session:

94 3 Functions and Branching

>>> def f(x):
... return x, x**2, x**4
...
>>> s = f(2)
>>> s
(2, 4, 16)
>>> type(s)
<type ’tuple’>
>>> x, x2, x4 = f(2)

Note that storing multiple return values into separate variables, as we
do in the last line, is actually the same functionality as we use for
storing list elements in separate variables, see on page 57.

Our next example concerns a function aimed at calculating the sum

L(x;n) =
n∑

i=1

1

i

(
x

1 + x

)i

. (3.1)

It can be shown that L(x;n) is an approximation to ln(1 + x) for a
finite n and x ≥ 1. The approximation becomes exact in the limit:

ln(1 + x) = lim
n→∞

L(x;n).

To compute a sum in a Python program, we always use a loop and
add terms to an accumulation variable inside the loop. Chapter 2.1.4
explains the idea. However, summation expressions with an integer
counter, such as i in (3.1), are normally implemented by a for loop
over the i counter and not a while loop as in Chapter 2.1.4. For ex-
ample, the implementation of

∑n
i=1 c(i), where c(i) is some formula

depending on i, is typically implemented as

s = 0
for i in range(1, n+1):

s += c(i)

For the specific sum (3.1) we just replace c(i) by the right term
(1/i)(x/(1 + x))i inside the for loop4:

s = 0
for i in range(1, n+1):

s += (1.0/i)*(x/(1.0+x))**i

It is natural to embed the computation of the sum in a function which
takes x and n as arguments and returns the sum:

def L(x, n):
s = 0
for i in range(1, n+1):

s += (1.0/i)*(x/(1.0+x))**i
return s

Instead of just returning the value of the sum, we could return ad-
ditional information on the error involved in the approximation of

4 Observe the 1.0 numbers: These avoid integer division (i is int and x may be int).

3.1 Functions 95

ln(1 + x) by L(x;n). The first neglected term in the sum provides
an indication of the error5. We could also return the exact error. The
new version of the L(x, n) function then looks as this:

def L(x, n):
s = 0
for i in range(1, n+1):

s += (1.0/i)*(x/(1.0+x))**i
value_of_sum = s
first_neglected_term = (1.0/(n+1))*(x/(1.0+x))**(n+1)
from math import log
exact_error = log(1+x) - value_of_sum
return value_of_sum, first_neglected_term, exact_error

typical call:
value, approximate_error, exact_error = L2(x, 100)

The next section demonstrates the usage of the L function to judge the
quality of the approximation L(x;n) to ln(1 + x).

3.1.5 Functions with No Return Values

Sometimes a function just performs a set of statements, and it is not
natural to return any values to the calling code. In such situations one
can simply skip the return statement. Some programming languages
use the terms procedure or subroutine for functions that do not return
anything.

Let us exemplify a function without return values by making a table
of the accuracy of the L(x;n) approximation to ln(1 + x) from the
previous section:

def table(x):
print ’\nx=%g, ln(1+x)=%g’ % (x, log(1+x))
for n in [1, 2, 10, 100, 500]:

value, next, error = L(x, n)
print ’n=%-4d %-10g (next term: %8.2e ’\

’error: %8.2e)’ % (n, value, next, error)

This function just performs a set of statements that we may want to
run several times. Calling

table(10)
table(1000)

gives the output:

x=10, ln(1+x)=2.3979
n=1 0.909091 (next term: 4.13e-01 error: 1.49e+00)
n=2 1.32231 (next term: 2.50e-01 error: 1.08e+00)
n=10 2.17907 (next term: 3.19e-02 error: 2.19e-01)
n=100 2.39789 (next term: 6.53e-07 error: 6.59e-06)

5 The size of the terms decreases with increasing n, and the first neglected term is then
bigger than all the remaining terms, but not necessarily bigger than their sum. The first

neglected term is therefore only an indication of the size of the total error we make.

96 3 Functions and Branching

n=500 2.3979 (next term: 3.65e-24 error: 6.22e-15)

x=1000, ln(1+x)=6.90875
n=1 0.999001 (next term: 4.99e-01 error: 5.91e+00)
n=2 1.498 (next term: 3.32e-01 error: 5.41e+00)
n=10 2.919 (next term: 8.99e-02 error: 3.99e+00)
n=100 5.08989 (next term: 8.95e-03 error: 1.82e+00)
n=500 6.34928 (next term: 1.21e-03 error: 5.59e-01)

From this output we see that the sum converges much more slowly
when x is large than when x is small. We also see that the error is an
order of magnitude or more larger than the first neglected term in the
sum. The functions L and table are found in the file lnsum.py.

When there is no explicit return statement in a function, Python ac-
tually inserts an invisible return None statement. None is a special ob-
ject in Python that represents something we might think of as “empty
data” or “nothing”. Other computer languages, such as C, C++, and
Java, use the word “void” for a similar thing. Normally, one will call
the table function without assigning the return value to any variable,
but if we assign the return value to a variable, result = table(500),
result will refer to a None object.

The None value is often used for variables that should exist in a
program, but where it is natural to think of the value as conceptually
undefined. The standard way to test if an object obj is set to None or
not reads

if obj is None:
...

if obj is not None:
...

One can also use obj == None. The is operator tests if two names refer
to the same object, while == tests if the contents of two objects are the
same:

>>> a = 1
>>> b = a
>>> a is b # a and b refer to the same object
True
>>> c = 1.0
>>> a is c
False
>>> a == c # a and c are mathematically equal
True

3.1.6 Keyword Arguments

Some function arguments can be given a default value so that we may
leave out these arguments in the call, if desired. A typical function may
look as

3.1 Functions 97

>>> def somefunc(arg1, arg2, kwarg1=True, kwarg2=0):
>>> print arg1, arg2, kwarg1, kwarg2

The first two arguments, arg1 and arg2, are ordinary or positional
arguments, while the latter two are keyword arguments or named ar-
guments . Each keyword argument has a name (in this example kwarg1

and kwarg2) and an associated default value. The keyword arguments
must always be listed after the positional arguments in the function
definition.

When calling somefunc, we may leave out some or all of the keyword
arguments. Keyword arguments that do not appear in the call get their
values from the specified default values. We can demonstrate the effect
through some calls:

>>> somefunc(’Hello’, [1,2])
Hello [1, 2] True 0
>>> somefunc(’Hello’, [1,2], kwarg1=’Hi’)
Hello [1, 2] Hi 0
>>> somefunc(’Hello’, [1,2], kwarg2=’Hi’)
Hello [1, 2] True Hi
>>> somefunc(’Hello’, [1,2], kwarg2=’Hi’, kwarg1=6)
Hello [1, 2] 6 Hi

The sequence of the keyword arguments does not matter in the call.
We may also mix the positional and keyword arguments if we explicitly
write name=value for all arguments in the call:

>>> somefunc(kwarg2=’Hello’, arg1=’Hi’, kwarg1=6, arg2=[1,2],)
Hi [1, 2] 6 Hello

Example: Function with Default Parameters. Consider a function of t
which also contains some parameters, here A, a, and ω:

f(t;A, a, ω) = Ae−at sin(ωt). (3.2)

We can implement f as a Python function where the independent vari-
able t is an ordinary positional argument, and the parameters A, a,
and ω are keyword arguments with suitable default values:

from math import pi, exp, sin

def f(t, A=1, a=1, omega=2*pi):
return A*exp(-a*t)*sin(omega*t)

Calling f with just the t argument specified is possible:

v1 = f(0.2)

In this case we evaluate the expression e−0.2 sin(2π ·0.2). Other possible
calls include

98 3 Functions and Branching

v2 = f(0.2, omega=1)
v3 = f(1, A=5, omega=pi, a=pi**2)
v4 = f(A=5, a=2, t=0.01, omega=0.1)
v5 = f(0.2, 0.5, 1, 1)

You should write down the mathematical expressions that arise from
these four calls. Also observe in the third line above that a positional
argument, t in that case, can appear in between the keyword arguments
if we write the positional argument on the keyword argument form
name=value. In the last line we demonstrate that keyword arguments
can be used as positional argument, i.e., the name part can be skipped,
but then the sequence of the keyword arguments in the call must match
the sequence in the function definition exactly.

Example: Computing a Sum with Default Tolerance. Consider the
L(x;n) sum and the Python implementation L(x, n) from Chap-
ter 3.1.4. Instead of specifying the number of terms in the sum, n,
it is better to specify a tolerance ε of the accuracy. We can use the
first neglected term as an estimate of the accuracy. This means that we
sum up terms as long as the absolute value of the next term is greater
than ε. It is natural to provide a default value for ε:

def L2(x, epsilon=1.0E-6):
x = float(x)
i = 1
term = (1.0/i)*(x/(1+x))**i
s = term
while abs(term) > epsilon: # abs(x) is |x|

i += 1
term = (1.0/i)*(x/(1+x))**i
s += term

return s, i

Here is an example involving this function to make a table of the ap-
proximation error as ε decreases:

from math import log
x = 10
for k in range(4, 14, 2):

epsilon = 10**(-k)
approx, n = L2(x, epsilon=epsilon)
exact = log(1+x)
exact_error = exact - approx
print ’epsilon: %5.0e, exact error: %8.2e, n=%d’ % \

(epsilon, exact_error, n)

The output becomes
epsilon: 1e-04, exact error: 8.18e-04, n=55
epsilon: 1e-06, exact error: 9.02e-06, n=97
epsilon: 1e-08, exact error: 8.70e-08, n=142
epsilon: 1e-10, exact error: 9.20e-10, n=187
epsilon: 1e-12, exact error: 9.31e-12, n=233

We see that the epsilon estimate is almost 10 times smaller than the
exact error, regardless of the size of epsilon. Since epsilon follows the
exact error quite well over many orders of magnitude, we may view
epsilon as a useful indication of the size of the error.

3.1 Functions 99

3.1.7 Doc Strings

There is a convention in Python to insert a documentation string right
after the def line of the function definition. The documentation string,
known as a doc string , should contain a short description of the purpose
of the function and explain what the different arguments and return
values are. Interactive sessions from a Python shell are also common
to illustrate how the code is used. Doc strings are usually enclosed in
triple double quotes """, which allow the string to span several lines.

Here are two examples on short and long doc strings:

def C2F(C):
"""Convert Celsius degrees (C) to Fahrenheit."""
return (9.0/5)*C + 32

def line(x0, y0, x1, y1):
"""
Compute the coefficients a and b in the mathematical
expression for a straight line y = a*x + b that goes
through two points (x0, y0) and (x1, y1).

x0, y0: a point on the line (floats).
x1, y1: another point on the line (floats).
return: coefficients a, b (floats) for the line (y=a*x+b).
"""
a = (y1 - y0)/float(x1 - x0)
b = y0 - a*x0
return a, b

Note that the doc string must appear before any statement in the
function body.

There are several Python tools that can automatically extract doc
strings from the source code and produce various types of documen-
tation, see [5, App. B.2]. The doc string can be accessed in a code as
funcname.__doc__, where funcname is the name of the function, e.g.,

print line.__doc__

which prints out the documentation of the line function above:

Compute the coefficients a and b in the mathematical
expression for a straight line y = a*x + b that goes
through two points (x0, y0) and (x1, y1).

x0, y0: a point on the line (float objects).
x1, y1: another point on the line (float objects).
return: coefficients a, b for the line (y=a*x+b).

Doc strings often contain interactive sessions, copied from a Python
shell, to illustrate how the function is used. We can add such a session
to the doc string in the line function:

def line(x0, y0, x1, y1):
"""
Compute the coefficients a and b in the mathematical
expression for a straight line y = a*x + b that goes
through two points (x0,y0) and (x1,y1).

100 3 Functions and Branching

x0, y0: a point on the line (float).
x1, y1: another point on the line (float).
return: coefficients a, b (floats) for the line (y=a*x+b).

Example:
>>> a, b = line(1, -1, 4, 3)
>>> a
1.3333333333333333
>>> b
-2.333333333333333
"""
a = (y1 - y0)/float(x1 - x0)
b = y0 - a*x0
return a, b

A particularly nice feature is that all such interactive sessions in doc
strings can be automatically run, and new results are compared to the
results found in the doc strings. This makes it possible to use interactive
sessions in doc strings both for exemplifying how the code is used and
for testing that the code works.

3.1.8 Function Input and Output

It is a convention in Python that function arguments represent the
input data to the function, while the returned objects represent the
output data. We can sketch a general Python function as

def somefunc(i1, i2, i3, io4, io5, i6=value1, io7=value2):
modify io4, io5, io6; compute o1, o2, o3
return o1, o2, o3, io4, io5, io7

Here i1, i2, i3 are positional arguments representing input data; io4
and io5 are positional arguments representing input and output data;
i6 and io7 are keyword arguments representing input and input/output
data, respectively; and o1, o2, and o3 are computed objects in the
function, representing output data together with io4, io5, and io7. All
examples later in the book will make use of this convention.

3.1.9 Functions as Arguments to Functions

Programs doing calculus frequently need to have functions as argu-
ments in other functions. For example, for a mathematical function
f(x) we can have Python functions for

1. numerical root finding: solve f(x) = 0 approximately (Chap-
ters 4.6.2 and A.1.10)

2. numerical differentiation: compute f ′(x) approximately (Appen-
dix B and Chapters 7.3.2 and 9.2)

3. numerical integration: compute
∫ b
a f(x)dx approximately (Appen-

dix B and Chapters 7.3.3 and 9.3)

3.1 Functions 101

4. numerical solution of differential equations: dx
dt = f(x) (Appen-

dices C and E)

In such Python functions we need to have the f(x) function as an
argument f. This is straightforward in Python and hardly needs any
explanation, but in most other languages special constructions must be
used for transferring a function to another function as argument.

As an example, consider a function for computing the second-order
derivative of a function f(x) numerically:

f ′′(x) ≈ f(x− h)− 2f(x) + f(x+ h)

h2
, (3.3)

where h is a small number. The approximation (3.3) becomes exact
in the limit h → 0. A Python function for computing (3.3) can be
implemented as follows:

def diff2(f, x, h=1E-6):
r = (f(x-h) - 2*f(x) + f(x+h))/float(h*h)
return r

The f argument is like any other argument, i.e., a name for an object,
here a function object that we can call as we normally call function
objects. An application of diff2 can read

def g(t):
return t**(-6)

t = 1.2
d2g = diff2(g, t)
print "g’’(%f)=%f" % (t, d2g)

The Behavior of the Numerical Derivative as h → 0. From mathe-
matics we know that the approximation formula (3.3) becomes more
accurate as h decreases. Let us try to demonstrate this expected fea-
ture by making a table of the second-order derivative of g(t) = t−6 at
t = 1 as h → 0:

for k in range(1,15):
h = 10**(-k)
d2g = diff2(g, 1, h)
print ’h=%.0e: %.5f’ % (h, d2g)

The output becomes

h=1e-01: 44.61504
h=1e-02: 42.02521
h=1e-03: 42.00025
h=1e-04: 42.00000
h=1e-05: 41.99999
h=1e-06: 42.00074
h=1e-07: 41.94423
h=1e-08: 47.73959
h=1e-09: -666.13381
h=1e-10: 0.00000
h=1e-11: 0.00000
h=1e-12: -666133814.77509

102 3 Functions and Branching

h=1e-13: 66613381477.50939
h=1e-14: 0.00000

With g(t) = t−6, the exact answer is g′′(1) = 42, but for h < 10−8

the computations give totally wrong answers! The problem is that for
small h on a computer, round-off errors in the formula (3.3) blow up
and destroy the accuracy. The mathematical result that (3.3) becomes
an increasingly better approximation as h gets smaller and smaller does
not hold on a computer! Or more precisely, the result holds until h in
the present case reaches 10−4.

The reason for the inaccuracy is that the numerator in (3.3) for
g(t) = t−6 and t = 1 contains subtraction of quantities that are almost
equal. The result is a very small and inaccurate number. The inaccu-
racy is magnified by h−2, a number that becomes very large for small h.
Switching from the standard floating-point numbers (float) to numbers
with arbitrary high precision resolves the problem. Python has a mod-
ule decimal that can be used for this purpose. The file highprecision.py
solves the current problem using arithmetics based on the decimalmod-
ule. With 25 digits in x and h inside the diff2 function, we get accurate
results for h ≤ 10−13. However, for most practical applications of (3.3),
a moderately small h, say 10−3 ≤ h ≤ 10−4, gives sufficient accuracy
and then round-off errors from float calculations do not pose problems.
Real-world science or engineering applications usually have many pa-
rameters with uncertainty, making the end result also uncertain, and
formulas like (3.3) can then be computed with moderate accuracy with-
out affecting the overall computational error.

3.1.10 The Main Program

In programs containing functions we often refer to a part of the pro-
gram that is called the main program. This is the collection of all the
statements outside the functions, plus the definition of all functions.
Let us look at a complete program:

from math import * # in main

def f(x): # in main
e = exp(-0.1*x)
s = sin(6*pi*x)
return e*s

x = 2 # in main
y = f(x) # in main
print ’f(%g)=%g’ % (x, y) # in main

The main program here consists of the lines with a comment in main.
The execution always starts with the first line in the main program.
When a function is encountered, its statements are just used to define
the function – nothing gets computed inside the function before we ex-

3.1 Functions 103

plicitly call the function, either from the main program or from another
function. All variables initialized in the main program become global
variables (see Chapter 3.1.2).

The program flow in the program above goes as follows:

1. Import functions from the math module,
2. define a function f(x),
3. define x,
4. call f and execute the function body,
5. define y as the value returned from f,
6. print the string.

In point 4, we jump to the f function and execute the statement inside
that function for the first time. Then we jump back to the main program
and assign the float object returned from f to the y variable.

Readers who are uncertain about the program flow and the jumps
between the main program and functions should learn to use a debug-
ger, see Appendix F.1.

3.1.11 Lambda Functions

There is a quick one-line construction of functions that is sometimes
convenient:

f = lambda x: x**2 + 4

This so-called lambda function is equivalent to writing

def f(x):
return x**2 + 4

In general,

def g(arg1, arg2, arg3, ...):
return expression

can be written as

g = lambda arg1, arg2, arg3, ...: expression

Lambda functions are usually used to quickly define a function as
argument to another function. Consider, as an example, the diff2 func-
tion from Chapter 3.1.9. In the example from that chapter we want to
differentiate g(t) = t−6 twice and first make a Python function g(t)

and then send this g to diff2 as argument. We can skip the step with
defining the g(t) function and instead insert a lambda function as the
f argument in the call to diff2:

104 3 Functions and Branching

d2 = diff2(lambda t: t**(-6), 1, h=1E-4)

Because lambda functions can be defined “on the fly” and thereby save
typing of a separate function with def and an intended block, lambda
functions are popular among many programmers.

Lambda functions may also take keyword arguments. For example,

d2 = diff2(lambda t, A=1, a=0.5: -a*2*t*A*exp(-a*t**2), 1.2)

3.2 Branching

The flow of computer programs often needs to branch. That is, if a
condition is met, we do one thing, and if not, we do another thing.
A simple example is a function defined as

f(x) =

{
sinx, 0 ≤ x ≤ π
0, otherwise

(3.4)

In a Python implementation of this function we need to test on the
value of x, which can be done as displayed below:

def f(x):
if 0 <= x <= pi:

value = sin(x)
else:

value = 0
return value

3.2.1 If-Else Blocks

The general structure of an if-else test is

if condition:
<block of statements, executed if condition is True>

else:
<block of statements, executed if condition is False>

When condition evaluates to true, the program flow branches into the
first block of statements. If condition is False, the program flow jumps
to the second block of statements, after the else: line. As with while

and for loops, the block of statements are indented. Here is another
example:

if C < -273.15:
print ’%g degrees Celsius is non-physical!’ % C
print ’The Fahrenheit temperature will not be computed.’

else:
F = 9.0/5*C + 32
print F

print ’end of program’

3.2 Branching 105

The two print statements in the if block are executed if and only if
C < -273.15 evaluates to True. Otherwise, we jump over the first two
print statements and carry out the computation and printing of F. The
printout of end of program will be performed regardless of the outcome
of the if test since this statement is not indented and hence neither a
part of the if block nor the else block.

The else part of an if test can be skipped, if desired:

if condition:
<block of statements>

<next statement>

For example,

if C < -273.15:
print ’%s degrees Celsius is non-physical!’ % C

F = 9.0/5*C + 32

In this case the computation of F will always be carried out, since the
statement is not indented and hence not a part of the if block.

With the keyword elif, short for else if, we can have several mutually
exclusive if tests, which allows for multiple branching of the program
flow:

if condition1:
<block of statements>

elif condition2:
<block of statements>

elif condition3:
<block of statements>

else:
<block of statements>

<next statement>

The last else part can be skipped if it is not needed. To illustrate
multiple branching we will implement a “hat” function, which is widely
used in advanced computer simulations in science and industry. One
example of a “hat” function is

N(x) =

⎧⎪⎪⎨
⎪⎪⎩

0, x < 0
x, 0 ≤ x < 1
2− x, 1 ≤ x < 2
0, x ≥ 2

(3.5)

The solid line in Figure 5.9 on page 218 illustrates the shape of this
function. The Python implementation associated with (3.5) needs mul-
tiple if branches:

def N(x):
if x < 0:

return 0.0
elif 0 <= x < 1:

return x
elif 1 <= x < 2:

106 3 Functions and Branching

return 2 - x
elif x >= 2:

return 0.0

This code corresponds directly to the mathematical specification, which
is a sound strategy that usually leads to fewer errors in programs. We
could mention that there is another way of constructing this if test
that results in shorter code:

def N(x):
if 0 <= x < 1:

return x
elif 1 <= x < 2:

return 2 - x
else:

return 0

As a part of learning to program, understanding this latter sample
code is important, but we recommend the former solution because of
its direct similarity with the mathematical definition of the function.

A popular programming rule is to avoid multiple return statements
in a function – there should only be one return at the end. We can do
that in the N function by introducing a local variable, assigning values
to this variable in the blocks and returning the variable at the end.
However, we do not think an extra variable and an extra line make a
great improvement in such a short function. Nevertheless, in long and
complicated functions the rule can be helpful.

3.2.2 Inline If Tests

A variable is often assigned a value that depends on a boolean expres-
sion. This can be coded using a common if-else test:

if condition:
a = value1

else:
a = value2

Because this construction is often needed, Python provides a one-line
syntax for the four lines above:

a = (value1 if condition else value2)

The parentheses are not required, but recommended style. One example
is

def f(x):
return (sin(x) if 0 <= x <= 2*pi else 0)

Since the inline if test is an expression with a value, it can be used
in lambda functions:

3.3 Mixing Loops, Branching, and Functions in Bioinformatics Examples 107

f = lambda x: sin(x) if 0 <= x <= 2*pi else 0

The traditional if-else construction with indented blocks cannot be
used inside lambda functions because it is not just an expression
(lambda functions cannot have statements inside them, only a single
expression).

3.3 Mixing Loops, Branching, and Functions in Bioinformatics
Examples

Life is definitely digital. The genetic code of all living organisms are
represented by a long sequence of simple molecules called nucleotides,
or bases, which makes up the Deoxyribonucleic acid, better known as
DNA. There are only four such nucleotides, and the entire genetic code
of a human can be seen as a simple, though 3 billion long, string of
the letters A, C, G, and T. Analyzing DNA data to gain increased
biological understanding is much about searching in (long) strings for
certain string patterns involving the letters A, C, G, and T. This is an
integral part of bioinformatics, a scientific discipline addressing the use
of computers to search for, explore, and use information about genes,
nucleic acids, and proteins.

The leading Python software for bioinformatics applications is
BioPython (found at http://biopython.org). The examples in this
book (below and Chapters 6.6, 8.3.4, and 9.5) are simple illustrations
of the type of problem settings and corresponding Python implemen-
tations that are encountered in bioinformatics. For real-world problem
solving one should rather utilize BioPython, but the sections below acts
as an introduction to what is inside packages like BioPython.

We start with some very simple examples on DNA analysis which
bring together basic building blocks in programming: loops, if tests,
and functions.

3.3.1 Counting Letters in DNA Strings

Given some string dna containing the letters A, C, G, or T, representing
the bases that make up DNA, we ask the question: how many times
does a certain base occur in the DNA string? For example, if dna is
ATGGCATTA and we ask how many times the base A occur in this
string, the answer is 3.

A general Python implementation answering this problem can be
done in many ways. Several possible solutions are presented below.

List Iteration. The most straightforward solution is to loop over the
letters in the string, test if the current letter equals the desired one,

http://biopython.org

108 3 Functions and Branching

and if so, increase a counter. Looping over the letters is obvious if the
letters are stored in a list. This is easily done by converting a string to
a list:

>>> list(’ATGC’)
[’A’, ’T’, ’G’, ’C’]

Our first solution becomes

def count_v1(dna, base):
dna = list(dna) # convert string to list of letters
i = 0 # counter
for c in dna:

if c == base:
i += 1

return i

String Iteration. Python allows us to iterate directly over a string with-
out converting it to a list:

>>> for c in ’ATGC’:
... print c
A
T
G
C

In fact, all built-in objects in Python that contain a set of elements
in a particular sequence allow a for loop construction of the type
for element in object.

A slight improvement of our solution is therefore to iterate directly
over the string:

def count_v2(dna, base):
i = 0 # counter
for c in dna:

if c == base:
i += 1

return i

dna = ’ATGCGGACCTAT’
base = ’C’
n = count_v2(dna, base)

printf-style formatting
print ’%s appears %d times in %s’ % (base, n, dna)

or (new) format string syntax
print ’{base} appears {n} times in {dna}’.format(

base=base, n=n, dna=dna)

We have here illustrated two alternative ways of writing out text
where the value of variables are to be inserted in “slots” in the string.

Program Flow. It is fundamental for correct programming to under-
stand how to simulate a program by hand, statement by statement.

3.3 Mixing Loops, Branching, and Functions in Bioinformatics Examples 109

Three tools are effective for helping you reach the required understand-
ing of performing a simulation by hand: (i) printing variables, (ii) using
a debugger, and (iii) using an online program flow tool.

Inserting print statements and examining the variables is the sim-
plest approach to investigating what is going on:

def count_v2_demo(dna, base):
print ’dna:’, dna
print ’base:’, base
i = 0 # counter
for c in dna:

print ’c:’, c
if c == base:

print ’True if test’
i += 1

return i

n = count_v2_demo(’ATGCGGACCTAT’, ’C’)

An efficient way to explore this program is to run it in a de-
bugger where we can step through each statement and see what is
printed out. Start ipython in a terminal window and run the program
count_v2_demo.py with a debugger: run -d count_v2_demo.py. Use s

(for step) to step through each statement, or n (for next) for proceed-
ing to the next statement without stepping through a function that is
called.

ipdb> s
> /some/disk/user/bioinf/src/count_v2_demo.py(2)count_v2_demo()
1 1 def count_v1_demo(dna, base):
----> 2 print ’dna:’, dna

3 print ’base:’, base

ipdb> s
dna: ATGCGGACCTAT
> /some/disk/user/bioinf/src/count_v2_demo.py(3)count_v2_demo()

2 print ’dna:’, dna
----> 3 print ’base:’, base

4 i = 0 # counter

Observe the output of the print statements. One can also print a vari-
able explicitly inside the debugger:

ipdb> print base
C

Misunderstanding of the program flow is one of the most frequent
sources of programming errors, so whenever in doubt about any pro-
gram flow, enter a debugger to establish confidence!

The Python Online Tutor at

http://people.csail.mit.edu/pgbovine/python/tutor.html

is, at least for small programs, a splendid alternative to debuggers. Go
to the web page, erase the sample code and paste in your own code.
Press Visual execution, then Forward to execute statements one by

http://people.csail.mit.edu/pgbovine/python/tutor.html
http://people.csail.mit.edu/pgbovine/python/tutor.html
http://people.csail.mit.edu/pgbovine/python/tutor.html

110 3 Functions and Branching

one. The status of variables are explained to the right, and the text
field below the program shows the output from print statements. An
example is shown in Figure 3.1.

Fig. 3.1 Visual execution of a program using the Python Online Tutor.

Index Iteration. Although it is natural in Python to iterate over the
letters in a string (or more generally over elements in a sequence), pro-
grammers with experience from other languages (Fortran, C and Java
are examples) are used to for loops with an integer counter running
over a all indices in a string or array:

def count_v3(dna, base):
i = 0 # counter
for j in range(len(dna)):

if dna[j] == base:
i += 1

return i

Python indices always start at 0 so the legal indices for our string
become 0, 1, . . . , len(dna)-1, where len(dna) is the number of letters in
the string dna. The range(x) function returns a list of integers 0, 1, . . . ,
x-1, implying that range(len(dna)) generates all the legal indices for
dna.

While Loops. The while loop equivalent to the last function reads

def count_v4(dna, base):
i = 0 # counter
j = 0 # string index
while j < len(dna):

if dna[j] == base:
i += 1

j += 1
return i

3.3 Mixing Loops, Branching, and Functions in Bioinformatics Examples 111

Correct indentation is here crucial: a typical error is to fail indenting
the j += 1 line correctly.

Summing a Boolean List. The idea now is to create a list m where m[i]

is True if dna[i] equals the letter we search for (base). The number of
True values in m is then the number of base letters in dna. We can use
the sum function to find this number because doing arithmetics with
boolean lists automatically interprets True as 1 and False as 0. That
is, sum(m) returns the number of True elements in m. A possible function
doing this is

def count_v5(dna, base):
m = [] # matches for base in dna: m[i]=True if dna[i]==base
for c in dna:

if c == base:
m.append(True)

else:
m.append(False)

return sum(m)

Inline If Test. Shorter, more compact code is often a goal if the com-
pactness enhances readability. The four-line if test in the previous
function can be condensed to one line using the inline if construction:
if condition value1 else value2.

def count_v6(dna, base):
m = [] # matches for base in dna: m[i]=True if dna[i]==base
for c in dna:

m.append(True if c == base else False)
return sum(m)

Using Boolean Values Directly. The inline if test is in fact redundant
in the previous function because the value of the condition c == base

can be used directly: it has the value True or False. This saves some
typing and adds clarity, at least to Python programmers with some
experience:

def count_v7(dna, base):
m = [] # matches for base in dna: m[i]=True if dna[i]==base
for c in dna:

m.append(c == base)
return sum(m)

List Comprehensions. Building a list with the aid of a for loop can
often be condensed to a single line by using list comprehensions:
[expr for e insequence], where expr is some expression normally in-
volving the iteration variable e. In our last example, we can introduce
a list comprehension

112 3 Functions and Branching

def count_v8(dna, base):
m = [c == base for c in dna]
return sum(m)

Here it is tempting to get rid of the m variable and reduce the function
body to a single line:

def count_v9(dna, base):
return sum([c == base for c in dna])

Using a Sum Iterator. The DNA string is usually huge – 3 billion
letters for the human species. Making a boolean array with True and
False values therefore increases the memory usage by a factor of two in
our sample functions count_v5 to count_v9. Summing without actually
storing an extra list is desirable. Fortunately, sum([x for x in s]) can
be replaced by sum(x for x in s), where the latter sums the elements
in s as x visits the elements of s one by one. Removing the brackets
therefore avoids first making a list before applying sum on that list.
This is a minor modification of the count_v9 function:

def count_v10(dna, base):
return sum(c == base for c in dna)

Below we shall measure the impact of the various program constructs
on the CPU time.

Extracting Indices. Instead of making a boolean list with elements
expressing whether a letter matches the given base or not, we may
collect all the indices of the matches. This can be done by adding an
if test to the list comprehension:

def count_v11(dna, base):
return len([i for i in range(len(dna)) if dna[i] == base])

A debugger or the Python Online Tutorial do not help so much
when trying to understand this compact code. A better approach is to
examine the list comprehension in an interactive Python shell:

>>> dna = ’AATGCTTA’
>>> base = ’A’
>>> indices = [i for i in range(len(dna)) if dna[i] == base]
>>> indices
[0, 1, 7]
>>> print dna[0], dna[1], dna[7] # check
A A A

The element i in the list comprehension is only made for those i where
dna[i] == base.

Using Python’s Library. Very often when you set out to do a task in
Python, there is already functionality for the task in the object itself, in

3.3 Mixing Loops, Branching, and Functions in Bioinformatics Examples 113

the Python libraries, or in third-party libraries found on the Internet.
Counting how many times a letter (or substring) base appears in a
string dna is obviously a very common task so Python supports it by
the syntax dna.count(base):

def count_v12(dna, base):
return dna.count(base)

3.3.2 Efficiency Assessment

Now we have 11 different versions of how to count the occurrences of
a letter in a string. Which one of these implementations is the fastest?
To answer the question we need some test data, which should be a huge
string dna.

Generating Random DNA Strings. The simplest way of generating a
long string is to repeat a character a large number of times:

N = 1000000
dna = ’A’*N

The resulting string is just ’AAA...A, of length N, which is fine for testing
the efficiency of Python functions. Nevertheless, it is more exciting to
work with a DNA string with letters from the whole alphabet A, C,
G, and T. To make a DNA string with a random composition of the
letters we can first make a list of random letters and then join all those
letters to a string:

import random
alphabet = list(’ATGC’)
dna = [random.choice(alphabet) for i in range(N)]
dna = ’’.join(dna) # join the list elements to a string

The random.choice(x) function selects an element in the list x at ran-
dom.

Note that N is very often a large number. In Python version 2.x,
range(N) generates a list of N integers. We can avoid the list by using
xrange which generates an integer at a time and not the whole list. In
Python version 3.x, the range function is actually the xrange function
in version 2.x. Using xrange, combining the statements, and wrapping
the construction of a random DNA string in a function, gives

import random

def generate_string(N, alphabet=’ACGT’):
return ’’.join([random.choice(alphabet) for i in xrange(N)])

dna = generate_string(600000)
#dna = generate_string(6000000)

The call generate_string(10) may generate something like
AATGGCAGAA.

114 3 Functions and Branching

Measuring CPU Time. Our next goal is to see how much time the
various count_v* functions spend on counting letters in a huge string,
which is to be generated as shown above. Measuring the time spent in
a program can be done by the time module:

import time
...
t0 = time.clock()
do stuff
t1 = time.clock()
cpu_time = t1 - t0

The time.clock() function returns the CPU time spent in the program
since its start. If the interest is in the total time, also including reading
and writing files, time.time() is the appropriate function to call.

Running through all our functions made so far and recording timings
can be done by

import time
functions = [count_v1, count_v2, count_v3, count_v4,

count_v5, count_v6, count_v7, count_v8,
count_v9, count_v10, count_v11, count_v12]

timings = [] # timings[i] holds CPU time for functions[i]

for function in functions:
t0 = time.clock()
function(dna, ’A’)
t1 = time.clock()
cpu_time = t1 - t0
timings.append(cpu_time)

In Python, functions are ordinary objects so making a list of func-
tions is no more special than making a list of strings or numbers.

We can now iterate over timings and functions simultaneously via
zip to make a nice printout of the results:

for cpu_time, function in zip(timings, functions):
print ’{f:<9s}: {cpu:.2f} s’.format(

f=function.func_name, cpu=cpu_time)

Timings on a MacBook Air 11 running Ubuntu show that the func-
tions using list.append require almost the double of the time of the
functions that work with list comprehensions. Even faster is the sim-
ple iteration over the string. However, the built-in count functionality
of strings (dna.count(base)) runs over 30 times faster than the best
of our handwritten Python functions! The reason is that the for loop
needed to count in dna.count(base) is actually implemented in C and
runs very much faster than loops in Python.

A clear lesson learned is: google around before you start out to im-
plement what seems to be a quite common task. Others have probably
already done it for you, and most likely is their solution much better
than what you can (easily) come up with.

All the functions presented above, including the timings, can be
found in the file count.py.

3.4 Summary 115

3.4 Summary

3.4.1 Chapter Topics

User-Defined Functions. Functions are useful (i) when a set of com-
mands are to be executed several times, or (ii) to partition the program
into smaller pieces to gain better overview. Function arguments are lo-
cal variables inside the function whose values are set when calling the
function. Remember that when you write the function, the values of
the arguments are not known. Here is an example of a function for
polynomials of 2nd degree:

function definition:
def quadratic_polynomial(x, a, b, c)

value = a*x*x + b*x + c
derivative = 2*a*x + b
return value, derivative

function call:
x = 1
p, dp = quadratic_polynomial(x, 2, 0.5, 1)
p, dp = quadratic_polynomial(x=x, a=-4, b=0.5, c=0)

The sequence of the arguments is important, unless all arguments are
given as name=value.

Functions may have no arguments and/or no return value(s):

def print_date():
"""Print the current date in the format ’Jan 07, 2007’."""
import time
print time.strftime("%b %d, %Y")

call:
print_date()

A common error is to forget the parentheses: print_date is the function
object itself, while print_date() is a call to the function.

Keyword Arguments. Function arguments with default values are called
keyword arguments, and they help to document the meaning of argu-
ments in function calls. They also make it possible to specify just a
subset of the arguments in function calls.

from math import exp, sin, pi

def f(x, A=1, a=1, w=pi):
return A*exp(-a*x)*sin(w*x)

f1 = f(0)
x2 = 0.1
f2 = f(x2, w=2*pi)
f3 = f(x2, w=4*pi, A=10, a=0.1)
f4 = f(w=4*pi, A=10, a=0.1, x=x2)

The sequence of the keyword arguments can be arbitrary, and the key-
word arguments that are not listed in the call get their default values

116 3 Functions and Branching

according to the function definition. The “non-keyword arguments” are
called positional arguments, which is x in this example. Positional ar-
guments must be listed before the keyword arguments. However, also a
positional argument can appear as name=value in the call (see the last
line above), and this syntax allows any positional argument to be listed
anywhere in the call.

If Tests. The if-elif-else tests are used to “branch” the flow of state-
ments. That is, different sets of statements are executed depending on
whether a set of conditions is true or not.

def f(x):
if x < 0:

value = -1
elif x >= 0 and x <= 1:

value = x
else:

value = 1
return value

Inline If Tests. Assigning a variable one value if a condition is true and
another value otherwise, is compactly done with an inline if test:

sign = -1 if a < 0 else 1

Terminology. The important computer science terms in this chapter
are

• function,
• method,
• return statement,
• positional arguments,
• keyword arguments,
• local and global variables,
• doc strings,
• if tests with if, elif, and else (branching),
• the None object.

3.4.2 Example: Numerical Integration

Problem. An integral ∫ b

a
f(x)dx

can be approximated by the so-called Simpson’s rule:

∫ b

a

f(x)dx ≈ b− a

3n

(
f(a) + f(b) + 4

n/2∑
i=1

f
(
a+ (2i− 1)h

)
+ 2

n/2−1∑
i=1

f(a+ 2ih)

)
. (3.6)

3.4 Summary 117

Here, h = (b− a)/n and n must be an even integer. The problem is to
make a function Simpson(f, a, b, n=500) that returns the right-hand
side formula of (3.6). Apply the formula to 3

2

∫ π
0 sin3 xdx, which has

exact value 2, for n = 2, 6, 12, 100, 500. (A better verification of the
implementation, is to use the fact (3.6) is exact for all polynomials
f(x) of degree ≤ 2.)

Solution. The evaluation of the formula (3.6) in a program is straight-
forward if we know how to implement summation (

∑
) and how to

call f . A Python recipe for calculating sums is given in Chapter 3.1.4.
Basically,

∑N
i=M q(i), for some expression q(i) involving i, is coded with

the aid of a for loop over i and an accumulation variable s for building
up the sum, one term at a time:

s = 0
for i in range(M, N):

s += q(i)

The Simpson function can then be coded as

def Simpson(f, a, b, n=500):
h = (b - a)/float(n)
sum1 = 0
for i in range(1, n/2 + 1):

sum1 += f(a + (2*i-1)*h)

sum2 = 0
for i in range(1, n/2):

sum2 += f(a + 2*i*h)

integral = (b-a)/(3*n)*(f(a) + f(b) + 4*sum1 + 2*sum2)
return integral

Note that Simpson can integrate any Python function f of one variable.
Specifically, we can implement

h(x) =
3

2
sin3 xdx

in a Python function

def h(x):
return (3./2)*sin(x)**3

and call Simpson to compute
∫ π
0 h(x)dx for various choices of n, as

requested:

from math import sin, pi

def application():
print ’Integral of 1.5*sin^3 from 0 to pi:’
for n in 2, 6, 12, 100, 500:

approx = Simpson(h, 0, pi, n)
print ’n=%3d, approx=%18.15f, error=%9.2E’ % \

(n, approx, 2-approx)

118 3 Functions and Branching

We put these statements inside a function, here called application,
mainly to group them, and not because application will be called sev-
eral times or with different arguments. Running the call application()
leads to the output

Integral of 1.5*sin^3 from 0 to pi:
n= 2, approx= 3.141592653589793, error=-1.14E+00
n= 6, approx= 1.989171700583579, error= 1.08E-02
n= 12, approx= 1.999489233010781, error= 5.11E-04
n=100, approx= 1.999999902476350, error= 9.75E-08
n=500, approx= 1.999999999844138, error= 1.56E-10

We clearly see that the approximation improves as n increases. How-
ever, every computation will give an answer that deviates from the ex-
act value 2. We cannot from this test alone know if the errors above
are those implied by the approximation only, or if there are additional
programming mistakes. A better way of verifying the implementation
is therefore to look for test cases where the numerical approximation
formula is exact. Since it is stated that the formula is exact for poly-
nomials up to second degree, we just test it on such an “arbitrary”
parabola, say ∫ 2

3/2

(
3x2 − 7x+ 2.5

)
dx.

This integral equals G(2) − G(3/2), where G(x) = x3 − 3.5x2 + 2.5x.
A possible implementation becomes

def g(x):
return 3*x**2 - 7*x + 2.5

def G(x):
return x**3 - 3.5*x**2 + 2.5*x

def verify():
a = 1.5
b = 2.0
n = 8
exact = G(b) - G(a)
approx = Simpson(g, a, b, n)
if abs(exact - approx) > 1E-14:

print "Error: Simpson’s rule should integrate g exactly"

Note the last if test: we avoid testing exact == approx because there
may be round-off errors in these float objects so that == fails. Testing
that the two variables are very close (distance less than 10−14) is better,
cf. Exercises 2.23 and 2.24.

The g and G functions are only of interest inside the verify function.
Many think the code becomes easier to read and understand if g and
G are moved inside verify, which is indeed possible in Python:

def verify():
def g(x):

test function that Simpson’s rule will integrate exactly
return 3*x**2 - 7*x + 2.5

def G(x):
integral of g(x)

3.4 Summary 119

return x**3 - 3.5*x**2 + 2.5*x

a = 1.5
b = 2.0
n = 8
exact = G(b) - G(a)
approx = Simpson(g, a, b, n)
if abs(exact - approx) > 1E-14:

print "Error: Simpson’s rule should integrate g exactly"

We can make the verify function more compact by utilizing lambda
functions for g and G (see Chapter 3.1.11):

def verify():
"""Check that 2nd-degree polynomials are integrated exactly."""
a = 1.5
b = 2.0
n = 8
g = lambda x: 3*x**2 - 7*x + 2.5 # test integrand
G = lambda x: x**3 - 3.5*x**2 + 2.5*x # integral of g
exact = G(b) - G(a)
approx = Simpson(g, a, b, n)
if abs(exact - approx) > 1E-14:

print "Error: Simpson’s rule should integrate g exactly"

Another improvement is to increase robustness of the function, i.e.,
that the input data, i.e., the arguments, are acceptable. Here we may
test if b > a and if n is an even integer. For the latter test, we make use
of the mod function: mod(n, d) gives the remainder when n is divided
by d (both n and d are integers). Mathematically, if p is the largest
integer such that pd ≤ n, then mod(n, d) is n − pd. For example,
mod(3, 2) is 1, mod(3, 1) is 0, mod (3, 3) is 0, and mod(18, 8) is 2.
The point is that n divided by d is an integer when mod(n, d) is zero.
In Python, the percentage sign is used for the mod function:

>>> 18 % 8
2

To test if n is an odd integer, we see if it can be divided by 2 and yield
an integer without any reminder (n % 2 == 0).

The improved Simpson function with validity tests on the provided
arguments, as well as a doc string (Chapter 3.1.7), can look like this:

def Simpson(f, a, b, n=500):
"""
Return the approximation of the integral of f
from a to b using Simpson’s rule with n intervals.
"""
if a > b:

print ’Error: a=%g > b=%g’ % (a, b)
return None

check that n is even:
if n % 2 != 0:

print ’Error: n=%d is not an even integer!’ % n
n = n+1 # make n even

h = (b - a)/float(n)

120 3 Functions and Branching

sum1 = 0
for i in range(1, n/2 + 1):

sum1 += f(a + (2*i-1)*h)

sum2 = 0
for i in range(1, n/2):

sum2 += f(a + 2*i*h)

integral = (b-a)/(3*n)*(f(a) + f(b) + 4*sum1 + 2*sum2)
return integral

The complete code is found in the file Simpson.py.
A very good exercise is to simulate the program flow by hand, start-

ing with the call to the application function. A debugger might be a
convenient tool for controlling that your thinking is correct, see Ap-
pendix F.1.

3.5 Exercises

Exercise 3.1. Write a Fahrenheit–Celsius conversion function.
The formula for converting Fahrenheit degrees to Celsius reads

C =
5

9
(F − 32). (3.7)

Write a function C(F) that implements this formula. To verify the im-
plementation of C(F), you can convert a Celsius temperature to Fahren-
heit and then back to Celsius again using the F(C) function from Chap-
ter 3.1.1 and the C(F) function implementing (3.7). That is, you can
check that the boolean expression c == C(F(c)) is True for any temper-
ature c (you should, however, be careful with comparing real numbers
with ==, see Exercise 2.24). Name of program file: f2c.py. �

Exercise 3.2. Write the program in Exer. 2.12 as a function.
Define a Python function sum_1_div_k(M) that returns the sum s as

defined in Exercise 2.12. Print out the result of calling s(3) and check
that the answer is correct. Name of program: sum_func.py. �

Exercise 3.3. Write a function for solving ax2 + bx+ c = 0.
Given a quadratic equation ax2 + bx + c = 0, write a function

roots(a, b, c) that returns the two roots of the equation. The re-
turned roots should be float objects when the roots are real, other-
wise the roots should be complex objects. Construct two test cases with
known solutions, one with real roots and the other with complex roots,
to check that the function returns correct values and correct type of
objects. Hint: Use techniques from Chapter 1.6.3. Name of program:
roots_quadratic.py. �

3.5 Exercises 121

Exercise 3.4. Implement the sum function.
The standard Python function called sum takes a list as argument

and computes the sum of the elements in the list:

>>> sum([1,3,5,-5])
4

Implement your own version of sum. Name of program: mysum.py. �
Exercise 3.5. Integrate a function by one trapezoid.

An approximation to the integral of a function f(x) over an interval
[a, b] can found by first approximating f(x) by the straight line that
goes through the end points (a, f(a)) and (b, f(b)), and then finding
the area under the straight line (which is the area of a trapezoid). The
resulting formula becomes

∫ b

a
f(x)dx ≈ b− a

2

(
f(a) + f(b)

)
. (3.8)

Write a function trapezint1(f, a, b) that returns this approximation
to the integral. The argument f is a Python implementation f(x) of
the mathematical function f(x).

Using (3.8), compute the following integrals:
∫ ln 3
0 exdx,

∫ π
0 cosxdx,∫ π

0 sinxdx, and
∫ π/2
0 sinxdx, In each case, write out the error, i.e.,

the difference between the exact integral and the approximation (3.8).
Make rough sketches of the trapezoid for each integral in order to under-
stand how the method behaves in the different cases. Name of program
file: trapezint1.py. �
Exercise 3.6. Integrate a function by two trapezoids.

We can easily improve the formula (3.8) from Exercise 3.5 by approx-
imating the area under the function f(x) by two equal-sized trapezoids.
Derive a formula for this approximation and implement it in a function
trapezint2(f, a, b). Run the examples from Exercise 3.5 and see how
much better the new formula is. Make sketches of the two trapezoids
in each case. Name of program file: trapezint2.py. �
Exercise 3.7. Derive the general Trapezoidal integration rule.

A further improvement of the approximate integration method from
Exercise 3.6 is to divide the area under the f(x) curve into n equal-
sized trapezoids. Based on this idea, derive the following formula for
approximating the integral:

∫ b

a
f(x)dx ≈

n∑
i=1

1

2
h
(
f(xi−1) + f(xi)

)
, (3.9)

where h is the width of the trapezoids, h = (b−a)/n, and xi = a+ih, i =
0, . . . , n, are the coordinates of the sides of the trapezoids. Figure 5.14b
on page 255 visualizes the idea of the Trapezoidal rule.

122 3 Functions and Branching

Implement (3.9) in a Python function trapezint(f, a, b, n). Run
the examples from Exercise 3.5 with n = 10. Name of program file:
trapezint.py.

Remark. Formula (3.9) is not the most common way of expressing
the Trapezoidal integration rule. The reason is that f(xi) is evaluated
twice, first in term i and then as f(xi−1) in term i+1. The formula can
be further developed to avoid unnecessary evaluations of f(xi), which
results in the standard form

∫ b

a
f(x)dx ≈ 1

2
h
(
f(a) + f(b)

)
+ h

n−1∑
i=1

f(xi). (3.10)

�

Exercise 3.8. Derive the general Midpoint integration rule.
The idea of the Midpoint rule for integration is to divide the area

under the curve f(x) into n equal-sized rectangles (instead of trapezoids
as in Exercise 3.7). The height of the rectangle is determined by the
value of f at the midpoint of the rectangle. Figure 5.14a on page 255
illustrates the idea. Compute the area of each rectangle, sum them up,
and arrive at the formula for the Midpoint rule:

∫ b

a
f(x)dx ≈ h

n∑
i=1

f

(
a+

1

2
ih

)
, (3.11)

where h = (b − a)/n is the width of each rectangle. Implement this
formula in a Python function midpointint(f, a, b, n) and test the
function on the Examples listed in Exercise 3.5. How do the errors in the
Midpoint rule compare with those of the Trapezoidal rule (Exercise 3.7)
for n = 1 and n = 10? Name of program file: midpointint.py. �

Exercise 3.9. Compute the area of an arbitrary triangle.
An arbitrary triangle can be described by the coordinates of its three

vertices: (x1, y1), (x2, y2), (x3, y3), numbered in a counterclockwise di-
rection. The area of the triangle is given by the formula

A =
1

2
|x2y3 − x3y2 − x1y3 + x3y1 + x1y2 − x2y1|. (3.12)

Write a function area(vertices) that returns the area of a triangle
whose vertices are specified by the argument vertices, which is a nested
list of the vertex coordinates. For example, computing the area of the
triangle with vertex coordinates (0, 0), (1, 0), and (0, 2) is done by

triangle1 = area([[0,0], [1,0], [0,2]])
or
v1 = (0,0); v2 = (1,0); v3 = (0,2);

3.5 Exercises 123

vertices = [v1, v2, v3]
triangle1 = area(vertices)

print ’Area of triangle is %.2f’ % triangle1

Recall from Chapter 2.4 that extracting a coordinate like x2 for use in
the formula (3.12) is done by vertices[1][0].

Test the area function on a triangle with known area. Name of pro-
gram file: area_triangle.py. �

Exercise 3.10. Compute the length of a path.
Some object is moving along a path in the plane. At n points of

time we have recorded the corresponding (x, y) positions of the object:
(x0, y0), (x1, y2), . . . , (xn−1, yn−1). The total length L of the path from
(x0, y0) to (xn−1, yn−1) is the sum of all the individual line segments
((xi−1, yi−1) to (xi, yi), i = 1, . . . , n− 1):

L =

n−1∑
i=1

√
(xi − xi−1)2 + (yi − yi−1)2. (3.13)

Make a function pathlength(x, y) for computing L according to
the formula. The arguments x and y hold all the x0, . . . , xn−1 and
y0, . . . , yn−1 coordinates, respectively. Test the function on a triangu-
lar path with the four points (1, 1), (2, 1), (1, 2), and (1, 1). Name of
program file: pathlength.py. �

Exercise 3.11. Approximate π.
The value of π equals the circumference of a circle with radius 1/2.

Suppose we approximate the circumference by a polygon through N+1
points on the circle. The length of this polygon can be found using the
pathlength function from Exercise 3.10. Compute N +1 points (xi, yi)
along a circle with radius 1/2 according to the formulas

xi =
1

2
cos(2πi/N), yi =

1

2
sin(2πi/N), i = 0, . . . , N.

Call the pathlength function and write out the error in the approx-
imation of π for N = 2k, k = 2, 3, . . . , 10. Name of program file:
pi_approx.py. �

Exercise 3.12. Write various hello-world functions.
Write three functions:

1. hw1, which takes no arguments and returns the string ’Hello,

World!’

2. hw2, which takes no arguments and returns nothing, but the string
’Hello, World!’ is printed in the terminal window

3. hw3, which takes two string arguments and prints these two argu-
ments separated by a comma.

124 3 Functions and Branching

Use the following main program to test the three functions:

print hw1()
hw2()
hw3(’Hello ’, ’World!’)

Name of program: hw_func.py. �

Exercise 3.13. Approximate a function by a sum of sines.
We consider the piecewise constant function

f(t) =

⎧⎨
⎩

1, 0 < t < T/2,
0, t = T/2,
−1, T/2 < t < T

(3.14)

Sketch this function on a piece of paper. One can approximate f(t) by
the sum

S(t;n) =
4

π

n∑
i=1

1

2i− 1
sin

(
2(2i− 1)πt

T

)
. (3.15)

It can be shown that S(t;n) → f(t) as n → ∞.
Write a Python function S(t, n, T) for returning the value of

S(t;n). Also write a Python f(t, T) for computing f(t). Write out
tabular information showing how the error f(t)− S(t;n) varies with n
and t for the case where 1, 3, 5, 10, 30, 100 and t = αT , with T = 2π,
and α = 0.01, 0.25, 0.49. Use the table to comment on how the qual-
ity of the approximation depends on α and n. Name of program file:
sinesum1.py.

Remark. A sum of sine and/or cosine functions, as in (3.15), is called
a Fourier series . Approximating a function by a Fourier series is a
very important technique in science and technology. Exercise 5.30 asks
for visualization of how well S(t;n) approximates f(t) for some values
of n. �

Exercise 3.14. Implement a Gaussian function.
Make a Python function gauss(x, m=0, s=1) for computing the

Gaussian function

f(x) =
1√
2π s

exp

[
−1

2

(
x−m

s

)2
]
,

Call gauss(x) and print out the result for x ∈ [−5, 5] (say for 11 uni-
formly spaced x values). Name of program file: Gaussian2.py. �

Exercise 3.15. Make a function of the formula in Exer. 1.12.
Implement the formula (1.8) from Exercise 1.12 in a Python function

with three arguments: egg(M, To=20, Ty=70). The parameters ρ, K, c,
and Tw can be set as local (constant) variables inside the function. Let

3.5 Exercises 125

t be returned from the function. Compute t for a soft and hard boiled
egg, of a small (M = 47 g) and large (M = 67 g) size, taken from the
fridge (To = 4 C) and from a hot room (T = 25 C). Name of program
file: egg_func.py. �

Exercise 3.16. Write a function for numerical differentiation.
The formula

f ′(x) ≈ f(x+ h)− f(x− h)

2h
(3.16)

can be used to find an approximate derivative of a mathematical func-
tion f(x) if h is small. Write a function diff(f, x, h=1E-6) that returns
the approximation (3.16) of the derivative of a mathematical function
represented by a Python function f(x).

Apply (3.16) to differentiate f(x) = ex at x = 0, f(x) = e−2x2

at
x = 0, f(x) = cosx at x = 2π, and f(x) = lnx at x = 1. Use h = 0.01.
In each case, write out the error, i.e., the difference between the exact
derivative and the result of (3.16). Name of program file: diff_f.py. �

Exercise 3.17. Make an adaptive Trapezoidal integration rule.
A problem with the Trapezoidal integration rule (3.9) is to decide

how many trapezoids (n) to use in order to achieve a desired accuracy.
Let E be the error in the Trapezoidal method, i.e., the difference be-
tween the exact integral and that produced by (3.9). We would like to
prescribe a (small) tolerance ε and find an n such that E ≤ ε. This
demands some expression for the error E involving the parameter n.

One can show that

E ≤ 1

12
(b− a)h2 max

x∈[a,b]

∣∣f ′′(x)
∣∣. (3.17)

The maximum of |f ′′(x)| can be computed (approximately) by evalu-
ating f ′′(x) at a large number of points in [a, b], taking the absolute
value |f ′′(x)|, and finding the maximum value of these. You can use
the diff2 function from Chapter 3.1.9 to compute f ′′(x).

With the computed estimate of max |f ′′(x)| we can find h from set-
ting the worst case error in (3.17) (i.e., the right-hand side) equal to
the desired tolerance:

1

12
(b− a)h2 max

x∈[a,b]

∣∣f ′′(x)
∣∣ = ε

Solving with respect to h gives

h =
√
12ε

(
(b− a) max

x∈[a,b]

∣∣f ′′(x)
∣∣)−1/2

. (3.18)

With n = (b − a)/h we have the n that corresponds to the desired
accuracy ε.

126 3 Functions and Branching

Make a Python function adaptive_trapezint(f, a, b, eps=1E-5)

for computing the integral
∫ b
a f(x)dx with an error less than or equal

to eps. First compute n and then call trapezint(f, a, b, n) from Ex-
ercise 3.7. Name of program file: adaptive_trapezint.py.

A numerical method that applies an expression for the error to au-
tomatically compute a proper discretization parameter, like n (or h)
here, is known as an adaptive numerical method. �

Exercise 3.18. Compute a polynomial via a product.
Given n+1 roots r0, r1, . . . , rn of a polynomial p(x) of degree n+1,

p(x) can be computed by

p(x) =

n∏
i=0

(x− ri) = (x− r0)(x− r1) · · · (x− rn−1)(x− rn). (3.19)

Store the roots r0, . . . , rn in a list and make a loop that computes the
product in (3.19). Test the program on a polynomial with roots −1, 1,
and 2. Name of program file: polyprod.py. �

Exercise 3.19. Implement the factorial function.
The factorial of n is written as n! and defined as

n! = n(n− 1)(n− 2) · · · 2 · 1, (3.20)

with the special cases
1! = 1, 0! = 1. (3.21)

For example, 4! = 4 · 3 · 2 · 1 = 24, and 2! = 2 · 1 = 2. Write a function
fact(n) that returns n!. Return 1 immediately if x is 1 or 0, otherwise
use a loop to compute n!. Name of program file: fact.py.

Remark. You can import a ready-made factorial function by

>>> from math import factorial
>>> factorial(4)
24

�

Exercise 3.20. Compute velocity and acceleration from position data;
one dimension.

Let x(t) be the position of an object moving along the x axis. The
velocity v(t) and acceleration a(t) can be approximately computed by
the formulas

v(t) ≈ x(t+Δt)− x(t−Δt)

2Δt
, a(t) ≈ x(t+Δt)− 2x(t) + x(t−Δt)

Δt2
,

(3.22)
where Δt is a small time interval. As Δt → 0, the above formulas
approach the first and second derivative of x(t), which coincide with
the well-known definitions of velocity and acceleration.

3.5 Exercises 127

Write a function kinematics(x, t, dt=1E-6) for computing x, v, and
a time t, using the above formulas for v and a with Δt corresponding to
dt. Let the function return x, v, and a. Test the function with the posi-
tion function x(t) = e−(t−4)2 and the time point t = 5 (use Δt = 10−5).
Name of program: kinematics1.py. �

Exercise 3.21. Compute velocity and acceleration from position data;
two dimensions.

An object moves a long a path in the xy plane such that at time t
the object is located at the point (x(t), y(t)). The velocity vector in the
plane, at time t, can be approximated as

v(t) ≈
(
x(t+Δt)− x(t−Δt)

2Δt
,
y(t+Δt)− y(t−Δt)

2Δt

)
. (3.23)

The acceleration vector in the plane, at time t, can be approximated
as

a(t) ≈
(
x(t+Δt)− 2x(t) + x(t−Δt)

Δt2
,
y(t+Δt)− 2y(t) + y(t−Δt)

Δt2

)
. (3.24)

Here, Δt is a small time interval. As Δt → 0, we have that v(t) =
(x′(t), y′(t)) and a(t) = (x′′(t), y′′(t)).

Make a function kinematics(x, y, t, dt=1E-6) for computing the
velocity and acceleration of the object according to the formulas above
(t corresponds to t, and dt corresponds to Δt). The function should
return three 2-tuples holding the position, the velocity, and the acceler-
ation, all at time t. Test the function for the motion along a circle with
radius R and absolute velocity Rω: x(t) = R cosωt and y(t) = R sinωt.
Compute the velocity and acceleration for t = 1 using R = 1, ω = 2π,
and Δt = 10−5. Name of program: kinematics2.py. �

Exercise 3.22. Find the max and min values of a function.
Write a function maxmin(f, a, b, n=1000) for finding the maximum

and minimum values of a mathematical function f(x) in the interval
between a and b. The following test program

from math import cos, pi
print maxmin(cos, -pi/2, 2*pi, 100001)

should write out (1.0, -1.0).
The maxmin function can compute a set of n uniformly spaced co-

ordinates between a and b stored in a list x, then compute f at the
points in x and store the values in another list y. The Python functions
max(y) and min(y) return the maximum and minimum values in the
list y, respectively. Name of program file: maxmin_f.py. �

Exercise 3.23. Find the max and min elements in a list.
Given a list a, the max function in Python’s standard library com-

putes the largest element in a: max(a). Similarly, min(a) returns the

128 3 Functions and Branching

smallest element in a. The purpose of this exercise is to write your own
max and min function. Use the following technique: Initialize a variable
max_elem by the first element in the list, then visit all the remaining
elements (a[1:]), compare each element to max_elem, and if greater,
make max_elem refer to that element. Use a similar technique to com-
pute the minimum element. Collect the two pieces of code in functions.
Name of program file: maxmin_list.py. �

Exercise 3.24. Implement the Heaviside function.
The following “step” function is known as the Heaviside function

and is widely used in mathematics:

H(x) =

{
0, x < 0
1, x ≥ 0

(3.25)

Implement H(x) in a Python function H(x). Test your implementation
for x = −1

2 , 0, 10. Name of program file: Heaviside.py. �

Exercise 3.25. Implement a smoothed Heaviside function.
The Heaviside function (3.25) listed in Exercise 3.24 is discontinu-

ous. It is in many numerical applications advantageous to work with
a smooth version of the Heaviside function where the function itself
and its first derivative are continuous. One such smoothed Heaviside
function is

Hε(x) =

⎧⎨
⎩

0, x < −ε,
1
2 + x

2ε +
1
2π sin(πxε), −ε ≤ x ≤ ε

1, x > ε
(3.26)

Implement Hε(x) in a Python function H_eps(x). Name of program file:
smoothed_Heaviside.py. �

Exercise 3.26. Implement an indicator function.
In many applications there is need for an indicator function, which

is 1 over some interval and 0 elsewhere. More precisely, we define

I(x;L,R) =

{
1, x ∈ [L,R],
0, elsewhere

(3.27)

Make two Python implementations of such an indicator function, one
with a direct test if x ∈ [L,R] and one which expresses the indicator
function in terms of Heaviside functions (3.25):

I(x;L,R) = H(x− L)H(R− x). (3.28)

Name of program file: indicator_func.py. �

Exercise 3.27. Implement a piecewise constant function.
Piecewise constant functions have a lot of important applications

when modeling physical phenomena by mathematics. A piecewise con-

3.5 Exercises 129

stant function can be defined as

f(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

v0, x ∈ [x0, x1],
v1, x ∈ [x1, x2],
...
vi x ∈ [xi, xi+1],
...
vn x ∈ [xn, xn+1]

(3.29)

That is, we have a union of non-overlapping intervals covering the do-
main [x0, xn+1], and f(x) is constant in each interval. One example is
the function that is −1 on [0, 1], 0 on [1, 1.5], and 4 on [1.5, 2], where
we with the notation in (3.29) have x0 = 0, x1 = 1, x2 = 1.5, x3 = 2
and v0 = −1, v1 = 0, v3 = 4.

Make a function piecewise(x, data) for evaluating a piecewise con-
stant function as in (3.29) at the point x. The data object is a list of
pairs (vi, xi) for i = 0, . . . , n. For example, data is [(0, -1), (1, 0),

(1.5, 4)] in the example listed above. Since xn+1 is not a part of the
data object, we have no means for detecting whether x is to the right
of the last interval [xn, xn+1], i.e., we must assume that the user of
the piecewise function sends in an x ≤ xn+1. As always, make an ad-
ditional function for testing that the piecewise function works well.
Name of program file: piecewise_constant1.py. �

Exercise 3.28. Apply indicator functions.
Implement piecewise constant functions, as defined in Exercise 3.27,

by observing that

f(x) =
n∑

i=0

viI(x;xi, xi+1), (3.30)

where I(x;xi, xi+1) is the indicator function from Exercise 3.26. Name
of program file: piecewise_constant2.py. �

Exercise 3.29. Rewrite a mathematical function.
We consider the L(x;n) sum as defined in Chapter 3.1.4 and the

corresponding function L2(x, epsilon) function from Chapter 3.1.6.
The sum L(x;n) can be written as

L(x;n) =
n∑

i=1

ci, ci =
1

i

(
x

1 + x

)i

.

Derive a relation between ci and ci−1,

ci = aci−1,

130 3 Functions and Branching

where a is an expression involving i and x. This relation between ci
and ci−1 means that we can start with term as c1, and then in each
pass of the loop implementing the sum

∑
i ci we can compute the next

term ci in the sum as

term = a*term

Rewrite the L2 function to make use of this alternative computation.
Compare the new version with the original one to verify the implemen-
tation. Name of program file: L2_recursive.py. �

Exercise 3.30. Make a table for approximations of cosx.
The function cos(x) can be approximated by the sum

C(x;n) =
n∑

j=0

cj , (3.31)

where

cj = −cj−1
x2

2j(2j − 1)
, j = 1, 2, . . . , n,

and c0 = 1. Make a Python function for computing C(x;n). (Hint:
Represent cj by a variable term, make updates term = -term*... inside
a for loop, and accumulate the term variable in a variable for the sum.)

Also make a function for writing out a table of the errors in the
approximation C(x;n) of cos(x) for some x and n values given as ar-
guments to the function. Let the x values run downward in the rows
and the n values to the right in the columns. For example, a table for
x = 4π, 6π, 8π, 10π and n = 5, 25, 50, 100, 200 can look like

x 5 25 50 100 200
12.5664 1.61e+04 1.87e-11 1.74e-12 1.74e-12 1.74e-12
18.8496 1.22e+06 2.28e-02 7.12e-11 7.12e-11 7.12e-11
25.1327 2.41e+07 6.58e+04 -4.87e-07 -4.87e-07 -4.87e-07
31.4159 2.36e+08 6.52e+09 1.65e-04 1.65e-04 1.65e-04

Observe how the error increases with x and decreases with n. Name of
program file: cossum.py. �

Exercise 3.31. Use None in keyword arguments.
Consider the functions L(x, n) and L2(x, epsilon) from Chap-

ter 3.1.6, whose program code is found in the file lnsum.py. Let us
make a more flexible function L3 where we can either specify a toler-
ance epsilon or a number of terms n in the sum, and we can choose
whether we want the sum to be returned or the sum and the number of
terms. The latter set of return values is only meaningful with epsilon

and not n is specified. The starting point for all this flexibility is to
have some keyword arguments initialized to an “undefined” value that
can be recognized:

3.5 Exercises 131

def L3(x, n=None, epsilon=None, return_n=False):

You can test if n is given using the phrase6

if n is not None:

A similar construction can be used for epsilon. Print error messages
for incompatible settings when n and epsilon are None (none given) or
not None (both given). Name of program file: L3_flexible.py. �

Exercise 3.32. Write a sort function for a list of 4-tuples.
Below is a list of the nearest stars and some of their properties.

The list elements are 4-tuples containing the name of the star, the
distance from the sun in light years, the apparent brightness, and the
luminosity. The apparent brightness is how bright the stars look in
our sky compared to the brightness of Sirius A. The luminosity, or the
true brightness, is how bright the stars would look if all were at the
same distance compared to the Sun. The list data are found in the file
stars.list, which looks as follows:

data = [
(’Alpha Centauri A’, 4.3, 0.26, 1.56),
(’Alpha Centauri B’, 4.3, 0.077, 0.45),
(’Alpha Centauri C’, 4.2, 0.00001, 0.00006),
("Barnard’s Star", 6.0, 0.00004, 0.0005),
(’Wolf 359’, 7.7, 0.000001, 0.00002),
(’BD +36 degrees 2147’, 8.2, 0.0003, 0.006),
(’Luyten 726-8 A’, 8.4, 0.000003, 0.00006),
(’Luyten 726-8 B’, 8.4, 0.000002, 0.00004),
(’Sirius A’, 8.6, 1.00, 23.6),
(’Sirius B’, 8.6, 0.001, 0.003),
(’Ross 154’, 9.4, 0.00002, 0.0005),
]

The purpose of this exercise is to sort this list with respect to distance,
apparent brightness, and luminosity.

To sort a list data, one can call sorted(data), which returns the
sorted list (cf. Table 2.1). However, in the present case each element
is a 4-tuple, and the default sorting of such 4-tuples result in a list
with the stars appearing in alphabetic order. We need to sort with
respect to the 2nd, 3rd, or 4th element of each 4-tuple. If a tailored
sort mechanism is necessary, we can provide our own sort function as a
second argument to sorted, as in sorted(data, mysort). Such a tailored
sort function mysort must take two arguments, say a and b, and returns
−1 if a should become before b in the sorted sequence, 1 if b should
become before a, and 0 if they are equal. In the present case, a and
b are 4-tuples, so we need to make the comparison between the right
elements in a and b. For example, to sort with respect to luminosity we
write

6 One can also apply if n != None, but the is operator is most common (it tests if n and

None are identical objects, not just objects with equal contents).

132 3 Functions and Branching

def mysort(a, b):
if a[3] < b[3]:

return -1
elif a[3] > b[3]:

return 1
else:

return 0

Write the complete program which initializes the data and writes out
three sorted tables: star name versus distance, star name versus appar-
ent brightness, and star name versus luminosity. Name of program file:
sorted_stars_data.py. �

Exercise 3.33. Find prime numbers.
The Sieve of Eratosthenes is an algorithm for finding all prime num-

bers less than or equal to a number N . Read about this algorithm on
Wikipedia and implement it in a Python program. Name of program
file: find_primes.py. �

Exercise 3.34. Find pairs of characters.
Write a function count_pairs(dna, pair) that returns the number

of occurrences of a pair of characters (pair) in a DNA string (dna). For
example, calling the function with dna as ’ACTGCTATCCATT’ and pair as
’AT’ will return 2. Name of program file: count_pairs.py. �

Exercise 3.35. Count substrings.
This is an extension of Exercise 3.34: count how many times a certain

string appears in another string. For example, the function returns 2
when called with the DNA string ’ACGTTACGGAACG’ and the substring
’ACG’. Hint: For each match of the first character of the substring in the
main string, check if the next n characters in the main string matches
the substring, where n is the length of the substring. Use slices like s

to pick out a substring of s.Name of program file: count_substr.py. �

Exercise 3.36. Explain why a program works.
The following program is quite similar to the program in Exer-

cise 1.15:

def add(A, B):
C = A + B
return C

A = 3
B = 2
print add(A, B)

Explain how and thereby why the above program works. �

Exercise 3.37. Resolve a problem with a function.
Consider the following interactive session:

3.5 Exercises 133

>>> def f(x):
... if 0 <= x <= 2:
... return x**2
... elif 2 < x <= 4:
... return 4
... elif x < 0:
... return 0
...
>>> f(2)
4
>>> f(5)
>>> f(10)

Why do we not get any output when calling f(5) and f(10)? (Hint:
Save the f value in a variable r and write print r.) �

Exercise 3.38. Determine the types of some objects.
Consider the following calls to the makelist function from page 92:

l1 = makelist(0, 100, 1)
l2 = makelist(0, 100, 1.0)
l3 = makelist(-1, 1, 0.1)
l4 = makelist(10, 20, 20)
l5 = makelist([1,2], [3,4], [5])
l6 = makelist((1,-1,1), (’myfile.dat’, ’yourfile.dat’))
l7 = makelist(’myfile.dat’, ’yourfile.dat’, ’herfile.dat’)

Determine in each case what type of objects that become elements in
the returned list and what the contents of value is after one pass in
the loop.

Hint: Simulate the program by hand and check out in an interactive
session what type of objects that result from the arithmetics. It is only
necessary to simulate one pass of the loop to answer the questions.
Some of the calls will lead to infinite loops if you really execute the
makelist calls on a computer.

This exercise demonstrates that we can write a function and have in
mind certain types of arguments, here typically int and float objects.
However, the function can be used with other (originally unintended)
arguments, such as lists and strings in the present case, leading to
strange and irrelevant behavior (the problem here lies in the boolean
expression value <= stop which is meaningless for some of the argu-
ments). �

Exercise 3.39. Explain the difference between if and elif.
Consider the following code:

def where1(x, y):
if x > 0:

print ’quadrant I or IV’
if y > 0:

print ’quadrant I or II’

def where2(x, y):
if x > 0:

print ’quadrant I or IV’

134 3 Functions and Branching

elif y > 0:
print ’quadrant II’

for x, y in (-1, 1), (1, 1):
where1(x,y)
where2(x,y)

What is printed? �

Exercise 3.40. Find an error in a program.
Consider the following program for computing

f(x) = erx sin(mx) + esx sin(nx),

def f(x, m, n, r, s):
return expsin(x, r, m) + expsin(x, s, n)

x = 2.5
print f(x, 0.1, 0.2, 1, 1)

from math import exp, sin

def expsin(x, p, q):
return exp(p*x)*sin(q*x)

Running this code results in

NameError: global name ’expsin’ is not defined

What is the problem? Simulate the program flow by hand or use the
debugger to step from line to line. Correct the program. �

Exercise 3.41. Find programming errors.
What is wrong in the following code segments? Try first to find the

errors in each case by visual inspection of the code. Thereafter, type in
the code snippet and test it out in an interactive Python shell.

Case 1:

def f(x)
return 1+x**2;

Case 2:

def f(x):
term1 = 1

term2 = x**2
return term1 + term2

Case 3:

def f(x, a, b):
return a + b*x

print f(1), f(2), f(3)

3.5 Exercises 135

Case 4:

def f(x, w):
from math import sin
return sin(w*x)

f = ’f(x, w)’
w = 10
x = 0.1
print f(x, w)

Case 5:

from math import *

def log(message):
print message

print ’The logarithm of 1 is’, log(1)

Case 6:

import time

def print_CPU_time():
print ’CPU time so far in the program:’, time.clock()

print_CPU_time

�

http://www.springer.com
http://www.springer.com/mycopy

Input Data and Error Handling 4

Recall our first program for evaluating the formula (1.2) on page 19 in
Chapter 1:

C = 21
F = (9/5)*C + 32
print F

In this program, C is input data in the sense that C must be known be-
fore the program can perform the calculation of F. The results produced
by the program, here F, constitute the output data.

Input data can be hardcoded in the program as we do above. That is,
we explicitly set variables to specific values (C = 21). This programming
style may be suitable for small programs. In general, however, it is
considered good practice to let a user of the program provide input
data when the program is running. There is then no need to modify
the program itself when a new set of input data is to be explored1.

This chapter starts with describing three different ways of reading
data into a program: (i) letting the user answer questions in a dialog in
the terminal window (Chapter 4.1), (ii) letting the user provide input
on the command line (Chapter 4.2), and (iii) letting the user write
input data in a graphical interface (Chapter 4.4). A fourth method is
to read data from a file, but this topic is left for Chapter 6.

Even if your program works perfectly, wrong input data from the
user may cause the program to produce wrong answers or even crash.
Checking that the input data are correct is important, and Chapter 4.3
tells you how to do this with so-called exceptions.

The Python programming environment is organized as a big col-
lection of modules. Organizing your own Python software in terms of

1 Programmers know that any modification of the source code has a danger of introducing

errors, so it is a good rule to change as little as possible in a program that works.

H.P. Langtangen, A Primer on Scientific Programming with Python,
Texts in Computational Science and Engineering 6,

DOI 10.1007/978-3-642-30293-0 4, c© Springer-Verlag Berlin Heidelberg 2012

137

http://dx.doi.org/10.1007/978-3-642-30293-0_4

138 4 Input Data and Error Handling

modules is therefore a natural and wise thing to do. Chapter 4.5 tells
you how easy it is to make your own modules.

All the program examples from the present chapter are available in
files in the src/input folder.

4.1 Asking Questions and Reading Answers

One of the simplest ways of getting data into a program is to ask the
user a question, let the user type in an answer, and then read the text
in that answer into a variable in the program. These tasks are done by
calling a function with name raw_input. A simple example involving
the temperature conversion program above will quickly show how to
use this function.

4.1.1 Reading Keyboard Input

We may ask the user a question C=? and wait for the user to enter
a number. The program can then read this number and store it in a
variable C. These actions are performed by the statement

C = raw_input(’C=? ’)

The raw_input function always returns the user input as a string ob-
ject. That is, the variable C above refers to a string object. If we want
to compute with this C, we must convert the string to a floating-point
number: C = float(C). A complete program for reading C and comput-
ing the corresponding degrees in Fahrenheit now becomes

C = raw_input(’C=? ’)
C = float(C)
F = (9./5)*C + 32
print F

In general, the raw_input function takes a string as argument, dis-
plays this string in the terminal window, waits until the user presses the
Return key, and then returns a string object containing the sequence
of characters that the user typed in.

The program above is stored in a file called c2f_qa.py (the qa part
of the name reflects “question and answer”). We can run this program
in several ways, as described in Chapter 1.1.5 and Appendix H.1. The
convention in this book is to indicate the execution by writing the
program name only, but for a real execution you need to do more:
write run before the program name in an interactive IPython session,
or write python before the program name in a terminal session. Here is
the execution of our sample program and the resulting dialog with the
user:

4.1 Asking Questions and Reading Answers 139

Terminal

c2f_qa.py
C=? 21
69.8

In this particular example, the raw_input function reads the characters
21 from the keyboard and returns the string ’21’, which we refer to by
the variable C. Then we create a new float object by float(C) and let
the name C refer to this float object, with value 21.

You should now try out Exercises 4.1, 4.4, and 4.6 to make sure you
understand how raw_input behaves.

4.1.2 The Magic “eval” Function

Python has a function eval, which takes a string as argument and
evaluates this string as a Python expression. This functionality can be
used to turn input into running code on the fly. To realize what it
means, we invoke an interactive session:

>>> r = eval(’1+2’)
>>> r
3
>>> type(r)
<type ’int’>

The result of r = eval(’1+2’) is the same as if we had written r = 1+2

directly:

>>> r = 1+2
>>> r
3
>>> type(r)
<type ’int’>

In general, any valid Python expression stored as text in a string s can
be turned into Python code by eval(s). Here is an example where the
string to be evaluated is ’2.5’, which causes Python to see r = 2.5

and make a float object:

>>> r = eval(’2.5’)
>>> r
2.5
>>> type(r)
<type ’float’>

If we put a string, enclosed in quotes, inside the expression string,
the result is a string object:

>>>
>>> r = eval(’"math programming"’)
>>> r
’math programming’
>>> type(r)
<type ’str’>

140 4 Input Data and Error Handling

Note that we must use two types of quotes: first double quotes to mark
math programming as a string object and then another set of quotes,
here single quotes (but we could also have used triple single quotes), to
embed the text "math programming" inside a string. It does not matter
if we have single or double quotes as inner or outer quotes, i.e., ’"..."’
is the same as "’...’", because ’ and " are interchangeable as long as
a pair of either type is used consistently.

Writing just

>>> r = eval(’math programming’)

is the same as writing

>>> r = math programming

which is an invalid expression. Python will in this case think that math
and programming are two (undefined) variables, and setting two vari-
ables next to each other with a space in between is invalid Python
syntax. However,

>>> r = ’math programming’

is valid syntax, as this is how we initialize a string r in Python. To
repeat, if we put the valid syntax ’math programming’ inside a string,

s = "’math programming’"

eval(s) will evaluate the text inside the double quotes as ’math

programming’, which yields a string.
Let us proceed with some more examples. We can put the initializa-

tion of a list inside quotes and use eval to make a list object:

>>> r = eval(’[1, 6, 7.5]’)
>>> r
[1, 6, 7.5]
>>> type(r)
<type ’list’>

Again, the assignment to r is equivalent to writing

>>> r = [1, 6, 7.5]

We can also make a tuple object by using tuple syntax (standard paren-
theses instead of brackets):

>>> r = eval(’(-1, 1)’)
>>> r
(-1, 1)
>>> type(r)
<type ’tuple’>

Another example reads

4.1 Asking Questions and Reading Answers 141

>>> from math import sqrt
>>> r = eval(’sqrt(2)’)
>>> r
1.4142135623730951
>>> type(r)
<type ’float’>

At the time we run eval(’sqrt(2)’), this is the same as if we had
written

>>> r = sqrt(2)

directly, and this is valid syntax only if the sqrt function is defined.
Therefore, the import of sqrt prior to running eval is important in this
example.

So, why is the eval function so useful? Recall the raw_input function,
which always returns a string object, which we often must explicitly
transform to a different type, e.g., an int or a float. Sometimes we want
to avoid specifying one particular type. The eval function can then be
of help: we feed the returned string from raw_input to eval and let the
latter function interpret the string and convert it to the right object.
An example may clarify the point. Consider a small program where we
read in two values and add them. The values could be strings, floats,
integers, lists, and so forth, as long as we can apply a + operator to the
values. Since we do not know if the user supplies a string, float, integer,
or something else, we just convert the input by eval, which means that
the user’s syntax will determine the type. The program goes as follows
(add_input.py):

i1 = eval(raw_input(’Give input: ’))
i2 = eval(raw_input(’Give input: ’))
r = i1 + i2
print ’%s + %s becomes %s\nwith value %s’ % \

(type(i1), type(i2), type(r), r)

Observe that we write out the two supplied values, together with the
types of the values (obtained by eval), and the sum. Let us run the
program with an integer and a real number as input:

Terminal

add_input.py
Give input: 4
Give input: 3.1
<type ’int’> + <type ’float’> becomes <type ’float’>
with value 7.1

The string ’4’, returned by the first call to raw_input, is interpreted
as an int by eval, while ’3.1’ gives rise to a float object.

Supplying two lists also works fine:

Terminal

add_input.py
Give input: [-1, 3.2]

142 4 Input Data and Error Handling

Give input: [9,-2,0,0]
<type ’list’> + <type ’list’> becomes <type ’list’>
with value [-1, 3.2000000000000002, 9, -2, 0, 0]

If we want to use the program to add two strings, the strings must
be enclosed in quotes for eval to recognize the texts as string objects
(without the quotes, eval aborts with an error):

Terminal

add_input.py
Give input: ’one string’
Give input: " and another string"
<type ’str’> + <type ’str’> becomes <type ’str’>
with value one string and another string

Not all objects are meaningful to add:

Terminal

add_input.py
Give input: 3.2
Give input: [-1,10]
Traceback (most recent call last):
File "add_input.py", line 3, in <module>
r = i1 + i2

TypeError: unsupported operand type(s) for +: ’float’ and ’list’

Another important example on the usefulness of eval is to turn
formulas, given as input, into mathematics in the program. Consider
the program

formula = raw_input(’Give a formula involving x: ’)
x = eval(raw_input(’Give x: ’))
from math import * # make all math functions available
result = eval(formula)
print ’%s for x=%g yields %g’ % (formula, x, result)

First, we ask the reader to provide a formula, e.g., 2*sin(x)+1. The
result is a string object referred to by the formula variable. Then, we ask
for an x value, typically a real number resulting in a float object. The
key statement involves eval(formula), which in the present example
evaluates the expression 2*sin(x)+1. The x variable is defined, and the
sin function is also defined because of the import statement. Let us try
to run the program:

Terminal

eval_formula.py
Give a formula involving x: 2*sin(x)+1
Give x: 3.14
2*sin(x)+1 for x=3.14 yields 1.00319

Another important application of eval occurs in Chapter 4.2.1.

4.1 Asking Questions and Reading Answers 143

4.1.3 The Magic “exec” Function

Having presented eval for turning strings into Python code, we take
the opportunity to also describe the related exec function to execute a
string containing arbitrary Python code, not only an expression. Sup-
pose the user can write a formula as input to the program, and that
we want to turn this formula into a callable Python function. That is,
writing sin(x)*cos(3*x) + x**2 as the formula, we would like to get a
function

def f(x):
return sin(x)*cos(3*x) + x**2

This is easy with exec:

formula = raw_input(’Write a formula involving x: ’)
code = """
def f(x):

return %s
""" % formula
exec(code)

If we respond with the text sin(x)*cos(3*x) + x**2 to the question,
formula will hold this text, which is inserted into the code string such
that it becomes

"""
def f(x):

return sin(x)*cos(3*x) + x**2
"""

Thereafter, exec(code) executes the code as if we had written the con-
tents of the code string directly into the program by hand. With this
technique, we can turn any user-given formula into a Python function!

Let us try out such code generation on the fly. We add a while loop
to the previous code snippet defining f(x) such that we can provide x

values and get f(x) evaluated:

x = 0
while x is not None:

x = eval(raw_input(’Give x (None to quit): ’))
if x is not None:

print ’f(%g)=%g’ % (x, f(x))

As long as we provide numbers as input for x, we evaluate the f(x)

function, but when we provide the text None, x becomes a None object
and the test in the while loop fails, i.e., the loop terminates. The com-
plete program is found in the file user_formula.py. Here is a sample
run:

Terminal

user_formula.py
Write a formula involving x: x**4 + x
Give x (None to quit): 1

144 4 Input Data and Error Handling

f(1)=2
Give x (None to quit): 4
f(4)=260
Give x (None to quit): 2
f(2)=18
Give x (None to quit): None

4.1.4 Turning String Expressions into Functions

The examples in the previous section indicate that it can be handy
to ask the user for a formula and turn that formula into a Python
function. Since this operation is so useful, we have made a special tool
that hides the technicalities. The tool is named StringFunction and
works as follows:

>>> from scitools.StringFunction import StringFunction
>>> formula = ’exp(x)*sin(x)’
>>> f = StringFunction(formula) # turn formula into function f(x)

The f object now behaves as an ordinary Python function of x:

>>> f(0)
0.0
>>> f(pi)
2.8338239229952166e-15
>>> f(log(1))
0.0

Expressions involving other independent variables than x are also pos-
sible. Here is an example with the function g(t) = Ae−at sin(ωx):

g = StringFunction(’A*exp(-a*t)*sin(omega*x)’,
independent_variable=’t’,
A=1, a=0.1, omega=pi, x=0.5)

The first argument is the function formula, as before, but now we need
to specify the name of the independent variable (’x’ is default). The
other parameters in the function (A, a, ω, and x) must be specified
with values, and we use keyword arguments, consistent with the names
in the function formula, for this purpose. Any of the parameters A, a,
omega, and x can be changed later by calls like

g.set_parameters(omega=0.1)
g.set_parameters(omega=0.1, A=5, x=0)

Calling g(t) works as if g were a plain Python function of t, which
“remembers” all the parameters A, a, omega, and x, and their values.
You can use pydoc (see page 78) to bring up more documentation on
the possibilities with StringFunction. Just run

pydoc scitools.StringFunction.StringFunction

4.2 Reading from the Command Line 145

A final important point is that StringFunction objects are as compu-
tationally efficient as hand-written Python functions2.

4.2 Reading from the Command Line

Programs running on Unix computers usually avoid asking the user
questions. Instead, input data are very often fetched from the com-
mand line. This section explains how we can access information on the
command line in Python programs.

4.2.1 Providing Input on the Command Line

We look at the Celsius-Fahrenheit conversion program again. The idea
now is to provide the Celsius input temperature as a command-line
argument right after the program name. That is, we write the program
name, here c2f_cml_v1.py3, followed the Celsius temperature:

Terminal

c2f_cml_v1.py 21
69.8

Inside the program we can fetch the text 21 as sys.argv[1]. The sys

module has a list argv containing all the command-line arguments to
the program, i.e., all the “words” appearing after the program name
when we run the program. Here there is only one argument and it is
stored with index 1. The first element in the sys.argv list, sys.argv[0],
is always the name of the program.

A command-line argument is treated as a text, so sys.argv[1] refers
to a string object, in this case ’21’. Since we interpret the command-
line argument as a number and want to compute with it, it is necessary
to explicitly convert the string to a float object. In the program we
therefore write4

import sys
C = float(sys.argv[1])
F = 9.0*C/5 + 32
print F

As another example, consider the ball2.py program from Chap-
ter 1.1.7. Instead of hardcoding the values of v0 and t in the program
we can read the two values from the command line:

2 This property is quite remarkable in computer science – a string formula will in most

other languages be much slower than if the formula were hardcoded inside a plain function.
3 The cml part of the name is an abbreviation for “command line”, and v1 denotes “ver-
sion 1”, as usual.
4 We could write 9 instead of 9.0, in the formula for F, since C is guaranteed to be float,
but it is safer to write 9.0. One could think of modifying the conversion of the command-line

argument to eval(sys.argv[1]), and in that case C can easily be an int.

146 4 Input Data and Error Handling

Terminal

ball2i.py 0.6 5
1.2342

The two command-line arguments are now available as sys.argv[1]

and sys.argv[2]. The complete ball2i.py program thus looks as

import sys
t = float(sys.argv[1])
v0 = float(sys.argv[2])
g = 9.81
y = v0*t - 0.5*g*t**2
print y

Our final example here concerns a program that can add two input
objects (file add_cml.py, corresponding to add_input.py from Chap-
ter 4.1.1):

import sys
i1 = eval(sys.argv[1])
i2 = eval(sys.argv[2])
r = i1 + i2
print ’%s + %s becomes %s\nwith value %s’ % \

(type(i1), type(i2), type(r), r)

A key issue here is that we apply eval to the command-line arguments
and thereby convert the strings into appropriate objects. Here is an
example on execution:

Terminal

add_cml.py 2 3.1
<type ’int’> + <type ’float’> becomes <type ’float’>
with value 5.1

4.2.2 A Variable Number of Command-Line Arguments

Let us make a program addall.py that adds all its command-line ar-
guments. That is, we may run something like

Terminal

addall.py 1 3 5 -9.9
The sum of 1 3 5 -9.9 is -0.9

The command-line arguments are stored in the sublist sys.argv[1:].
Each element is a string so we must perform a conversion to float

before performing the addition. There are many ways to write this
program. Let us start with version 1, addall_v1.py:

import sys
s = 0
for arg in sys.argv[1:]:

number = float(arg)
s += number

4.2 Reading from the Command Line 147

print ’The sum of ’,
for arg in sys.argv[1:]:

print arg,
print ’is ’, s

The output is on one line, but built of several print statements (note
the trailing comma which prevents the usual newline, cf. page 74). The
command-line arguments must be converted to numbers in the first
for loop because we need to compute with them, but in the second
loop we only need to print them and then the string representation is
appropriate.

The program above can be written more compactly if desired:

import sys
s = sum([float(x) for x in sys.argv[1:]])
print ’The sum of %s is %s’ % (’ ’.join(sys.argv[1:]), s)

Here, we convert the list sys.argv[1:] to a list of float objects and
then pass this list to Python’s sum function for adding the numbers. The
construction S.join(L) places all the elements in the list L after each
other with the string S in between. The result here is a string with all
the elements in sys.argv[1:] and a space in between, i.e., the text that
originally appeared on the command line. Chapter 6.3.1 contains more
information on join and many other very useful string operations.

4.2.3 More on Command-Line Arguments

Unix commands make heavy use of command-line arguments. For ex-
ample, when you write ls -s -t to list the files in the current folder,
you run the program ls with two command-line arguments: -s and -t.
The former specifies that ls shall print the file name together with the
size of the file, and the latter sorts the list of files according to their
dates of last modification (the most recently modified files appear first).
Similarly, cp -r my new for copying a folder tree my to a new folder tree
new invokes the cp program with three command line arguments: -r (for
recursive copying of files), my, and new. Most programming languages
have support for extracting the command-line arguments given to a
program.

Command-line arguments are separated by blanks. What if we
want to provide a text containing blanks as command-line argument?
The text containing blanks must then appear inside single or double
quotes. Let us demonstrate this with a program that simply prints the
command-line arguments:

import sys, pprint
pprint.pprint(sys.argv[1:])

Say this program is named print_cml.py. The execution

148 4 Input Data and Error Handling

Terminal

print_cml.py 21 a string with blanks 31.3
[’21’, ’a’, ’string’, ’with’, ’blanks’, ’31.3’]

demonstrates that each word on the command line becomes an element
in sys.argv. Enclosing strings in quotes, as in

Terminal

print_cml.py 21 "a string with blanks" 31.3
[’21’, ’a string with blanks’, ’31.3’]

shows that the text inside the quotes becomes a single command line
argument.

4.2.4 Option–Value Pairs on the Command Line

The examples on using command-line arguments so far require the user
of the program to type all arguments in their right sequence, just as
when calling a function with positional arguments. It would be very
convenient to assign command-line arguments in the same way as we
use keyword arguments. That is, arguments are associated with a name,
their sequence can be arbitrary, and only the arguments where the de-
fault value is not appropriate need to be given. Such type of command-
line arguments may have -option value pairs, where “option” is some
name of the argument.

As usual, we shall use an example to illustrate how to work with
-option value pairs. Consider the physics formula for the location s(t)
of an object at time t, if the object started at s = s0 at t = 0 with a
velocity v0, and thereafter was subject to a constant acceleration a:

s(t) = s0 + v0t+
1

2
at2. (4.1)

This formula requires four input variables: s0, v0, a, and t. We can
make a program location.py that takes four options, --s0, --v0, --a,
and --t on the command line. The program is typically run like this:

Terminal

location.py --t 3 --s0 1 --v0 1 --a 0.5

The sequence of -option value pairs is arbitrary. All options have a
default value such that one does not have to specify all options on the
command line.

All input variables should have sensible default values such that we
can leave out the options for which the default value is suitable. For
example, if s0 = 0, v0 = 0, a = 1, and t = 1 by default, and we only
want to change t, we can run

4.2 Reading from the Command Line 149

Terminal

location.py --t 3

Python (v2.7) has a flexible and powerful module argparse for read-
ing (parsing) -option value pairs on the command line. Using argparse

consists of three steps. First, a parser object must be created:

import argparse
parser = argparse.ArgumentParser()

Second, we need to add the various command-line options,

parser.add_argument(’--v0’, ’--initial_velocity’, type=float,
default=0.0, help=’initial velocity’,
metavar=’v’)

parser.add_argument(’--s0’, ’--initial_position’, type=float,
default=0.0, help=’initial position’,
metavar=’s’)

parser.add_argument(’--a’, ’--acceleration’, type=float,
default=1.0, help=’acceleration’, metavar=’a’)

parser.add_argument(’--t’, ’--time’, type=float,
default=1.0, help=’time’, metavar=’t’)

The first arguments to parser.add_argument is the set of options that
we want to associate with an input parameter. Optional arguments are
the type, a default value, a help string, and a name for the value of
the argument (metavar) in a usage string. The argparse module will
automatically allow an option -h or -help that prints a usage string for
all the registered options. By default, the type is str, the default value
is None, the help string is empty, and metavar is the option in upper
case without initial dash(es) by.

Third, we must read the command line arguments and interpret
them:

args = parser.parse_args()

Through the args object we can extract the values of the various regis-
tered parameters: args.v0, args.s0, args.a, and args.t. The name of
the parameter is determined by the first option to parser.add_argument,
so writing

parser.add_argument(’--initial_velocity’, ’--v0’, type=float,
default=0.0, help=’initial velocity’)

will make the initial velocity value appear as args.initial_velocity.
We can add the dest keyword to explicitly specify the name where the
value is stored:

parser.add_argument(’--initial_velocity’, ’--v0’, dest=’V0’,
type=float, default=0, help=’initial velocity’)

Now, args.V0 will retrieve the value of the initial velocity. In case we
do not provide any default value, the value will be None.

150 4 Input Data and Error Handling

Our example is completed either by evaluating s as

s = args.s0 + args.v0*t + 0.5*args.a*args.t**2

or by introducing new variables so that the formula aligns better with
the mathematical notation:

s0 = args.s0; v0 = args.v0; a = args.a; t = args.t
s = s0 + v0*t + 0.5*a*t**2

A complete program for the example above is found in the file
location.py in the input folder. Try to run it with the -h option to
see an automatically generated explanation of legal command-line op-
tions.

Values on the command line involving mathematical symbols and
functions, say -v0 ’pi/2’, pose a problem with the code example above.
The argparse module will in that case try to do float(’pi/2’) which
does not work well. Changing type=float to type=eval is required to
interpret the expression pi/2, but even eval(’pi/2’) fails since pi is
not defined inside the argparse module. There are three remedies for
this problem.

One can write a tailored function for converting a string value given
on the command line to the desired object. For example,

def evalcmlarg(text):
return eval(text)

parser.add_argument(’--s0’, ’--initial_position’, type=evalcmlarg,
default=0.0, help=’initial position’)

The file location_v2.py implements explicit type conversion. Note that
eval is now taken in the programmer’s namespace where (hopefully)
pi or other symbols are imported.

More sophisticated conversions are possible. Say s0 is specified in
terms of a function of some parameter p, like s0 = (1− p2). We could
then use a string for -s0 and the StringFunction tool from Chap-
ter 4.1.4 to turn the string into a function:

def toStringFunction4s0(text):
from scitools.std import StringFunction
return StringFunction(text, independent_variable=’p’)

parser.add_argument(’--s0’, ’--initial_position’,
type=toStringFunction4s0,
default=’0.0’, help=’initial position’)

Giving a command-line argument -s0 ’exp(-1.5) + 10(1-p**2) results
in args.s0 being a StringObject, which we must evaluate for a p value:

4.2 Reading from the Command Line 151

s0 = args.s0
p = 0.05
...
s = s0(p) + v0*t + 0.5*a*t**2

The file location_v3.py contains the complete code.
Another alternative is to perform the right conversion explicitly for

the arguments values after the values are read by the parser object. In
the parser.add_argument calls we may treat argument types as strings,
meaning that we replace type=float by set type=str, which is also the
default choice of type. Recall that this requires specification of default
values as strings too, say ’0’:

parser.add_argument(’--s0’, ’--initial_position’, type=str,
default=’0’, help=’initial position’)

...
from math import *
args.v0 = eval(args.v0)
or
v0 = eval(args.v0)

s0 = StringFunction(args.s0, independent_variable=’p’)
p = 0.5
...
s = s0(p) + v0*t + 0.5*a*t**2

Such code is found in the file location_v4.py. You can try out that
program with the command-line arguments -s0 ’pi/2 + sqrt(p)’ -v0

pi/4’.
The final alternative is to write an Action class to handle the conver-

sion from string to the right type. This is the preferred way to perform
conversions and well described in the argparse documentation. We shall
exemplify it here, but the technicalities involved require understanding
of Chapter 9 (classes and inheritance). For the conversion from string
to any object via eval we write

import argparse
from math import *

class ActionEval(argparse.Action):
def __call__(self, parser, namespace, values,

option_string=None):
setattr(namespace, self.dest, eval(values))

The command-line arguments supposed to be run through eval must
then have an action parameter:

parser.add_argument(’--v0’, ’--initial_velocity’,
default=0.0, help=’initial velocity’,
action=ActionEval)

From string to function via StringFunction for the -s0 argument we
write

152 4 Input Data and Error Handling

from scitools.std import StringFunction

class ActionStringFunction4s0(argparse.Action):
def __call__(self, parser, namespace, values,

option_string=None):
setattr(namespace, self.dest,

StringFunction(values, independent_variable=’p’))

A complete code appears in the file location_v5.py.

4.3 Handling Errors

Suppose we forget to provide a command-line argument to the
c2f_cml_v1.py program from Chapter 4.2.1:

Terminal

c2f_cml_v1.py
Traceback (most recent call last):
File "c2f_cml_v1.py", line 2, in ?
C = float(sys.argv[1])

IndexError: list index out of range

Python aborts the program and shows an error message containing
the line where the error occurred, the type of the error (IndexError),
and a quick explanation of what the error is. From this information we
deduce that the index 1 is out of range. Because there are no command-
line arguments in this case, sys.argv has only one element, namely the
program name. The only valid index is then 0.

For an experienced Python programmer this error message will nor-
mally be clear enough to indicate what is wrong. For others it would
be very helpful if wrong usage could be detected by our program and a
description of correct operation could be printed. The question is how
to detect the error inside the program.

The problem in our sample execution is that sys.argv does not con-
tain two elements (the program name, as always, plus one command-
line argument). We can therefore test on the length of sys.argv to
detect wrong usage: if len(sys.argv) is less than 2, the user failed to
provide information on the C value. The new version of the program,
c2f_cml_v1.py, starts with this if test:

if len(sys.argv) < 2:
print ’You failed to provide Celsius degrees as input ’\

’on the command line!’
sys.exit(1) # abort because of error

F = 9.0*C/5 + 32
print ’%gC is %.1fF’ % (C, F)

We use the sys.exit function to abort the program. Any argument
different from zero signifies that the program was aborted due to an
error, but the precise value of the argument does not matter so here

4.3 Handling Errors 153

we simply choose it to be 1. If no errors are found, but we still want to
abort the program, sys.exit(0) is used.

A more modern and flexible way of handling potential errors in a
program is to try to execute some statements, and if something goes
wrong, the program can detect this and jump to a set of statements
that handle the erroneous situation as desired. The relevant program
construction reads

try:
<statements>

except:
<statements>

If something goes wrong when executing the statements in the try

block, Python raises what is known as an exception. The execution
jumps directly to the except block whose statements can provide a
remedy for the error. The next section explains the try-except con-
struction in more detail through examples.

4.3.1 Exception Handling

To clarify the idea of exception handling, let us use a try-except block
to handle the potential problem arising when our Celsius-Fahrenheit
conversion program lacks a command-line argument:

import sys
try:

C = float(sys.argv[1])
except:

print ’You failed to provide Celsius degrees as input ’\
’on the command line!’

sys.exit(1) # abort
F = 9.0*C/5 + 32
print ’%gC is %.1fF’ % (C, F)

The program is stored in the file c2f_cml_v3.py. If the command-line
argument is missing, the indexing sys.argv[1], which has an invalid
index 1, raises an exception. This means that the program jumps di-
rectly5 to the except block. In the except block, the programmer can
retrieve information about the exception and perform statements to
recover from the error. In our example, we know what the error can
be, and therefore we just print a message and abort the program.

Suppose the user provides a command-line argument. Now, the try

block is executed successfully, and the program neglects the except

block and continues with the Fahrenheit conversion. We can try out
the last program in two cases:

Terminal

c2f_cml_v3.py
You failed to provide Celsius degrees as input on the command line!

5 This implies that float is not called, and C is not initialized with a value.

154 4 Input Data and Error Handling

c2f_cml_v3.py 21
21C is 69.8F

In the first case, the illegal index in sys.argv[1] causes an exception to
be raised, and we perform the steps in the except block. In the second
case, the try block executes successfully, so we jump over the except

block and continue with the computations and the printout of results.
For a user of the program, it does not matter if the programmer

applies an if test or exception handling to recover from a missing
command-line argument. Nevertheless, exception handling is consid-
ered a better programming solution because it allows more advanced
ways to abort or continue the execution. Therefore, we adopt exception
handling as our standard way of dealing with errors in the rest of this
book.

Testing for a Specific Exception. Consider the assignment

C = float(sys.argv[1])

There are two typical errors associated with this statement:
i) sys.argv[1] is illegal indexing because no command-line argu-
ments are provided, and ii) the content in the string sys.argv[1] is
not a pure number that can be converted to a float object. Python
detects both these errors and raises an IndexError exception in the first
case and a ValueError in the second. In the program above, we jump
to the except block and issue the same message regardless of what
went wrong in the try block. For example, when we indeed provide
a command-line argument, but write it on an illegal form (21C), the
program jumps to the except block and prints a misleading message:

Terminal

c2f_cml_v3.py 21C
You failed to provide Celsius degrees as input on the command line!

The solution to this problem is to branch into different except blocks
depending on what type of exception that was raised in the try block
(program c2f_cml_v4.py):

import sys
try:

C = float(sys.argv[1])
except IndexError:

print ’Celsius degrees must be supplied on the command line’
sys.exit(1) # abort execution

except ValueError:
print ’Celsius degrees must be a pure number, ’\

’not "%s"’ % sys.argv[1]
sys.exit(1)

F = 9.0*C/5 + 32
print ’%gC is %.1fF’ % (C, F)

4.3 Handling Errors 155

Now, if we fail to provide a command-line argument, an IndexError

occurs and we tell the user to write the C value on the command line.
On the other hand, if the float conversion fails, because the command-
line argument has wrong syntax, a ValueError exception is raised and
we branch into the second except block and explain that the form of
the given number is wrong:

Terminal

c2f_cml_v3.py 21C
Celsius degrees must be a pure number, not "21C"

Examples on Exception Types. List indices out of range lead to
IndexError exceptions:

>>> data = [1.0/i for i in range(1,10)]
>>> data[9]
...
IndexError: list index out of range

Some programming languages (Fortran, C, C++, and Perl are exam-
ples) allow list indices outside the legal index values, and such unnoticed
errors can be hard to find. Python always stops a program when an
invalid index is encountered, unless you handle the exception explicitly
as a programmer.

Converting a string to float is unsuccessful and gives a ValueError

if the string is not a pure integer or real number:

>>> C = float(’21 C’)
...
ValueError: invalid literal for float(): 21 C

Trying to use a variable that is not initialized gives a NameError excep-
tion:

>>> print a
...
NameError: name ’a’ is not defined

Division by zero raises a ZeroDivisionError exception:

>>> 3.0/0
...
ZeroDivisionError: float division

Writing a Python keyword illegally or performing a Python grammar
error leads to a SyntaxError exception:

>>> forr d in data:
...

forr d in data:
^

SyntaxError: invalid syntax

What if we try to multiply a string by a number?

156 4 Input Data and Error Handling

>>> ’a string’*3.14
...
TypeError: can’t multiply sequence by non-int of type ’float’

The TypeError exception is raised because the object types involved in
the multiplication are wrong (str and float).

Digression. It might come as a surprise, but multiplication of a string
and a number is legal if the number is an integer. The multiplication
means that the string should be repeated the specified number of times.
The same rule also applies to lists:

>>> ’--’*10 # ten double dashes = 20 dashes
’--------------------’
>>> n = 4
>>> [1, 2, 3]*n
[1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3]
>>> [0]*n
[0, 0, 0, 0]

The latter construction is handy when we want to create a list of n

elements and later assign specific values to each element in a for loop.

4.3.2 Raising Exceptions

When an error occurs in your program, you may either print a mes-
sage and use sys.exit(1) to abort the program, or you may raise an
exception. The latter task is easy. You just write raise E(message),
where E can be a known exception type in Python and message is a
string explaining what is wrong. Most often E means ValueError if the
value of some variable is illegal, or TypeError if the type of a variable
is wrong. You can also define your own exception types. An exception
can be raised from any location in a program.

Example. In the program c2f_cml_v4.py from page 154 we show how
we can test for different exceptions and abort the program. Sometimes
we see that an exception may happen, but if it happens, we want a more
precise error message to help the user. This can be done by raising a
new exception in an except block and provide the desired exception
type and message.

Another application of raising exceptions with tailored error mes-
sages arises when input data are invalid. The code below illustrates
how to raise exceptions in various cases.

We collect the reading of C and handling of errors a separate function:

def read_C():
try:

C = float(sys.argv[1])
except IndexError:

raise IndexError\
(’Celsius degrees must be supplied on the command line’)

4.3 Handling Errors 157

except ValueError:
raise ValueError\
(’Celsius degrees must be a pure number, ’\
’not "%s"’ % sys.argv[1])

C is read correctly as a number, but can have wrong value:
if C < -273.15:

raise ValueError(’C=%g is a non-physical value!’ % C)
return C

There are two ways of using the read_C function. The simplest is to
call the function,

C = read_C()

Wrong input will now lead to a raw dump of exceptions, e.g.,

Terminal

c2f_cml_v5.py
Traceback (most recent call last):
File "c2f_cml4.py", line 5, in ?
raise IndexError\

IndexError: Celsius degrees must be supplied on the command line

New users of this program may become uncertain when getting raw
output from exceptions, because words like Traceback, raise, and
IndexError do not make much sense unless you have some experience
with Python. A more user-friendly output can be obtained by calling
the read_C function inside a try-except block, check for any excep-
tion (or better: check for IndexError or ValueError), and write out the
exception message in a more nicely formatted form. In this way, the
programmer takes complete control of how the program behaves when
errors are encountered:

try:
C = read_C()

except Exception, e:
print e # exception message
sys.exit(1) # terminate execution

Exception is the parent name of all exceptions, and e is an exception
object. Nice printout of the exception message follows from a straight
print e. Instead of Exception we can write (ValueError, IndexError)

to test more specifically for two exception types we can expect from
the read_C function:

try:
C = read_C()

except (ValueError, IndexError), e:
print e # exception message
sys.exit(1) # terminate execution

After the try-except block above, we can continue with computing F =

9*C/5 + 32 and print out F. The complete program is found in the file
c2f_cml.py. We may now test the program’s behavior when the input
is wrong and right:

158 4 Input Data and Error Handling

Terminal

c2f_cml.py
Celsius degrees must be supplied on the command line

c2f_cml.py 21C
Celsius degrees must be a pure number, not "21C"

c2f_cml.py -500
C=-500 is a non-physical value!

c2f_cml.py 21
21C is 69.8F

This program deals with wrong input, writes an informative message,
and terminates the execution without annoying behavior.

Scattered if tests with sys.exit calls are considered a bad program-
ming style compared to the use of nested exception handling as illus-
trated above. You should abort execution in the main program only,
not inside functions. The reason is that the functions can be re-used
in other occasions where the error can be dealt with differently. For
instance, one may avoid abortion by using some suitable default data.

The programming style illustrated above is considered the best way
of dealing with errors, so we suggest that you hereafter apply exceptions
for handling potential errors in the programs you make, simply because
this is what experienced programmers expect from your codes.

4.4 A Glimpse of Graphical User Interfaces

Maybe you find it somewhat strange that the usage of the programs we
have made so far in this book – and the programs we will make in the
rest of the book – are less graphical and intuitive than the computer
programs you are used to from school or entertainment. Those pro-
grams are operated through some self-explaining graphics, and most
of the things you want to do involve pointing with the mouse, clicking
on graphical elements on the screen, and maybe filling in some text
fields. The programs in this book, on the other hand, are run from the
command line in a terminal window or inside IPython, and input is
also given here in form of plain text.

The reason why we do not equip the programs in this book with
graphical interfaces for providing input, is that such graphics is both
complicated and tedious to write. If the aim is to solve problems from
mathematics and science, we think it is better to focus on this part
rather than large amounts of code that merely offers some “expected”
graphical cosmetics for putting data into the program. Textual input
from the command line is also quicker to provide. Also remember that
the computational functionality of a program is obviously independent
from the type of user interface, textual or graphic.

4.4 A Glimpse of Graphical User Interfaces 159

As an illustration, we shall now show a Celsius to Fahrenheit conver-
sion program with a graphical user interface (often called a GUI). The
GUI is shown in Figure 4.1. We encourage you to try out the graphi-
cal interface – the name of the program is c2f_gui.py. The complete
program text is listed below.

Fig. 4.1 Screen dump of the graphical interface for a Celsius to Fahrenheit conversion
program. The user can type in the temperature in Celsius degrees, and when clicking on

the “is” button, the corresponding Fahrenheit value is displayed.

from Tkinter import *
root = Tk()
C_entry = Entry(root, width=4)
C_entry.pack(side=’left’)
Cunit_label = Label(root, text=’Celsius’)
Cunit_label.pack(side=’left’)

def compute():
C = float(C_entry.get())
F = (9./5)*C + 32
F_label.configure(text=’%g’ % F)

compute = Button(root, text=’ is ’, command=compute)
compute.pack(side=’left’, padx=4)

F_label = Label(root, width=4)
F_label.pack(side=’left’)
Funit_label = Label(root, text=’Fahrenheit’)
Funit_label.pack(side=’left’)

root.mainloop()

The goal of the forthcoming dissection of this program is to give a
taste of how graphical user interfaces are coded. The aim is not to equip
you with knowledge on how you can make such programs on your own.

A GUI is built of many small graphical elements, called widgets.
The graphical window generated by the program above and shown in
Figure 4.1 has five such widgets. To the left there is an entry widget
where the user can write in text. To the right of this entry widget is
a label widget, which just displays some text, here “Celsius”. Then we
have a button widget, which when being clicked leads to computations
in the program. The result of these computations is displayed as text
in a label widget to the right of the button widget. Finally, to the right
of this result text we have another label widget displaying the text
“Fahrenheit”. The program must construct each widget and pack it
correctly into the complete window. In the present case, all widgets are
packed from left to right.

The first statement in the program imports functionality from the
GUI toolkit Tkinter to construct widgets. First, we need to make a
root widget that holds the complete window with all the other widgets.

160 4 Input Data and Error Handling

This root widget is of type Tk. The first entry widget is then made and
referred to by a variable C_entry. This widget is an object of type
Entry, provided by the Tkinter module. Widgets constructions follow
the syntax

variable_name = Widget_type(parent_widget, option1, option2, ...)
variable_name.pack(side=’left’)

When creating a widget, we must bind it to a parent widget, which is
the graphical element in which this new widget is to be packed. Our
widgets in the present program have the root widget as parent widget.
Various widgets have different types of options that we can set. For
example, the Entry widget has a possibility for setting the width of the
text field, here width=4 means that the text field is 4 characters wide.
The pack statement is important to remember – without it, the widget
remains invisible.

The other widgets are constructed in similar ways. The next fun-
damental feature of our program is how computations are tied to the
event of clicking the button “is”. The Button widget has naturally a
text, but more important, it binds the button to a function compute

through the command=compute option. This means that when the user
clicks the button “is”, the function compute is called. Inside the compute
function we first fetch the Celsius value from the C_entry widget, using
this widget’s get function, then we transform this string (everything
typed in by the user is interpreted as text and stored in strings) to a
float before we compute the corresponding Fahrenheit value. Finally,
we can update (“configure”) the text in the Label widget F_label with
a new text, namely the computed degrees in Fahrenheit.

A program with a GUI behaves differently from the programs we
construct in this book. First, all the statements are executed from top
to bottom, as in all our other programs, but these statements just con-
struct the GUI and define functions. No computations are performed.
Then the program enters a so-called event loop: root.mainloop(). This
is an infinite loop that “listens” to user events, such as moving the
mouse, clicking the mouse, typing characters on the keyboard, etc.
When an event is recorded, the program starts performing associated
actions. In the present case, the program waits for only one event: click-
ing the button “is”. As soon as we click on the button, the compute

function is called and the program starts doing mathematical work.
The GUI will appear on the screen until we destroy the window by
click on the X up in the corner of the window decoration. More com-
plicated GUIs will normally have a special “Quit” button to terminate
the event loop.

In all GUI programs, we must first create a hierarchy of widgets to
build up all elements of the user interface. Then the program enters an
event loop and waits for user events. Lots of such events are registered

4.5 Making Modules 161

as actions in the program when creating the widgets, so when the user
clicks on buttons, move the mouse into certain areas, etc., functions in
the program are called and “things happen”.

Many books explain how to make GUIs in Python programs, see for
instance [2, 3, 5, 7].

4.5 Making Modules

Sometimes you want to reuse a function from an old program in a new
program. The simplest way to do this is to copy and paste the old source
code into the new program. However, this is not good programming
practice, because you then over time end up with multiple identical
versions of the same function. When you want to improve the function
or correct a bug, you need to remember to do the same update in all
files with a copy of the function, and in real life most programmers
fail to do so. You easily end up with a mess of different versions with
different quality of basically the same code. Therefore, a golden rule of
programming is to have one and only one version of a piece of code.
All programs that want to use this piece of code must access one and
only one place where the source code is kept. This principle is easy to
implement if we create a module containing the code we want to reuse
later in different programs.

You learned already in Chapter 1 how to import functions from
Python modules. Now you will learn how to make your own modules.
There is hardly anything to learn, because you just collect all the func-
tions that constitute the module in one file, say with name mymodule.py.
This file is automatically a module, with name mymodule, and you can
import functions from this module in the standard way. Let us make
everything clear in detail by looking at an example.

4.5.1 Example: Interest on Bank Deposits

The classical formula for the growth of money in a bank reads6

A = A0

(
1 +

p

360 · 100

)n

, (4.2)

where A0 is the initial amount of money, and A is the present amount
after n days with p percent annual interest rate. Equation (4.2) involves
four parameters: A, A0, p, and n. We may solve for any of these, given
the other three:
6 The formula applies the so-called Actual/360 convention where the rate per day is

computed as p/360, while n counts the actual number of days the money is in the bank. See
“Day count convention” in Wikipedia for detailed information and page 560 for a Python

module for computing the number of days between two dates.

http://en.wikipedia.org/wiki/Day_count_convention

162 4 Input Data and Error Handling

A0 = A

(
1 +

p

360 · 100

)−n

, (4.3)

n =
ln A

A0

ln

(
1 + p

360·100

) , (4.4)

p = 360 · 100
((

A

A0

)1/n

− 1

)
. (4.5)

Suppose we have implemented (4.2)–(4.5) in four functions:

from math import log as ln

def present_amount(A0, p, n):
return A0*(1 + p/(360.0*100))**n

def initial_amount(A, p, n):
return A*(1 + p/(360.0*100))**(-n)

def days(A0, A, p):
return ln(A/A0)/ln(1 + p/(360.0*100))

def annual_rate(A0, A, n):
return 360*100*((A/A0)**(1.0/n) - 1)

We want to make these functions available in a module, say with
name interest, so that we can import functions and compute with
them in a program. For example,

from interest import days
A0 = 1; A = 2; p = 5
n = days(A0, 2, p)
years = n/365.0
print ’Money has doubled after %.1f years’ % years

How to make the interest module is described next.

4.5.2 Collecting Functions in a Module File

To make a module of the four functions present_amount,
initial_amount, days, and annual_rate, we simply open an empty
file in a text editor and copy the program code for all the four func-
tions over to this file. This file is then automatically a Python module
provided we save the file under any valid filename. The extension must
be .py, but the module name is only the base part of the filename. In
our case, the filename interest.py implies a module name interest.
To use the annual_rate function in another program we simply write,
in that program file,

from interest import annual_rate

or we can write

4.5 Making Modules 163

from interest import *

to import all four functions, or we can write

import interest

and access individual functions as interest.annual_rate and so forth.

Test Block. It is recommended to only have functions and not any
statements outside functions in a module7. However, Python allows a
special construction to let the file act both as a module with function
definitions only and as an ordinary program that we can run, i.e., with
statements that apply the functions and possibly write output. This
two-fold “magic” consists of putting the application part after an if

test of the form

if __name__ == ’__main__’:
<block of statements>

The __name__ variable is automatically defined in any module and
equals the module name if the module file is imported in another
program, or __name__ equals the string ’__main__’ if the module file
is run as a program. This implies that the <block of statements>

part is executed if and only if we run the module file as a program.
We shall refer to <block of statements> as the test block of a mod-
ule.

Often, when modules are created from an ordinary program, the
original main program is used as test block. The new module file then
works as the old program, but with the new possibility of being im-
ported in other programs. Let us write a little main program for testing
the interest module. The idea is that we assign compatible values to
the four parameters and check that given three of them, the functions
calculate the remaining parameter in the correct way:

if __name__ == ’__main__’:
A = 2.2133983053266699
A0 = 2.0
p = 5
n = 730
print ’A=%g (%g)\nA0=%g (%.1f)\nn=%d (%d)\np=%g (%.1f)’ % \

(present_amount(A0, p, n), A,
initial_amount(A, p, n), A0,
days(A0, A, p), n,
annual_rate(A0, A, n), p)

Running the module file as a program is now possible:

7 The module file is executed from top to bottom during the import. With function defini-
tions only in the module file, there will be no calculations or output from the import, just

definitions of functions. This is the desirable behavior.

164 4 Input Data and Error Handling

Terminal

interest.py
A=2.2134 (2.2134)
A0=2 (2.0)
n=730 (730)
p=5 (5.0)

The computed values appear after the equal sign, with correct values
in parenthesis. We see that the program works well.

To test that the interest.py file also works as a module, invoke a
Python shell and try to import a function and compute with it:

>>> from interest import present_amount
>>> present_amount(2, 5, 730)
2.2133983053266699

We have hence demonstrated that the file interest.py works both as
a program and as a module.

Flexible Test Blocks. It is a good programming practice to let the test
block do one or more of three things: (i) provide information on how
the module or program is used, (ii) test if the module functions work
properly, and (iii) offer interaction with users such that the module file
can be applied as a useful program.

Instead of having a lot of statements in the test block, it might be
better to collect the statements in separate functions, which then are
called from the test block. A convention is to let these test or documen-
tation functions have names starting with an underscore, because such
names are not imported in other programs when doing a from module

import * (normally we do not want to import test or documentation
functions). In our example we may collect the verification statements
above in a separate function and name this function _verify (observe
the leading underscore). We also write the code a bit more explicit to
better demonstrate how the module functions can be used:

def _verify():
Compatible values
A = 2.2133983053266699; A0 = 2.0; p = 5; n = 730
Given three of these, compute the remaining one
and compare with the correct value (in parenthesis)
A_computed = present_amount(A0, p, n)
A0_computed = initial_amount(A, p, n)
n_computed = days(A0, A, p)
p_computed = annual_rate(A0, A, n)
print ’A=%g (%g)\nA0=%g (%.1f)\nn=%d (%d)\np=%g (%.1f)’ % \

(A_computed, A, A0_computed, A0,
n_computed, n, p_computed, p)

We may require a single command-line argument verify to run the
verification. The test block can then be expressed as

4.5 Making Modules 165

if __name__ == ’__main__’:
if len(sys.argv) == 2 and sys.argv[1] == ’verify’:

_verify()

To make a useful program, we may allow setting three parameters
on the command line and let the program compute the remaining pa-
rameter. For example, running the program as

Terminal

interest.py A0=2 A=1 n=1095

should lead to a computation of p, in this case for seeing the size of the
annual interest rate if the amount is to be doubled after three years.

How can we achieve the desired functionality? Since variables are
already introduced and “initialized” on the command line, we could
grab this text and execute it as Python code, either as three different
lines or with semicolon between each assignment. This is easy8:

init_code = ’’
for statement in sys.argv[1:]:

init_code += statement + ’\n’
exec(init_code)

For the sample run above with A0=2 A=1 n=1095 on the command line,
init_code becomes the string

A0=2
A=1
n=1095

Note that one cannot have spaces around the equal signs on the
command line as this will break an assignment like A0 = 2 into
three command-line arguments, which will give rise to a SyntaxError

in exec(init_code). To tell the user about such errors, we execute
init_code inside a try-except block:

try:
exec(init_code)

except SyntaxError, e:
print e
print init_code
sys.exit(1)

At this stage, our program has hopefully initialized three parameters
in a successful way, and it remains to detect the remaining parameter
to be computed. The following code does the work:

if ’A=’ not in init_code:
print ’A =’, present_amount(A0, p, n)

elif ’A0=’ not in init_code:
print ’A0 =’, initial_amount(A, p, n)

elif ’n=’ not in init_code:
print ’n =’, days(A0, A , p)

8 The join function on page 285 in Chapter 6.3.1, see also page 147, is more elegant and

avoids the loop.

166 4 Input Data and Error Handling

elif ’p=’ not in init_code:
print ’p =’, annual_rate(A0, A, n)

It may happen that the user of the program assign value to a parameter
with wrong name or forget a parameter. In those cases we call one of
our four functions with uninitialized arguments. Therefore, we should
embed the code above in a try-except block. An uninitialized variable
will lead to a NameError, while another frequent error is illegal values in
the computations, leading to a ValueError exception. It is also a good
habit to collect all the code related to computing the remaining, fourth
parameter in a function for separating this piece of code from other
parts of the module file:

def _compute_missing_parameter(init_code):
try:

exec(init_code)
except SyntaxError, e:

print e
print init_code
sys.exit(1)

Find missing parameter
try:

if ’A=’ not in init_code:
print ’A =’, present_amount(A0, p, n)

elif ’A0=’ not in init_code:
print ’A0 =’, initial_amount(A, p, n)

elif ’n=’ not in init_code:
print ’n =’, days(A0, A , p)

elif ’p=’ not in init_code:
print ’p =’, annual_rate(A0, A, n)

except NameError, e:
print e
sys.exit(1)

except ValueError:
print ’Illegal values in input:’, init_code
sys.exit(1)

If the user of the program fails to give any command-line arguments,
we print a usage statement. Otherwise, we run a verification if the
first command-line argument is “verify”, and else we run the missing
parameter computation (i.e., the useful main program):

_filename = sys.argv[0]
_usage = """
Usage: %s A=10 p=5 n=730
Program computes and prints the 4th parameter’
(A, A0, p, or n)""" % _filename

if __name__ == ’__main__’:
if len(sys.argv) == 1:

print _usage
elif len(sys.argv) == 2 and sys.argv[1] == ’verify’:

_verify()
else:

init_code = ’’
for statement in sys.argv[1:]:

init_code += statement + ’\n’
_compute_missing_parameter(init_code)

4.5 Making Modules 167

Note leading underscores in variable names that are to be used locally
in the interest.py file only.

It is also a good habit to include a doc string in the beginning of
the module file. This doc string explains the purpose and use of the
module:

"""
Module for computing with interest rates.
Symbols: A is present amount, A0 is initial amount,
n counts days, and p is the interest rate per year.

Given three of these parameters, the fourth can be
computed as follows:

A = present_amount(A0, p, n)
A0 = initial_amount(A, p, n)
n = days(A0, A, p)
p = annual_rate(A0, A, n)

"""

You can run the pydoc program to see a documentation of the new
module, containing the doc string above and a list of the functions in
the module: just write pydoc interest in a terminal window.

Now the reader is recommended to take a look at the actual file
interest.py in src/input to see all elements of a good module file at
once: doc string, set of functions, verification function, “main program
function”, usage string, and test block.

4.5.3 Using Modules

Let us further demonstrate how to use the interest.py module in pro-
grams. For illustration purposes, we make a separate program file, say
with name test.py, containing some computations:

from interest import days

How many days does it take to double an amount when the
interest rate is p=1,2,3,...14?
for p in range(1, 15):

years = days(1, 2, p)/365.0
print ’With p=%d%% it takes %.1f years to double the amount’ \
% (p, years)

There are different ways to import functions in a module, and let us
explore these in an interactive session. The function call dir() will list
all names we have defined, including imported names of variables and
functions. Calling dir(m) will print the names defined inside a module
with name m. First we start an interactive shell and call dir()

>>> dir()
[’__builtins__’, ’__doc__’, ’__name__’, ’__package__’]

These variables are always defined. Running the IPython shell will
introduce several other standard variables too. Doing

168 4 Input Data and Error Handling

>>> from interest import *
>>> dir()
[..., ’annual_rate’, ’days’, ’initial_amount’,
’present_amount’, ’ln’, ’sys’]

shows that we get our four functions imported, along with ln and sys.
The latter two are needed in the interest module, but not necessarily
in our new program test.py. Observe that none of the names with a
leading underscore are imported. This demonstrates the importance of
using a leading underscore in names for local variables and functions in
a module: Names local to a module will then not pollute other programs
or interactive sessions when a “star import” (from module import *) is
performed.

Next we do

>>> import interest
>>> dir(interest)
[’__builtins__’, ’__doc__’, ’__file__’, ’__name__’, ’__package__’,
’_compute_missing_parameter’, ’_usage’, ’_verify’,
’annual_rate’, ’days’, ’filename’, ’initial_amount’,
’ln’, ’present_amount’, ’sys’]

All variables and functions defined or imported in the interest.py

file are now visible, and we can access also functions and variables
beginning with an underscore as long as we have the interest. prefix:

>>> interest._verify()
A=2.2134 (2.2134)
A0=2 (2.0)
n=730 (730)
p=5 (5.0)
>>> interest._filename

The test.py program works well as long as it is located in the same
folder as the interest.py module. However, if we move test.py to
another folder and run it, we get an error:

Terminal

test.py
Traceback (most recent call last):
File "tmp.py", line 1, in <module>
from interest import days

ImportError: No module named interest

Unless the module file resides in the same folder, we need to tell Python
where to find our module. Python looks for modules in the folders
contained in the list sys.path. A little program

import sys, pprint
pprint.pprint(sys.path)

prints out all these predefined module folders. You can now do one of
two things:

4.6 Summary 169

1. Place the module file in one of the folders in sys.path.
2. Include the folder containing the module file in sys.path.

There are two ways of doing the latter task. Alternative 1 is to explicitly
insert a new folder name in sys.path in the program that uses the
module9:

modulefolder = ’../../pymodules’
sys.path.insert(0, modulefolder)

Python searches the folders in the sequence they appear in the sys.path
list so by inserting the folder name as the first list element we en-
sure that our module is found quickly, and in case there are other
modules with the same name in other folders in sys.path, the one in
modulefolder gets imported.

Alternative 2 is to specify the folder name in the PYTHONPATH environ-
ment variable. All folder names listed in PYTHONPATH are automatically
included in sys.path when a Python program starts. On Mac and Linux
systems, environment variables like PYTHONPATH are set in the .bashrc

file in the home folder, typically as

export PYTHONPATH=$HOME/software/lib/pymodules:$PYTHONPATH

if $HOME/software/lib/pymodules is the folder containing Python mod-
ules.

4.6 Summary

4.6.1 Chapter Topics

Question and Answer Input. Prompting the user and reading the an-
swer back into a variable is done by

var = raw_input(’Give value: ’)

The raw_input function returns a string containing the characters that
the user wrote on the keyboard before pressing the Return key. It is
necessary to convert var to an appropriate object (int or float, for
instance) if we want to perform mathematical operations with var.
Sometimes

var = eval(raw_input(’Give value: ’))

is a flexible and easy way of transforming the string to the right
type of object (integer, real number, list, tuple, and so on). This last

9 In this sample path, the slashes are Unix specific. On Windows you must use
backward slashes and a raw string. A better solution is to express the path as

os.path.join(os.pardir, os.pardir, ’mymodules’). This will work on all platforms.

170 4 Input Data and Error Handling

statement will not work, however, for strings unless the text is sur-
rounded by quotes when written on the keyboard. A general conver-
sion function that turns any text without quotes into the right object
is scitools.misc.str2obj:

from scitools.misc import str2obj
var = str2obj(raw_input(’Give value: ’))

Typing, for example, 3 makes var refer to an int object, 3.14 results
in a float object, [-1,1] results in a list, (1,3,5,7) in a tuple, and
some text in the string (str) object ’some text’ (run the program
str2obj_demo.py to see this functionality demonstrated).

Getting Command-Line Arguments. The sys.argv[1:] list contains all
the command-line arguments given to a program (sys.argv[0] contains
the program name). All elements in sys.argv are strings. A typical
usage is

parameter1 = float(sys.argv[1])
parameter2 = int(sys.argv[2])
parameter3 = sys.argv[3] # parameter3 can be string

Using Option-Value Pairs. The argparse module is recommended
for interpreting command-line arguments of the form -option value.
A simple recipe with argparse reads

import argparse
parser = argparse.ArgumentParser()
parser.add_argument(’--p1’, ’--parameter_1’, type=float,

default=0.0, help=’1st parameter’)
parser.add_argument(’--p2’, type=float,

default=0.0, help=’2nd parameter’)

args = parser.parse_args()
p1 = args.p1
p2 = args.p2

On the command line we can provide any or all of these options:

--parameter_1 --p1 --p2

where each option must be succeeded by a suitable value. However,
argparse is very flexible can easily handle options without values or
(“positional”) command-line arguments without any option specifica-
tions.

Generating Code on the Fly. Calling eval(s) turns a string s, contain-
ing a Python expression, into code as if the contents of the string were
written directly into the program code. The result of the following eval

call is a float object holding the number 21.1:

4.6 Summary 171

>>> x = 20
>>> r = eval(’x + 1.1’)
>>> r
21.1
>>> type(r)
<type ’float’>

The exec function takes a string with arbitrary Python code as argu-
ment and executes the code. For example, writing

exec("""
def f(x):

return %s
""" % sys.argv[1])

is the same as if we had hardcoded the (for the programmer unknown)
contents of sys.argv[1] into a function definition in the program.

Turning String Formulas into Python Functions. Given a mathemat-
ical formula as a string, s, we can turn this formula into a callable
Python function f(x) by

from scitools.StringFunction import StringFunction
or
from scitools.std import *

f = StringFunction(s)

The string formula can contain parameters and an independent variable
with another name than x:

Q_formula = ’amplitude*sin(w*t-phaseshift)’
Q = StringFunction(Q_formula, independent_variable=’t’,

amplitude=1.5, w=pi, phaseshift=0)
values1 = [Q(i*0.1) for t in range(10)]
Q.set_parameters(phaseshift=pi/4, amplitude=1)
values2 = [Q(i*0.1) for t in range(10)]

Functions of several independent variables are also supported:

f = StringFunction(’x+y**2+A’, independent_variables=(’x’, ’y’),
A=0.2)

x = 1; y = 0.5
print f(x, y)

Handling Exceptions. Testing for potential errors is done with
try-except blocks:

try:
<statements>

except ExceptionType1:
<provide a remedy for ExceptionType1 errors>

except ExceptionType2, ExceptionType3, ExceptionType4:
<provide a remedy for three other types of errors>

except:
<provide a remedy for any other errors>

...

172 4 Input Data and Error Handling

The most common exception types are NameError for an undefined vari-
able, TypeError for an illegal value in an operation, and IndexError for
a list index out of bounds.

Raising Exceptions. When some error is encountered in a program, the
programmer can raise an exception:

if z < 0:
raise ValueError(’z=%s is negative - cannot do log(z)’ % z)

r = log(z)

Modules. A module is created by putting a set of functions in a file. The
filename (minus the required extension .py) is the name of the module.
Other programs can import the module only if it resides in the same
folder or in a folder contained in the sys.path list (see Chapter 4.5.3
for how to deal with this potential problem). Optionally, the module
file can have a special if construct at the end, called test block, which
tests the module or demonstrates its usage. The test block does not get
executed when the module is imported in another program, only when
the module file is run as a program.

4.6.2 Example: Bisection Root Finding

Problem. The summarizing example of this chapter concerns the im-
plementation of the Bisection method for solving nonlinear equations
of the form f(x) = 0 with respect to x. For example, the equation

x = 1 + sinx

can be cast to the form f(x) = 0 if we move all terms to the left-
hand side and define f(x) = x − 1 − sinx. We say that x is a root
of the equation f(x) = 0 if x is a solution of this equation. Nonlinear
equations f(x) = 0 can have zero, one, many, or infinitely many roots.

Numerical methods for computing roots normally lead to approxi-
mate results only, i.e., f(x) is not made exactly zero, but very close to
zero. More precisely, an approximate root x fulfills |f(x)| ≤ ε, where ε
is a small number. Methods for finding roots are of an iterative nature:
We start with a rough approximation to a root and perform a repeti-
tive set of steps that aim to improve the approximation. Our particular
method for computing roots, the Bisection method, guarantees to find
an approximate root, while other methods, such as the widely used
Newton’s method (see Appendix A.1.10), can fail to find roots.

The idea of the Bisection method is to start with an interval [a, b]
that contains a root of f(x). The interval is halved at m = (a + b)/2,
and if f(x) changes sign in the left half interval [a,m], one continues
with that interval, otherwise one continues with the right half interval

4.6 Summary 173

[m, b]. This procedure is repeated, say n times, and the root is then
guaranteed to be inside an interval of length 2−n(b− a). The task is to
write a program that implements the Bisection method and verify the
implementation.

Solution. To implement the Bisection method, we need to translate
the description in the previous paragraph to a precise algorithm that
can be almost directly translated to computer code. Since the halving
of the interval is repeated many times, it is natural to do this inside
a loop. We start with the interval [a, b], and adjust a to m if the root
must be in the right half of the interval, or we adjust b to m if the root
must be in the left half. In a language close to computer code we can
express the algorithm precisely as follows:

for i = 0, 1, 2, . . . , n
m = (a+ b)/2
if f(a)f(m) ≤ 0 then

b = m (root is in left half)
else

a = m (root is in right half)
end if

end for
f(x) has a root in [a, b]

Figure 4.2 displays graphically the first four steps of this algorithm
for solving the equation cos(πx) = 0, starting with the interval
[0, 0.82]. The graphs are automatically produced by the program
bisection_movie.py, which was run as follows for this particular ex-
ample:

Terminal

bisection_movie.py ’cos(pi*x)’ 0 0.82

The first command-line argument is the formula for f(x), the next is
a, and the final is b.

In the algorithm listed above, we recompute f(a) in each if-test, but
this is not necessary if a has not changed since the last f(a) computa-
tions. It is a good habit in numerical programming to avoid redundant
work. On modern computers the Bisection algorithm normally runs so
fast that we can afford to do more work than necessary. However, if f(x)
is not a simple formula, but computed by comprehensive calculations
in a program, the evaluation of f might take minutes or even hours,
and reducing the number of evaluations in the Bisection algorithm is
then very important. We will therefore introduce extra variables in the
algorithm above to save an f(m) evaluation in each iteration in the for
loop:

174 4 Input Data and Error Handling

Fig. 4.2 Illustration of the first four iterations of the Bisection algorithm for solving
cos(πx) = 0. The vertical lines correspond to the current value of a and b.

fa = f(a)
for i = 0, 1, 2, . . . , n

m = (a+ b)/2
fm = f(m)
if fafm ≤ 0 then

b = m (root is in left half)
else

a = m (root is in right half)
fa = fm

end if
end for
f(x) has a root in [a, b]

To execute the algorithm above, we need to specify n. Say we want
to be sure that the root lies in an interval of maximum extent ε. After
n iterations the length of our current interval is 2−n(b − a), if [a, b] is
the initial interval. The current interval is sufficiently small if

2−n(b− a) = ε,

which implies

n = − ln ε− ln(b− a)

ln 2
. (4.6)

4.6 Summary 175

Instead of calculating this n, we may simply stop the iterations when
the length of the current interval is less than ε. The loop is then nat-
urally implemented as a while loop testing on whether b − a ≤ ε. To
make the algorithm more foolproof, we also insert a test to ensure that
f(x) really changes sign in the initial interval10.

Our final version of the Bisection algorithm now becomes

fa = f(a)
if faf(b) > 0 then

error: f does not change sign in [a, b]
end if
i = 0 (iteration counter)
while b− a > ε:

i ← i+ 1
m = (a+ b)/2
fm = f(m)
if fafm ≤ 0 then

b = m (root is in left half)
else

a = m (root is in right half)
fa = fm

end if
end while
if x is the real root, |x−m| < ε

This is the algorithm we aim to implement in a Python program.
A direct translation of the previous algorithm to a Python program

should be quite a simple process:

eps = 1E-5
a, b = 0, 10

fa = f(a)
if fa*f(b) > 0:

print ’f(x) does not change sign in [%g,%g].’ % (a, b)
sys.exit(1)

i = 0 # iteration counter
while b-a > eps:

i += 1
m = (a + b)/2.0
fm = f(m)
if fa*fm <= 0:

b = m # root is in left half of [a,b]
else:

a = m # root is in right half of [a,b]
fa = fm

print ’Iteration %d: interval=[%g, %g]’ % (i, a, b)

x = m # this is the approximate root

10 This guarantees a root in [a, b]. However, f(a)f(b) < 0 is not a necessary condition if

there is an even number of roots in the initial interval.

176 4 Input Data and Error Handling

print ’The root is’, x, ’found in’, i, ’iterations’
print ’f(%g)=%g’ % (x, f(x))

This program is found in the file bisection_v1.py.

Verification. To verify the implementation in bisection_v1.py we
choose a very simple f(x) where we know the exact root. One suit-
able example is a linear function, f(x) = 2x − 3 such that x = 3/2
is the root of f . As can be seen from the source code above, we have
inserted a print statement inside the while loop to control that the
program really does the right things. Running the program yields the
output

Iteration 1: interval=[0, 5]
Iteration 2: interval=[0, 2.5]
Iteration 3: interval=[1.25, 2.5]
Iteration 4: interval=[1.25, 1.875]
...
Iteration 19: interval=[1.5, 1.50002]
Iteration 20: interval=[1.5, 1.50001]
The root is 1.50000572205 found in 20 iterations
f(1.50001)=1.14441e-05

It seems that the implementation works. Further checks should include
hand calculations for the first (say) three iterations and comparison of
the results with the program.

Making a Function. The previous implementation of the bisection al-
gorithm is fine for many purposes. To solve a new problem f(x) = 0
it is just necessary to change the f(x) function in the program. How-
ever, if we encounter solving f(x) = 0 in another program in another
context, we must put the bisection algorithm into that program in
the right place. This is simple in practice, but it requires some careful
work, and it is easy to make errors. The task of solving f(x) = 0 by
the bisection algorithm is much simpler and safer if we have that al-
gorithm available as a function in a module. Then we can just import
the function and call it. This requires a minimum of writing in later
programs.

When you have a “flat” program as shown above, without basic steps
in the program collected in functions, you should always consider di-
viding the code into functions. The reason is that parts of the program
will be much easier to reuse in other programs. You save coding, and
that is a good rule! A program with functions is also easier to un-
derstand, because statements are collected into logical, separate units,
which is another good rule! In a mathematical context, functions are
particularly important since they naturally split the code into general
algorithms (like the bisection algorithm) and a problem-specific part
(like a special choice of f(x)).

Shuffling statements in a program around to form a new and bet-
ter designed version of the program is called refactoring. We shall now

4.6 Summary 177

refactor the bisection_v1.py program by putting the statements in
the bisection algorithm in a function bisection. This function natu-
rally takes f(x), a, b, and ε as parameters and returns the found root,
perhaps together with the number of iterations required:

def bisection(f, a, b, eps):
fa = f(a)
if fa*f(b) > 0:

return None, 0

i = 0 # iteration counter
while b-a > eps:

i += 1
m = (a + b)/2.0
fm = f(m)
if fa*fm <= 0:

b = m # root is in left half of [a,b]
else:

a = m # root is in right half of [a,b]
fa = fm

return m, i

After this function we can have a test program:

def f(x):
return 2*x - 3 # one root x=1.5

eps = 1E-5
a, b = 0, 10
x, iter = bisection(f, a, b, eps)
if x is None:

print ’f(x) does not change sign in [%g,%g].’ % (a, b)
else:

print ’The root is’, x, ’found in’, iter, ’iterations’
print ’f(%g)=%g’ % (x, f(x))

The complete code is found in file bisection_v2.py.

Making a Module. A motivating factor for implementing the bisection
algorithm as a function bisection was that we could import this func-
tion in other programs to solve f(x) = 0 equations. However, if we do
an import

from bisection_v2 import bisection

the import statement will run the main program in bisection_v2.py.
We do not want to solve a particular f(x) = 0 example when we do
an import of the bisection function! Therefore, we must put the main
program in a test block (see Chapter 4.5.2). Even better is to collect the
statements in the test program in a function and just call this function
from the test block:

def _test():
def f(x):

return 2*x - 3 # one root x=1.5

178 4 Input Data and Error Handling

eps = 1E-5
a, b = 0, 10
x, iter = bisection(f, a, b, eps)
if x is None:

print ’f(x) does not change sign in [%g,%g].’ % (a, b)
else:

print ’The root is’, x, ’found in’, iter, ’iterations’
print ’f(%g)=%g’ % (x, f(x))

if __name__ == ’__main__’:
_test()

The complete module with the bisection function, the _test func-
tion, and the test block is found in the file bisection.py.

Using the Module. Suppose you want to solve x = sinx using the
bisection module. What do you have to do? First, you reformulate
the equation as f(x) = 0, i.e., x − sinx = 0 so that you identify
f(x) = x − sinx. Second, you make a file, say x_eq_sinx.py, where
you import the bisection function, define the f(x) function, and call
bisection:

from bisection import bisection
from math import sin

def f(x):
return x - sin(x)

root, iter = bisection(f, -2, 2, 1E-6)
print root

A Flexible Program for Solving f(x) = 0. The previous program hard-
codes the input data f(x), a, b, and ε to the bisection method for
a specific equation. As we have pointed out in this chapter, a bet-
ter solution is to let the user provide input data while the program
is running. This approach avoids editing the program when a new
equation needs to be solved (and as you remember, any change in
a program has the danger of introducing new errors). We therefore
set out to create a program that reads f(x), a, b, and ε from the
command-line. The expression for f(x) is given as a text and turned
into a Python function with aid of the StringFunction object from
Chapter 4.1.4. The other parameters – a, b, and ε – can be read
directly from the command line, but it can be handy to allow the
user not to specify ε and provide a default value in the program in-
stead.

The ideas above can be realized as follows in a new, general
program for solving f(x) = 0 equations. The program is called
bisection_solver.py:

import sys
usage = ’%s f-formula a b [epsilon]’ % sys.argv[0]
try:

f_formula = sys.argv[1]

4.6 Summary 179

a = float(sys.argv[2])
b = float(sys.argv[3])

except IndexError:
print usage; sys.exit(1)

try: # is epsilon given on the command-line?
epsilon = float(sys.argv[4])

except IndexError:
epsilon = 1E-6 # default value

from scitools.StringFunction import StringFunction
from math import * # might be needed for f_formula
f = StringFunction(f_formula)
from bisection import bisection

root, iter = bisection(f, a, b, epsilon)
if root == None:

print ’The interval [%g, %g] does not contain a root’ % (a, b)
sys.exit(1)

print ’Found root %g\nof %s = 0 in [%g, %g] in %d iterations’ % \
(root, f_formula, a, b, iter)

Let us solve

1. x = tanhx with start interval [−10, 10] and default precision (ε =
10−6),

2. x5 = tanh(x5) with start interval [−10, 10] and default precision.

Both equations have one root x = 0.

Terminal

bisection_solver.py "x-tanh(x)" -10 10
Found root -5.96046e-07
of x-tanh(x) = 0 in [-10, 10] in 25 iterations

bisection_solver.py "x**5-tanh(x**5)" -10 10
Found root -0.0266892
of x**5-tanh(x**5) = 0 in [-10, 10] in 25 iterations

These results look strange. In both cases we halve the start interval
[−10, 10] 25 times, but in the second case we end up with a much less
accurate root although the value of ε is the same. A closer inspection
of what goes on in the bisection algorithm reveals that the inaccu-
racy is caused by round-off errors. As a, b,m → 0, raising a small
number to the fifth power in the expression for f(x) yields a much
smaller result. Subtracting a very small number tanhx5 from another
very small number x5 may result in a small number with wrong sign,
and the sign of f is essential in the bisection algorithm. We encour-
age the reader to graphically inspect this behavior by running these
two examples with the bisection_plot.py program using a smaller in-
terval [−1, 1] to better see what is going on. The command-line argu-
ments for the bisection_plot.py program are ’x-tanh(x)’ -1 1 and
’x**5-tanh(x**5)’ -1 1. The very flat area, in the latter case, where
f(x) ≈ 0 for x ∈ [−1/2, 1/2] illustrates well that it is difficult to locate
an exact root.

180 4 Input Data and Error Handling

4.7 Exercises

Exercise 4.1. Make an interactive program.
Make a program that (i) asks the user for a temperature in Fahren-

heit degrees and reads the number; (ii) computes the corresponding
temperature in Celsius degrees; and (iii) prints out the temperature in
the Celsius scale. Name of program file: f2c_qa.py. �

Exercise 4.2. Read from the command line in Exer. 4.1.
Modify the program from Exercise 4.1 such that the Fahrenheit

temperature is read from the command line. Name of program file:
f2c_cml.py. �

Exercise 4.3. Use exceptions in Exer. 4.2.
Extend the program from Exercise 4.2 with a try-except block to

handle the potential error that the Fahrenheit temperature is missing
on the command line. Name of program file: f2c_cml_exc.py. �

Exercise 4.4. Read input from the keyboard.
Make a program that asks for input from the user, applies eval to

this input, and prints out the type of the resulting object and its value.
Test the program by providing five types of input: an integer, a real
number, a complex number, a list, and a tuple. Name of program file:
objects_qa.py. �

Exercise 4.5. Read input from the command line.
Let a program store the result of applying the eval function to the

first command-line argument. Print out the resulting object and its
type. Run the program with different input: an integer, a real number,
a list, and a tuple. (On Unix systems you need to surround the tuple
expressions in quotes on the command line to avoid error message from
the Unix shell.) Try the string "this is a string" as a command-
line argument. Why does this string cause problems and what is the
remedy? Name of program file: objects_cml.py. �

Exercise 4.6. Prompt the user for input to a formula.
Consider the simplest program for evaluating the formula y(t) =

v0t− 0.5gt2:

v0 = 3; g = 9.81; t = 0.6
y = v0*t - 0.5*g*t**2
print y

Modify this code so that the program asks the user questions t=? and
v0=?, and then gets t and v0 from the user’s input through the key-
board. Name of program file: ball_qa.py. �

Exercise 4.7. Read command line input a formula.
Modify the program listed in Exercise 4.6 such that v0 and t are

read from the command line. Name of program file: ball_cml.py. �

4.7 Exercises 181

Exercise 4.8. Make the program from Exer. 4.7 safer.
The program from Exercise 4.7 reads input from the command

line. Extend that program with exception handling such that miss-
ing command-line arguments are detected. In the except IndexError

block, use the raw_input function to ask the user for missing input
data. Name of program file: ball_cml_qa.py. �
Exercise 4.9. Test more in the program from Exer. 4.7.

Test if the t value read in the program from Exercise 4.7 lies between
0 and 2v0/g. If not, print a message and abort execution. Name of
program file: ball_cml_errorcheck.py. �
Exercise 4.10. Raise an exception in Exer. 4.9.

Instead of printing an error message and aborting the program ex-
plicitly, raise a ValueError exception in the if test on legal t values in
the program from Exercise 4.9. Include the legal interval for t in the
exception message. Name of program file: ball_cml_ValueError.py. �
Exercise 4.11. Compute the distance it takes to stop a car.

A car driver, driving at velocity v0, suddenly puts on the brake. What
braking distance d is needed to stop the car? One can derive, using
Newton’s second law of motion or a corresponding energy equation,
that

d =
1

2

v20
μg

. (4.7)

Make a program for computing d in (4.7) when the initial car velocity
v0 and the friction coefficient μ are given on the command line. Run the
program for two cases: v0 = 120 and v0 = 50 km/h, both with μ = 0.3
(μ is dimensionless). (Remember to convert the velocity from km/h to
m/s before inserting the value in the formula!) Name of program file:
stopping_length.py. �
Exercise 4.12. Look up calendar functionality.

The purpose of this exercise is to make a program which takes a
date, consisting of year (4 digits), month (2 digits), and day (1–31) on
the command line and prints the corresponding name of the weekday
(Monday, Tuesday, etc.). Python has a module calendar, which you
must look up in the Python Library Reference (see Chapter 2.6.3), for
calculating the weekday of a date. Name of program file: weekday.py. �
Exercise 4.13. Use the StringFunction tool.

Make the program user_formula.py from Chapter 4.1.3 shorter by
using the convenient StringFunction tool from Chapter 4.1.4. Name of
program file: user_formula2.py. �
Exercise 4.14. Extend a program from Ch. 4.2.1.

How can you modify the add_cml.py program from the end of Chap-
ter 4.1.2 such that it accepts input like sqrt(2) and sin(1.2)? In this
case the output should be

182 4 Input Data and Error Handling

<type ’float’> + <type ’float’> becomes <type ’float’>
with value 2.34625264834

Hint: Mathematical functions like sqrt and sin must be defined in the
program before using eval. Furthermore, Unix (bash) does not like the
parentheses on the command line so you need to put quotes around the
command-line arguments. Name of program file: add_cml2.py. �

Exercise 4.15. Why we test for specific exception types.
The simplest way of writing a try-except block is to test for any

exception, for example,

try:
C = float(sys.arg[1])

except:
print ’C must be provided as command-line argument’
sys.exit(1)

Write the above statements in a program and test the program. What
is the problem?

The fact that a user can forget to supply a command-line argument
when running the program was the original reason for using a try block.
Find out what kind of exception that is relevant for this error and test
for this specific exception and re-run the program. What is the problem
now? Correct the program. Name of program file: cml_exception.py. �

Exercise 4.16. Make a simple module.
Make six conversion functions between temperatures in Celsius,

Kelvin, and Fahrenheit: C2F, F2C, C2K, K2C, F2K, and K2F. Collect these
functions in a module convert_temp. Import the module in an interac-
tive Python shell and demonstrate some sample calls on temperature
conversions. Name of program file: convert_temp.py. �

Exercise 4.17. Make a useful main program for Exer. 4.16.
Extend the module made in Exercise 4.16 with a main program in

the test block. This main program should read the first command-
line argument as a numerical value of a temperature and the second
argument as a temperature scale: C, K, or F. Write out the temperature
in the other two scales. For example, if 21.3 C is given on the command
line, the output should be 70.34 F 294.45 K. Name of program file:
convert_temp2.py. �

Exercise 4.18. Make a module in Exer. 3.13.
Collect the f and S functions in the program from Exercise 3.13 in a

separate file such that this file becomes a module. Put the statements
making the table (i.e., the main program from Exercise 3.13) in a sepa-
rate function table(n_values, alpha_values, T), and call this function
only if the module file is run as a program (i.e., call table from a test
block, see Chapter 4.5.2). Name of program file: sinesum2.py. �

4.7 Exercises 183

Exercise 4.19. Extend the module from Exer. 4.18.
Extend the program from Exercise 4.18 such that T and a series of n

and α values are read from the command line. The extended program
should import the table function from the module sinesum2 (and not
copy any code from the module file). Name of program file: sinesum3.py.
�

Exercise 4.20. Use options and values in Exer. 4.19.
Let the input to the program in Exercise 4.19 be option-value pairs

of the type -n, -alpha, and --T, with sensible default values for these
quantities set in the program. Apply the argparse module to read the
command-line arguments. Name of program file: sinesum4.py. �

Exercise 4.21. Check if mathematical identities hold on a computer.
Because of round-off errors, it could happen that a mathematical

rule like (ab)3 = a3b3 does not hold (exactly) on a computer. The idea
of this exercise is to check such identities for a large number of random
numbers. We can make random numbers using the random module in
Python:

import random
a = random.uniform(A, B)
b = random.uniform(A, B)

Here, a and b will be random numbers which are always larger than or
equal to A and smaller than B.

Make a program that reads the number of tests to be performed
from the command line. Set A and B to fixed values (say −100 and 100).
Perform the test in a loop. Inside the loop, draw random numbers a and
b and test if the two mathematical expressions (a*b)**3 and a**3*b**3

are equivalent. Count the number of failures of equivalence and write
out the percentage of failures at the end of the program.

Duplicate the code segment outlined above to also com-
pare the expressions a/b and 1/(b/a). Name of program file:
math_identities_failures.py. �

Exercise 4.22. Improve input to the program in Exer. 4.21.
The purpose of this exercise is to extend the program from Exer-

cise 4.21 to handle a large number of mathematical identities. Make
a function equal(expr1, expr2, A, B, n=500) which tests if the math-
ematical expressions expr1 and expr2, given as strings and involving
numbers a and b, are exactly equal (eval(expr1) == eval(expr2)) for n
random choices of numbers a and b in the interval between A and B. Re-
turn the percentage of failures. Make a module with the equal function
and a test block which feeds the equal function with arguments read
from the command line. Run the module file as a program to test the
two identities from Exercise 4.21. Also test the identities ea+b = eaeb

184 4 Input Data and Error Handling

and ln ab = b ln a (take a from math import * in the module file so that
mathematical functions like exp and log are defined). Name of program
file: math_identities_failures_cml.py. �

Exercise 4.23. Apply the program from Exer. 4.22.
Import the equal function from the module made in Exercise 4.22

and test the three identities from Exercise 4.21 in addition to the fol-
lowing identities:

• a− b and −(b− a)
• a/b and 1/(b/a)
• (ab)4 and a4b4

• (a+ b)2 and a2 + 2ab+ b2

• (a+ b)(a− b) and a2 − b2

• ea+b and eaeb

• ln ab and b ln a
• ln ab and ln a+ ln b
• ab and eln a+ln b

• 1/(1/a+ 1/b) and ab/(a+ b)
• a(sin2 b+ cos2 b) and a
• sinh(a+ b) and (eaeb − e−ae−b)/2
• tan(a+ b) and sin(a+ b)/ cos(a+ b)
• sin(a+ b) and sin a cos b+ sin b cos a

Store all the expressions in a list of 2-tuples, where each 2-tuple contains
two mathematically equivalent expressions as strings which can be sent
to the eval function. Make a nicely formatted table with a pair of
equivalent expressions at each line followed by the failure rate. Try out
A=0 and B=1 as well as A=-1E+7 and B=1E+7. Does the failure rate seem
to depend on the magnitude of the numbers a and b? Name of program
file: math_identities_failures_table.py.

Remark. Exercise 4.21 can be solved by a simple program, but if you
want to check 17 identities the present exercise demonstrates how im-
portant it is to be able to automate the process via the equal function
and two nested loops over a list of equivalent expressions. �

Exercise 4.24. Compute the binomial distribution.
Consider an uncertain event where there are two outcomes only,

typically success or failure. Flipping a coin is an example: The outcome
is uncertain and of two types, either head (can be considered as success)
or tail (failure). Throwing a die can be another example, if (e.g.) getting
a six is considered success and all other outcomes represent failure. Let
the probability of success be p and that of failure 1−p. If we perform n
experiments, where the outcome of each experiment does not depend on
the outcome of previous experiments, the probability of getting success
x times (and failure n− x times) is given by

4.7 Exercises 185

B(x, n, p) =
n!

x!(n− x)!
px(1− p)n−x. (4.8)

This formula (4.8) is called the binomial distribution. The expression
x! is the factorial of x as defined in Exercise 3.19. Implement (4.8) in a
function binomial(x, n, p). Make a module containing this binomial

function. Include a test block at the end of the module file. Name of
program file: binomial_distribution.py. �

Exercise 4.25. Apply the binomial distribution.
Use the module from Exercise 4.24 to make a program for solving

the problems below.

1. What is the probability of getting two heads when flipping a coin
five times?
This probability corresponds to n = 5 events, where the success of
an event means getting head, which has probability p = 1/2, and
we look for x = 2 successes.

2. What is the probability of getting four ones in a row when throwing
a die?
This probability corresponds to n = 4 events, success is getting one
and has probability p = 1/6, and we look for x = 4 successful events.

3. Suppose cross country skiers typically experience one ski break in
one out of 120 competitions. Hence, the probability of breaking a ski
can be set to p = 1/120. What is the probability b that a skier will
experience a ski break during five competitions in a world champi-
onship?
This question is a bit more demanding than the other two. We are
looking for the probability of 1, 2, 3, 4 or 5 ski breaks, so it is simpler
to ask for the probability c of not breaking a ski, and then compute
b = 1 − c. Define “success” as breaking a ski. We then look for
x = 0 successes out of n = 5 trials, with p = 1/120 for each trial.
Compute b.

Name of program file: binomial_problems.py. �

Exercise 4.26. Compute probabilities with the Poisson distribution.
Suppose that over a period of tm time units, a particular uncertain

event happens (on average) νtm times. The probability that there will
be x such events in a time period t is approximately given by the
formula

P (x, t, ν) =
(νt)x

x!
e−νt. (4.9)

This formula is known as the Poisson distribution11. An important
assumption is that all events are independent of each other and that

11 It can be shown that (4.9) arises from (4.8) when the probability p of experiencing the

event in a small time interval t/n is p = νt/n and we let n → ∞.

186 4 Input Data and Error Handling

the probability of experiencing an event does not change significantly
over time.

Implement (4.9) in a function Poisson(x, t, nu), and make a pro-
gram that reads x, t, and ν from the command line and writes out the
probability P (x, t, ν). Use this program to solve the problems below.

1. Suppose you are waiting for a taxi in a certain street at night. On
average, 5 taxis pass this street every hour at this time of the night.
What is the probability of not getting a taxi after having waited 30
minutes?
Since we have 5 events in a time period of tm = 1 hour, νtm = ν = 5.
The sought probability is then P (0, 1/2, 5). Compute this number.
What is the probability of having to wait two hours for a taxi?
If 8 people need two taxis, that is the probability that two taxis
arrive in a period of 20 minutes?

2. In a certain location, 10 earthquakes have been recorded during
the last 50 years. What is the probability of experiencing exactly
three earthquakes over a period of 10 years in this area? What is
the probability that a visitor for one week does not experience any
earthquake?
With 10 events over 50 years we have νtm = ν ·50 years = 10 events,
which implies ν = 1/5 event per year. The answer to the first ques-
tion of having x = 3 events in a period of t = 10 years is given di-
rectly by (4.9). The second question asks for x = 0 events in a time
period of 1 week, i.e., t = 1/52 years, so the answer is P (0, 1/52, 1/5).

3. Suppose that you count the number of misprints in the first versions
of the reports you write and that this number shows an average of
six misprints per page. What is the probability that a reader of a
first draft of one of your reports reads six pages without hitting a
misprint?
Assuming that the Poisson distribution can be applied to this prob-
lem, we have “time” tm as 1 page and ν · 1 = 6, i.e., ν = 6 events
(misprints) per page. The probability of no events in a “period” of
six pages is P (0, 6, 6). �

Array Computing and Curve Plotting 5

Lists are introduced in Chapter 2 to store “tabular data” in a con-
venient way. An array is an object that is very similar to a list, but
less flexible and computationally much more efficient. When using the
computer to perform mathematical calculations, we often end up with
a huge amount of numbers and associated arithmetic operations. Stor-
ing numbers in lists may in such contexts lead to slow programs, while
arrays can make the programs run much faster. This may not be very
important for the mathematical problems in this book, since most of
the programs usually finish execution within a few seconds. Never-
theless, in more advanced applications of mathematics, especially the
applications met in industry and science, computer programs may run
for weeks and months. Any clever idea that reduces the execution time
to days or hours is therefore paramount1.

This chapter gives a brief introduction to arrays – how they are
created and what they can be used for. Array computing usually ends
up with a lot of numbers. It may be very hard to understand what these
numbers mean by just looking at them. Since the human is a visual
animal, a good way to understand numbers is to visualize them. In this
chapter we concentrate on visualizing curves that reflect functions of
one variable, e.g., curves of the form y = f(x). A synonym for curve
is graph, and the image of curves on the screen is often called a plot.
We will use arrays to store the information about points along the
curve. It is fair to say that array computing demands visualization and
visualization demands arrays.

1 Many may argue that programmers of mathematical software have traditionally paid too
much attention to efficiency and smart program constructs. The resulting software often

becomes very hard to maintain and extend. In this book we advocate a focus on clear, well-
designed, and easy-to-understand programs that work correctly. Optimization for speed

should always come as a second step in program development.

H.P. Langtangen, A Primer on Scientific Programming with Python,
Texts in Computational Science and Engineering 6,

DOI 10.1007/978-3-642-30293-0 5, c© Springer-Verlag Berlin Heidelberg 2012

187

http://dx.doi.org/10.1007/978-3-642-30293-0_5

188 5 Array Computing and Curve Plotting

All program examples in this chapter can be found as files in the
folder src/plot.

5.1 Vectors

This section gives a brief introduction to the vector concept, assuming
that you have heard about vectors in the plane and maybe vectors in
space before. This background will be valuable when we start to work
with arrays and curve plotting.

5.1.1 The Vector Concept

Some mathematical quantities are associated with a set of numbers.
One example is a point in the plane, where we need two coordinates
(real numbers) to describe the point mathematically. Naming the two
coordinates of a particular point as x and y, it is common to use the
notation (x, y) for the point. That is, we group the numbers inside
parentheses. Instead of symbols we might use the numbers directly:
(0, 0) and (1.5,−2.35) are also examples of coordinates in the plane.

A point in three-dimensional space has three coordinates, which we
may name x1, x2, and x3. The common notation groups the numbers
inside parentheses: (x1, x2, x3). Alternatively, we may use the symbols
x, y, and z, and write the point as (x, y, z), or numbers can be used
instead of symbols.

From high school you may have a memory of solving two equations
with two unknowns. At the university you will soon meet problems that
are formulated as n equations with n unknowns. The solution of such
problems contains n numbers that we can collect inside parentheses
and number from 1 to n: (x1, x2, x3, . . . , xn−1, xn).

Quantities such as (x, y), (x, y, z), or (x1, . . . , xn) are known as vec-
tors in mathematics. A visual representation of a vector is an arrow
that goes from the origin to a point. For example, the vector (x, y) is an
arrow that goes from (0, 0) to the point with coordinates (x, y) in the
plane. Similarly, (x, y, z) is an arrow from (0, 0, 0) to the point (x, y, z)
in three-dimensional space.

Mathematicians found it convenient to introduce spaces with higher
dimension than three, because when we have a solution of n equations
collected in a vector (x1, . . . , xn), we may think of this vector as a point
in a space with dimension n, or equivalently, an arrow that goes from
the origin (0, . . . , 0) in n-dimensional space to the point (x1, . . . , xn).
Figure 5.1 illustrates a vector as an arrow, either starting at the origin,
or at any other point. Two arrows/vectors that have the same direction
and the same length are mathematically equivalent.

5.1 Vectors 189

Fig. 5.1 A vector (2, 3) visualized in the standard way as an arrow from the origin to the

point (2, 3), and mathematically equivalently, as an arrow from (1, 1
2
) (or any point (a, b))

to (3, 3 1
2
) (or (a+ 2, b+ 3)).

We say that (x1, . . . , xn) is an n-vector or a vector with n compo-
nents. Each of the numbers x1, x2, . . . is a component or an element.
We refer to the first component (or element), the second component
(or element), and so forth.

A Python program may use a list or tuple to represent a vector:

v1 = [x, y] # list of variables
v2 = (-1, 2) # tuple of numbers
v3 = (x1, x2, x3) # tuple of variables
from math import exp
v4 = [exp(-i*0.1) for i in range(150)]

While v1 and v2 are vectors in the plane and v3 is a vector in three-
dimensional space, v4 is a vector in a 150-dimensional space, consisting
of 150 values of the exponential function. Since Python lists and tuples
have 0 as the first index, we may also in mathematics write the vector
(x1, x2) as (x0, x1). This is not at all common in mathematics, but
makes the distance from a mathematical description of a problem to
its solution in Python shorter.

It is impossible to visually demonstrate how a space with 150 dimen-
sions looks like. Going from the plane to three-dimensional space gives
a rough feeling of what it means to add a dimension, but if we forget
about the idea of a visual perception of space, the mathematics is very
simple: Going from a 4-dimensional vector to a 5-dimensional vector is
just as easy as adding an element to a list of symbols or numbers.

5.1.2 Mathematical Operations on Vectors

Since vectors can be viewed as arrows having a length and a direction,
vectors are extremely useful in geometry and physics. The velocity of
a car has a magnitude and a direction, so has the acceleration, and the

190 5 Array Computing and Curve Plotting

position of a car is a point2 which is also a vector. An edge of a triangle
can be viewed as a line (arrow) with a direction and length.

In geometric and physical applications of vectors, mathematical op-
erations on vectors are important. We shall exemplify some of the most
important operations on vectors below. The goal is not to teach com-
putations with vectors, but more to illustrate that such computations
are defined by mathematical rules3. Given two vectors, (u1, u2) and
(v1, v2), we can add these vectors according to the rule:

(u1, u2) + (v1, v2) = (u1 + v1, u2 + v2). (5.1)

We can also subtract two vectors using a similar rule:

(u1, u2)− (v1, v2) = (u1 − v1, u2 − v2). (5.2)

A vector can be multiplied by a number. This number, called a below,
is usually denoted as a scalar :

a · (v1, v2) = (av1, av2). (5.3)

The inner product, also called dot product, or scalar product, of two
vectors is a number4:

(u1, u2) · (v1, v2) = u1v1 + u2v2. (5.4)

There is also a cross product defined for 2-vectors or 3-vectors, but we
do not list the cross product formula here.

The length of a vector is defined by

∥∥(v1, v2)∥∥ =
√

(v1, v2) · (v1, v2) =
√

v21 + v22. (5.5)

The same mathematical operations apply to n-dimensional vectors as
well. Instead of counting indices from 1, as we usually do in mathemat-
ics, we now count from 0, as in Python. The addition and subtraction
of two vectors with n components (or elements) read

(u0, . . . , un−1) + (v0, . . . , vn−1) = (u0 + v0, . . . , un−1 + vn−1), (5.6)

(u0, . . . , un−1)− (v0, . . . , vn−1) = (u0 − v0, . . . , un−1 − vn−1). (5.7)

2 A car is of course not a mathematical point, but when studying the acceleration of a car,

it suffices to view it as a point. In other occasions, e.g., when simulating a car crash on a
computer, the car may be modeled by a large number (say 106) of connected points.
3 You might recall many of the formulas here from high school mathematics or physics.

The really new thing in this chapter is that we show how rules for vectors in the plane and
in space can easily be extended to vectors in n-dimensional space.
4 From high school mathematics and physics you might recall that the inner or dot product
also can be expressed as the product of the lengths of the two vectors multiplied by the

cosine of the angle between them. We will not make use of this formula.

5.1 Vectors 191

Multiplication of a scalar a and a vector (v0, . . . , vn−1) equals

(av0, . . . , avn−1). (5.8)

The inner or dot product of two n-vectors is defined as

(u0, . . . , un−1) · (v0, . . . , vn−1) = u0v0 + · · ·+ un−1vn−1 =

n−1∑
j=0

ujvj .

(5.9)

Finally, the length ‖v‖ of an n-vector v = (v0, . . . , vn−1) is

√
(v0, . . . , vn−1) · (v0, . . . , vn−1) =

(
v20 + v21 + · · ·+ v2n−1

) 1

2

=

(
n−1∑
j=0

v2j

) 1

2

. (5.10)

5.1.3 Vector Arithmetics and Vector Functions

In addition to the operations on vectors in Chapter 5.1.2, which you
might recall from high school mathematics, we can define other oper-
ations on vectors. This is very useful for speeding up programs. Un-
fortunately, the forthcoming vector operations are hardly treated in
textbooks on mathematics, yet these operations play a significant role
in mathematical software, especially in computing environment such as
Matlab, Octave, Python, and R.

Applying a mathematical function of one variable, f(x), to a vector
is defined as a vector where f is applied to each element. Let v =
(v0, . . . , vn−1) be a vector. Then

f(v) =
(
f(v0), . . . , f(vn−1)

)
.

For example, the sine of v is

sin(v) =
(
sin(v0), . . . , sin(vn−1)

)
.

It follows that squaring a vector, or the more general operation of
raising the vector to a power, can be defined as applying the operation
to each element:

vb =
(
vb0, . . . , v

b
n−1

)
.

Another operation between two vectors that arises in computer pro-
gramming of mathematics is the “asterisk” multiplication, defined as

u ∗ v = (u0v0, u1v1, . . . , un−1vn−1). (5.11)

192 5 Array Computing and Curve Plotting

Adding a scalar to a vector or array can be defined as adding the scalar
to each component. If a is a scalar and v a vector, we have

a+ v = (a+ v0, . . . , a+ vn−1).

A compound vector expression may look like

v2 ∗ cos(v) ∗ ev + 2. (5.12)

How do we calculate this expression? We use the normal rules of math-
ematics, working our way, term by term, from left to right, paying
attention to the fact that powers are evaluated before multiplications
and divisions, which are evaluated prior to addition and subtraction.
First we calculate v2, which results in a vector we may call u. Then we
calculate cos(v) and call the result p. Then we multiply u ∗ p to get a
vector which we may call w. The next step is to evaluate ev, call the
result q, followed by the multiplication w∗q, whose result is stored as r.
Then we add r+ 2 to get the final result. It might be more convenient
to list these operations after each other:

1. u = v2

2. p = cos(v)
3. w = u ∗ p
4. q = ev

5. r = w ∗ q
6. s = r + 2

Writing out the vectors u, w, p, q, and r in terms of a general vector
v = (v0, . . . , vn−1) (do it!) shows that the result of the expression (5.12)
is the vector

(
v20 cos(v0)e

v0 + 2, . . . , v2n−1 cos(vn−1)e
vn−1 + 2

)
.

That is, component no. i in the result vector equals the number arising
from applying the formula (5.12) to vi, where the * multiplication is
ordinary multiplication between two numbers.

We can, alternatively, introduce the function

f(x) = x2 cos(x)ex + 2

and use the result that f(v) means applying f to each element in v.
The result is the same as in the vector expression (5.12).

In Python programming it is important for speed (and convenience
too) that we can apply functions of one variable, like f(x), to vectors.
What this means mathematically is something we have tried to explain
in this subsection. Doing Exercises 5.5 and 5.6 may help to grasp the
ideas of vector computing, and with more programming experience you
will hopefully discover that vector computing is very useful. It is not

5.2 Arrays in Python Programs 193

necessary to have a thorough understanding of vector computing in
order to proceed with the next sections.

Arrays are used to represent vectors in a program, but one can do
more with arrays than with vectors. Until Chapter 5.7 it suffices to
think of arrays as the same as vectors in a program.

5.2 Arrays in Python Programs

This section introduces array programming in Python, but first we
create some lists and show how arrays differ from lists.

5.2.1 Using Lists for Collecting Function Data

Suppose we have a function f(x) and want to evaluate this function
at a number of x points x0, x1, . . . , xn−1. We could collect the n pairs
(xi, f(xi)) in a list, or we could collect all the xi values, for i = 0, . . . , n−
1, in a list and all the associated f(xi) values in another list. We learned
how to create such lists in Chapter 2, but as a review, we present the
relevant program statements in an interactive session:

>>> def f(x):
... return x**3 # sample function
...
>>> n = 5 # no of points along the x axis
>>> dx = 1.0/(n-1) # spacing between x points in [0,1]
>>> xlist = [i*dx for i in range(n)]
>>> ylist = [f(x) for x in xlist]
>>> pairs = [[x, y] for x, y in zip(xlist, ylist)]

Here we have used list comprehensions for achieving compact code.
Make sure that you understand what is going on in these list compre-
hensions (you are encouraged to write the same code using standard
for loops and appending new list elements in each pass of the loops).

The list elements consist of objects of the same type: any element
in pairs is a list of two float objects, while any element in xlist or
ylist is a float. Lists are more flexible than that, because an element
can be an object of any type, e.g.,

mylist = [2, 6.0, ’tmp.ps’, [0,1]]

Here mylist holds an int, a float, a string, and a list. This combination
of diverse object types makes up what is known as heterogeneous lists.
We can also easily remove elements from a list or add new elements
anywhere in the list. This flexibility of lists is in general convenient
to have as a programmer, but in cases where the elements are of the
same type and the number of elements is fixed, arrays can be used
instead. The benefits of arrays are faster computations, less memory

194 5 Array Computing and Curve Plotting

demands, and extensive support for mathematical operations on the
data. Because of greater efficiency and mathematical convenience, ar-
rays will be used to a large extent in this book. The great use of arrays
is also prominent in other programming environments such as Matlab,
Octave, and R, for instance. Lists will be our choice instead of arrays
when we need the flexibility of adding or removing elements or when
the elements may be of different object types.

5.2.2 Basics of Numerical Python Arrays

An array object can be viewed as a variant of a list, but with the
following assumptions and features:

• All elements must be of the same type, preferably integer, real, or
complex numbers, for efficient numerical computing and storage.

• The number of elements must be known5 when the array is created.
• Arrays are not part of standard Python6 – one needs an additional
package called Numerical Python, often abbreviated as NumPy.
The Python name of the package, to be used in import statements,
is numpy.

• With numpy, a wide range of mathematical operations can be done
directly on complete arrays, thereby removing the need for loops
over array elements. This is commonly called vectorization and may
cause a dramatic speed-up of Python programs. Vectorization makes
use of the vector computing concepts from Chapter 5.1.3.

• Arrays with one index are often called vectors. Arrays with two
indices are used as an efficient data structure for tables, instead of
lists of lists. Arrays can also have three or more indices.

The following text lists some important functionality of NumPy ar-
rays. A more comprehensive treatment is found in the excellent NumPy
Tutorial, NumPy User Guide, NumPy Reference, Guide to NumPy, and
NumPy for Matlab Users, all found at scipy.org.

The standard import statement for Numerical Python reads

import numpy as np

To convert a list r to an array, we use the array function from numpy:

a = np.array(r)

To create a new array of length n, filled with zeros, we write

a = np.zeros(n)

5 The number of elements can be changed, at a substantial computational cost.
6 Actually, there is an object type called array in standard Python, but this data type is

not so efficient for mathematical computations.

5.2 Arrays in Python Programs 195

The array elements are of a type that corresponds to Python’s float

type. A second argument to np.zeros can be used to specify other
element types, e.g., int. A similar function,

a = np.zeros_like(c)

generates an array of zeros where the length is that of the array c and
the element type is the same as those in c. Arrays with more than one
index are treated in Chapter 5.7.

Often one wants an array to have n elements with uniformly dis-
tributed values in an interval [p, q]. The numpy function linspace creates
such arrays:

a = np.linspace(p, q, n)

Array elements are accessed by square brackets as for lists: a[i].
Slices also work as for lists, for example, a[1:-1] picks out all elements
except the first and the last, but contrary to lists, a[1:-1] is not a copy
of the data in a. Hence,

b = a[1:-1]
b[2] = 0.1

will also change a[3] to 0.1. A slice a[i:j:s] picks out the elements
starting with index i and stepping s indices at the time up to, but not
including, j. Omitting i implies i=0, and omitting j implies j=n if n is
the number of elements in the array. For example, a[0:-1:2] picks out
every two elements up to, but not including, the last element, while
a[::4] picks out every four elements in the whole array.

5.2.3 Computing Coordinates and Function Values

With these basic operations at hand, we can continue the session from
the previous section and make arrays out of the lists xlist and ylist:

>>> import numpy as np
>>> x2 = np.array(xlist) # turn list xlist into array x2
>>> y2 = np.array(ylist)
>>> x2
array([0. , 0.25, 0.5 , 0.75, 1.])
>>> y2
array([0. , 0.015625, 0.125 , 0.421875, 1.])

Instead of first making a list and then converting the list to an array,
we can compute the arrays directly. The equally spaced coordinates in
x2 are naturally computed by the np.linspace function. The y2 array
can be created by np.zeros, to ensure that y2 has the right length7

7 This is referred to as allocating the array, and means that a part of the computer’s

memory is marked for being occupied by this array.

196 5 Array Computing and Curve Plotting

len(x2), and then we can run a for loop to fill in all elements in y2

with f values:

>>> n = len(xlist)
>>> x2 = np.linspace(0, 1, n)
>>> y2 = np.zeros(n)
>>> for i in xrange(n):
... y2[i] = f(x2[i])
...
>>> y2
array([0. , 0.015625, 0.125 , 0.421875, 1.])

Note that we here in the for loop have used xrange instead of range.
The former is faster for long loops because it avoids generating and
storing a list of integers, it just generates the values one by one. Hence,
we prefer xrange over range for loops over long arrays. In Python version
3.x, range is the same as xrange.

We can shorten the previous code by creating the y2 data in a list
comprehension, but list comprehensions produce lists, not arrays, so
we need to transform the list object to an array object:

>>> x2 = np.linspace(0, 1, n)
>>> y2 = np.array([f(xi) for xi in x2])

Nevertheless, there is a faster way of computing y2 as the next para-
graph explains.

5.2.4 Vectorization

Loops over very long arrays may run slowly. A great advantage with
arrays is that we can get rid of the loops and apply f directly to the
whole array:

>>> y2 = f(x2)
>>> y2
array([0. , 0.015625, 0.125 , 0.421875, 1.])

The magic that makes f(x2) work builds on the vector computing con-
cepts from Chapter 5.1.3. Instead of calling f(x2) we can equivalently
write the function formula x2**3 directly.

The point is that numpy implements vector arithmetics for arrays
of any dimension. Moreover, numpy provides its own versions of math-
ematical functions like cos, sin, exp, log, etc., which work for array
arguments and apply the mathematical function to each element. The
following code, computes each array element separately:

from math import sin, cos, exp
import numpy as np
r = np.zeros(len(x))
for i in xrange(len(x)):

r[i] = sin(x[i])*cos(x[i])*exp(-x[i]**2) + 2 + x[i]**2

5.2 Arrays in Python Programs 197

while here is a corresponding code which operate on arrays directly:

r = np.sin(x)*np.cos(x)*np.exp(-x**2) + 2 + x**2

Many will prefer to see such formulas without the np prefix:

from numpy import sin, cos, exp
r = sin(x)*cos(x)*exp(-x**2) + 2 + x**2

An important thing to understand is that sin from the math module
is different from the sin function provided by numpy. The former does
not allow array arguments, while the latter accepts both real numbers
and arrays.

Replacing a loop like the one above, for computing r[i], by a
vector/array expression like sin(x)*cos(x)*exp(-x**2) + 2 + x**2, is
called vectorization. The loop version is often referred to as scalar code.
For example,

import numpy as np
import math
x = np.zeros(N); y = np.zeros(N)
dx = 2.0/(N-1) # spacing of x coordinates
for i in range(N):

x[i] = -1 + dx*i
y[i] = math.exp(-x[i])*x[i]

is scalar code, while the corresponding vectorized version reads

x = np.linspace(-1, 1, N)
y = np.exp(-x)*x

We remark that list comprehensions,

x = array([-1 + dx*i for i in range(N)])
y = array([np.exp(-xi)*xi for xi in x])

result in scalar code because we still have explicit, slow Python for

loops operating on scalar quantities. The requirement of vectorized
code is that there are no explicit Python for loops. The loops required
to compute each array element are performed in fast C or Fortran code
in the numpy package.

Most Python functions intended for a scalar argument x, like

def f(x):
return x**4*exp(-x)

automatically work for an array argument x:

x = np.linspace(-3, 3, 101)
y = f(x)

provided that the exp function in the definition of f accepts an array
argument. This means that exp must have been imported as from numpy

198 5 Array Computing and Curve Plotting

import * or explicitly as from numpy import exp. One can, of course,
prefix exp as in np.exp, at the loss of a less attractive mathematical
syntax in the formula.

When a Python function f(x) works for an array argument x, we
say that the function f is vectorized. Provided that the mathematical
expressions in f involves arithmetic operations and basic mathematical
functions from the math module, f will be automatically vectorized by
just importing the functions from numpy instead of math. However, if
the expression inside f involves if tests, the code needs a rewrite to
work with arrays. Chapter 5.4.1 presents examples where we have to
do special actions in order to vectorize functions.

Vectorization is very important for speeding up Python programs
that perform heavy computations with arrays. Moreover, vectorization
gives more compact code that is easier to read. Vectorization becomes
particularly important for statistical simulations in Chapter 8.

5.3 Curve Plotting

Visualizing a function f(x) is done by drawing the curve y = f(x) in
an xy coordinate system. When we use a computer to do this task, we
say that we plot the curve. Technically, we plot a curve by drawing
straight lines between n points on the curve. The more points we use,
the smoother the curve appears.

Suppose we want to plot the function f(x) for a ≤ x ≤ b. First
we pick out n x coordinates in the interval [a, b], say we name these
x0, x1, . . . , xn−1. Then we evaluate yi = f(xi) for i = 0, 1, . . . , n− 1.
The points (xi, yi), i = 0, 1, . . . , n− 1, now lie on the curve y = f(x).
Normally, we choose the xi coordinates to be equally spaced, i.e.,

xi = a+ ih, h =
b− a

n− 1
.

If we store the xi and yi values in two arrays x and y, we can plot the
curve by the command like plot(x,y).

Sometimes the names of the independent variable and the function
differ from x and f , but the plotting procedure is the same. Our first
example of curve plotting demonstrates this fact by involving a function
of t.

5.3.1 Matplotlib; Pylab

The standard package for curve plotting in Python is Matplotlib. First
we exemplify Matplotlib using matplotlib.pylab, which enables a syn-
tax very close to that of Matlab. This is a great advantage since many

5.3 Curve Plotting 199

readers may have experience with plotting in Matlab, or they will cer-
tainly meet Matlab sometime in their scientific work.

A Basic Plot. Let us plot the curve y = t2 exp(−t2) for t values between
0 and 3. First we generate equally spaced coordinates for t, say 51 values
(50 intervals). Then we compute the corresponding y values at these
points, before we call the plot(t,y) command to make the curve plot.
Here is the complete program:

from matplotlib.pylab import *

def f(t):
return t**2*exp(-t**2)

t = linspace(0, 3, 51) # 51 points between 0 and 3
y = zeros(len(t)) # allocate y with float elements
for i in xrange(len(t)):

y[i] = f(t[i])

plot(t, y)
show()

The from matplotlib.pylab import * performs a from numpy import *

import as well as an import of all Matplotlib commands that resemble
Matlab-style syntax. In this program we pre-allocate the y array and
fill it with values, element by element, in a Python loop. Alternatively,
we may operate on the whole t array at once, which yields faster and
shorter code:

y = f(t)

To include the plot in electronic documents, we need a hardcopy of
the figure in PostScript, PNG, or another image format. The savefig

function saves the plot to files in various image formats:

savefig(’tmp1.eps’) # produce PostScript
savefig(’tmp1.png’) # produce PNG

The filename extension determines the format: .eps for PostScript and
.png for PNG. Figure 5.2 displays the resulting plot.

Decorating the Plot. The x and y axes in curve plots should have
labels, here t and y, respectively. Also, the curve should be identified
with a label, or legend as it is often called. A title above the plot is
also common. In addition, we may want to control the extent of the
axes (although most plotting programs will automatically adjust the
axes to the range of the data). All such things are easily added after
the plot command:

200 5 Array Computing and Curve Plotting

Fig. 5.2 A simple plot in PostScript format (Matplotlib).

plot(t, y)
xlabel(’t’)
ylabel(’y’)
legend([’t^2*exp(-t^2)’])
axis([0, 3, -0.05, 0.6]) # [tmin, tmax, ymin, ymax]
title(’My First Matplotlib Demo’)
savefig(’tmp2.eps’)
show()

Removing the show() call prevents the plot from being shown on the
screen, which is advantageous if the program’s purpose is to make a
large number of plots in PostScript or PNG format (you do not want
all the plot windows to appear on the screen and then kill all of them
manually). This decorated plot is displayed in Figure 5.3.

Plotting Multiple Curves. A common plotting task is to compare two or
more curves, which requires multiple curves to be drawn in the same
plot. Suppose we want to plot the two functions f1(t) = t2 exp(−t2)
and f2(t) = t4 exp(−t2). We can then just issue two plot com-
mands, one for each function. To make the syntax resemble Mat-
lab, we call hold(’on’) after the first plot command to indicate
that subsequent plot commands are to draw the curves in the first
plot.

def f1(t):
return t**2*exp(-t**2)

def f2(t):
return t**2*f1(t)

t = linspace(0, 3, 51)
y1 = f1(t)

5.3 Curve Plotting 201

Fig. 5.3 A single curve with label, title, and axis adjusted (Matplotlib).

y2 = f2(t)

plot(t, y1, ’r-’)
hold(’on’)
plot(t, y2, ’bo’)
xlabel(’t’)
ylabel(’y’)
legend([’t^2*exp(-t^2)’, ’t^4*exp(-t^2)’])
title(’Plotting two curves in the same plot’)
show()

In these plot commands, we have also specified the line type: r- means
red (r) line (-), while bo means a blue (b) circle (o) at each data point.
Figure 5.4 shows the result. The legends for each curve is specified in
a list where the sequence of strings correspond to the sequence of plot
commands. Doing a hold(’off’) makes the next plot command create
a new plot.

Placing Several Plots in One Figure. We may also put plots together
in a figure with r rows and c columns of plots. The subplot(r,c,a)

does this, where a is a row-wise counter for the individual plots. Here
is an example with two rows of plots, and one plot in each row (see
Figure 5.5):

figure() # make separate figure
subplot(2, 1, 1)
t = linspace(0, 3, 51)
y1 = f1(t)
y2 = f2(t)

plot(t, y1, ’r-’, t, y2, ’bo’)
xlabel(’t’)

202 5 Array Computing and Curve Plotting

Fig. 5.4 Two curves in the same plot (Matplotlib).

ylabel(’y’)
axis([t[0], t[-1], min(y2)-0.05, max(y2)+0.5])
legend([’t^2*exp(-t^2)’, ’t^4*exp(-t^2)’])
title(’Top figure’)

subplot(2, 1, 2)
t3 = t[::4]
y3 = f2(t3)

plot(t, y1, ’b-’, t3, y3, ’ys’)
xlabel(’t’)
ylabel(’y’)
axis([0, 4, -0.2, 0.6])
legend([’t^2*exp(-t^2)’, ’t^4*exp(-t^2)’])
title(’Bottom figure’)
savefig(’tmp4.eps’)
show()

The figure() call creates a new plot window on the screen.
All of the examples above on plotting with Matplotlib are collected

in the file mpl_pylab_examples.py.

5.3.2 Matplotlib; Pyplot

The Matplotlib developers do not promote the matplotlib.pylab in-
terface. Instead, they recommend the matplotlib.pyplot module and
prefix Numerical Python and Matplotlib functionality by short forms
of their package names:

import numpy as np
import matplotlib.pyplot as plt

5.3 Curve Plotting 203

Fig. 5.5 Example on two plots in one figure (Matplotlib).

The commands in matplotlib.pyplot are similar to those in
matplotlib.pylab. The plot in Figure 5.3 can typically be obtained by
prefixing the pylab commands with plt:

plt.plot(t, y)
plt.legend([’t^2*exp(-t^2)’])
plt.xlabel(’t’)
plt.ylabel(’y’)
plt.axis([0, 3, -0.05, 0.6]) # [tmin, tmax, ymin, ymax]
plt.title(’My First Matplotlib Demo’)
plt.show()
plt.savefig(’tmp2.eps’) # produce PostScript

Instead of giving plot data and legends separately, it is more common
to write

plt.plot(t, y, label=’t^2*exp(-t^2)’)

However, in this book we shall stick to the legend command since this
makes the transition to/from Matlab easier.

Figure 5.4 can be produced by

def f1(t):
return t**2*np.exp(-t**2)

def f2(t):
return t**2*f1(t)

t = np.linspace(0, 3, 51)
y1 = f1(t)
y2 = f2(t)

plt.plot(t, y1, ’r-’)
plt.plot(t, y2, ’bo’)

204 5 Array Computing and Curve Plotting

plt.xlabel(’t’)
plt.ylabel(’y’)
plt.legend([’t^2*exp(-t^2)’, ’t^4*exp(-t^2)’])
plt.title(’Plotting two curves in the same plot’)
plt.savefig(’tmp3.eps’)
plt.show()

Putting multiple plots in a figure follows the same set-up with subplot

as shown for pylab, except that commands are prefixed by plt. The
complete example, along with the codes listed above, are found in the
file mpl_pyplot_examples.py.

Once you have created a basic plot, there are numerous possibilities
for fine-tuning the figure, i.e., adjusting tick marks on the axis, inserting
text, etc. The Matplotlib website is full of instructive examples on what
you can do with this excellent package.

5.3.3 SciTools and Easyviz

Although Matplotlib has recently evolved to be the de facto stan-
dard for curve plotting in Python, there are several other alterna-
tive packages, especially if we also consider plotting of 2D/3D scalar
and vector fields. Python has interfaces to many leading visualization
packages: Matlab, Gnuplot, Grace, OpenDX, and VTK. Even basic
plotting with these packages has very different syntax, and deciding
which package and syntax to go with was and still is a challenge.
As a response to this challenge, Easyviz was created to provide a
common uniform interface to all the mentioned visualization packages
(including Matplotlib). The syntax of this interface was made very
close to that of Matlab, since most scientists and engineers have ex-
perience with Matlab or most probably will be using it in some con-
text8.

Easyviz is part of the SciTools package, which consists of a set of
Python tools building on Numerical Python, ScientificPython, the com-
prehensive SciPy environment, and other packages for scientific com-
puting with Python. SciTools contains in particular software related
to the book [5] and the present text. Installation is straightforward
(just run python setup.py install, if you have downloaded the source
code, or do sudo apt-get install python-scitools on Debian-based
systems such as Ubuntu Linux).

Importing SciTools and Easyviz. A standard import of SciTools is

from scitools.std import *

8 In general, the Python syntax used in the examples in this book is constructed to ease

the transition to and from Matlab.

5.3 Curve Plotting 205

The advantage of this statement is that it, with a minimum of typing,
imports a lot of useful modules for numerical Python programming:
Easyviz, all of numpy (from numpy import *), all of scipy (from scipy

import *) if available, all of scitools.numpyutils (some convenience
functions extending numpy), numpy.lib.scimath (see Chapter 1.6.3),
StringFunction tool (see Chapter 4.1.4), plus commonly applied mod-
ules such as sys, os, and math. The imported standard mathematical
functions (sqrt, sin, asin, exp, etc.) work with arrays and deal trans-
parently with real and complex input/output (as the corresponding
Matlab functions).

The downside of the “star import” from scitools.std is twofold.
First, it fills up your program or interactive session with the names of
several hundred functions. Second, when using a particular function,
you do not know the package it comes from. Both problems are solved
by doing an import of the type used in Chapter 5.3.2:

import scitools.std as st
import numpy as np

All of the SciTools and Easyviz functions must then be prefixed by
st. Although the numpy functions are available through the st prefix,
we recommend to use the np prefix to clearly see where functionality
comes from.

Importing scitools.std might be a comprehensive process, espe-
cially if scipy is available, and consequently take some time. A more
minimalistic and faster import for plotting with Easyviz is

from scitools.easyviz import *
from numpy import *

or

import scitools.easyviz as ev
import numpy as np

The Easyviz plotting functions must then be prefixed by ev.
Since the Easyviz syntax for plotting is very close to that of Matlab,

it is also very close to the syntax of Matplotlib. This will be demon-
strated in the forthcoming examples. The advantage of using Easyviz
is that the underlying plotting package, used to create the graphics and
known as a backend , can trivially be replaced by another package. If
users of your Python software have not installed a particular visual-
ization package, the software can still be used with another alternative
(which might be considerably easier to install). By default, Easyviz
now employs Matplotlib for plotting. Other popular alternatives are
Gnuplot and Matlab. For 2D/3D scalar and vector fields, VTK is a
popular backend for Easyviz.

We shall next redo the curve plotting examples from Chapter 5.3.1
using Easyviz syntax.

206 5 Array Computing and Curve Plotting

A Basic Plot. Plotting the curve y = t2 exp(−t2) for t ∈ [0, 3], using
51 equally spaced points (50 intervals) is performed by like this:

from scitools.std import *

def f(t):
return t**2*exp(-t**2)

t = linspace(0, 3, 51)
y = f(t)
plot(t, y)

To save the plot in a file, either in PostScript or PNG format, we use
the savefig function, which takes the filename as argument:

savefig(’tmp1.eps’) # produce PostScript
savefig(’tmp1.png’) # produce PNG

The filename extension determines the format: .ps or .eps for
PostScript, and .png for PNG. A synonym for the savefig func-
tion is hardcopy.

On some platforms, some backends may result in a plot that is shown
in just a fraction of a second on the screen before the plot window
disappears (using the Gnuplot backend on Windows machines, or using
the Matplotlib backend, constitute two examples). To make the window
stay on the screen, add

raw_input(’Press the Return key to quit: ’)

at the end of the program. The plot window is killed when the program
terminates, and this statement postpones the termination until the user
hits the Return key.

Decorating the Plot. Let us plot the same curve, but now with a legend,
a plot title, labels on the axes, and specified ranges of the axes:

from scitools.std import *

def f(t):
return t**2*exp(-t**2)

t = linspace(0, 3, 51)
y = f(t)
plot(t, y)
xlabel(’t’)
ylabel(’y’)
legend(’t^2*exp(-t^2)’)
axis([0, 3, -0.05, 0.6]) # [tmin, tmax, ymin, ymax]
title(’My First Easyviz Demo’)

Easyviz has also introduced a more “Pythonic” plot command where
all the plot properties can be set at once through keyword arguments:

5.3 Curve Plotting 207

plot(t, y,
xlabel=’t’,
ylabel=’y’,
legend=’t^2*exp(-t^2)’,
axis=[0, 3, -0.05, 0.6],
title=’My First Easyviz Demo’,
savefig=’tmp1.eps’,
show=True)

With show=False one can avoid the plot window on the screen and
just make the plot file.

Note that we in the curve legend write t square as t^2 (LATEX style)
rather than t**2 (program style). Whichever form you choose is up
to you, but the LATEX form sometimes looks better in some plotting
programs (Matplotlib and Gnuplot are two examples).

Plotting Multiple Curves. Next we want to compare the two functions
f1(t) = t2 exp(−t2) and f2(t) = t4 exp(−t2). Writing two plot com-
mands after each other makes two separate plots. To make the second
curve appear together with the first one, we need to issue a hold(’on’)

call after the first plot command. All subsequent plot commands will
then draw curves in the same plot, until hold(’off’) is called.

from scitools.std import *

def f1(t):
return t**2*exp(-t**2)

def f2(t):
return t**2*f1(t)

t = linspace(0, 3, 51)
y1 = f1(t)
y2 = f2(t)

plot(t, y1)
hold(’on’)
plot(t, y2)

xlabel(’t’)
ylabel(’y’)
legend(’t^2*exp(-t^2)’, ’t^4*exp(-t^2)’)
title(’Plotting two curves in the same plot’)
savefig(’tmp3.eps’)

The sequence of the multiple legends is such that the first legend cor-
responds to the first curve, the second legend to the second curve, and
so forth.

Instead of separate calls to plot and the use of hold(’on’), we can
do everything at once and just send several curves to plot:

plot(t, y1, t, y2, xlabel=’t’, ylabel=’y’,
legend=(’t^2*exp(-t^2)’, ’t^4*exp(-t^2)’),
title=’Plotting two curves in the same plot’,
savefig=’tmp3.eps’)

208 5 Array Computing and Curve Plotting

Throughout this book, we very often make use of this type of compact
plot command, which also only requires an import of the form from

scitools.std import plot.

Changing Backend. Easyviz applies Matplotlib for plotting by default,
so the resulting figures so far will be similar to those of Figure 5.2–5.4.

However, we can use other backends (plotting packages) for creating
the graphics. The specification of which package to use is defined in a
configuration file9, or on the command line:

Terminal

Terminal> python myprog.py --SCITOOLS_easyviz_backend gnuplot

Now, the plotting commands in myprog.py will make use of Gnuplot to
create the graphics, with a slightly different result than that created
by Matplotlib (compare Figures 5.4 and 5.6).

Fig. 5.6 Two curves in the same plot (Gnuplot).

Placing Several Plots in One Figure. Finally, we redo the example from
Chapter 5.3.1 where two plots are combined into one figure, using the
subplot command:

figure()
subplot(2, 1, 1)
t = linspace(0, 3, 51)
y1 = f1(t)
y2 = f2(t)

9 See the heading “Setting Parameters in the Configuration File” in the Easyviz

documentation.

5.3 Curve Plotting 209

plot(t, y1, ’r-’, t, y2, ’bo’, xlabel=’t’, ylabel=’y’,
legend=(’t^2*exp(-t^2)’, ’t^4*exp(-t^2)’),
axis=[t[0], t[-1], min(y2)-0.05, max(y2)+0.5],
title=’Top figure’)

subplot(2, 1, 2)
t3 = t[::4]
y3 = f2(t3)

plot(t, y1, ’b-’, t3, y3, ’ys’,
xlabel=’t’, ylabel=’y’,
axis=[0, 4, -0.2, 0.6],
legend=(’t^2*exp(-t^2)’, ’t^4*exp(-t^2)’),
title=’Bottom figure’)

savefig(’tmp4.eps’)

Note that figure() must be used if you want a program to make dif-
ferent plot windows on the screen: each figure() call creates a new,
separate plot.

All of the Easyviz examples above are found in the file
easyviz_examples.py. We remark that Easyviz is just a thin layer
of code providing access to the most common plotting functionality for
curves as well as 2D/3D scalar and vector fields. Fine-tuning of plots,
e.g., specifying tick marks on the axes, is not supported, simply because
99% of plots in the daily work can be made without such functionality.
For fine-tuning the plot with special commands, you need to grab
an object in Easyviz that communicates directly with the underlying
plotting package used to create the graphics. With this object you
can issue package-specific commands and do whatever the underlying
package allows you do. This is explained in the Easyviz manual, which
you can find at code.google.com/p/scitools. You can also get a plain
text version of the manual by running pydoc scitools.easyviz. As
soon as you have digested the very basics of plotting, you are strongly
recommend to read through the curve plotting part of the Easyviz
manual.

5.3.4 Making Animations

A sequence of plots can be combined into an animation and stored in
a movie file. First we must generate a series of hardcopies, i.e., plots
stored in files. Thereafter we must use a tool to combine the individual
plot files into a movie file.

Example. The function

f(x;m, s) = (2π)−1/2s−1 exp

[
−1

2

(
x−m

s

)2]

is known as the Gaussian function or the probability density function
of the normal (or Gaussian) distribution. This bell-shaped function is

https://scitools.googlecode.com/hg/doc/easyviz/easyviz.html

210 5 Array Computing and Curve Plotting

“wide” for large s and “peak-formed” for small s, see Figure 5.7. The
function is symmetric around x = m (m = 0 in the figure). Our goal
is to make an animation where we see how this function evolves as s
is decreased. In Python we implement the formula above as a function
f(x, m, s).

Fig. 5.7 Different shapes of a Gaussian function.

The animation is created by varying s in a loop and for each s issue
a plot command. A moving curve is then visible on the screen. One can
also make a movie file that can be played as any other computer movie
using a standard movie player. To this end, each plot is saved to a file,
and all the files are combined together using some suitable tool, which
is reached through the movie function in Easyviz. All necessary steps
will be apparent in the complete program below, but before diving into
the code we need to comment upon a couple of issues with setting up
the plot command for animations.

The underlying plotting program will normally adjust the axis to the
maximum and minimum values of the curve if we do not specify the axis
ranges explicitly. For an animation such automatic axis adjustment is
misleading – any axis range must be fixed to avoid a jumping axis. The
relevant values for the y axis range is the minimum and maximum value
of f . The minimum value is zero, while the maximum value appears for
x = m and increases with decreasing s. The range of the y axis must
therefore be [0, f(m;m,min s)].

The function f is defined for all −∞ < x < ∞, but the function
value is very small already 3s away from x = m. We may therefore
limit the x coordinates to [m− 3s,m+ 3s].

5.3 Curve Plotting 211

Now we are ready to take a look at the complete code for animating
how the Gaussian function evolves as the s parameter is decreased from
2 to 0.2. First we show animation with the help of Easyviz, as this is
very similar standard static plotting, and you can choose which plotting
engine you want to use, say Gunplot or Matplotlib. The Easyviz recipe
goes as follows.

from scitools.std import sqrt, pi, exp, linspace, plot, movie
import time

def f(x, m, s):
return (1.0/(sqrt(2*pi)*s))*exp(-0.5*((x-m)/s)**2)

m = 0
s_min = 0.2
s_max = 2
x = linspace(m -3*s_max, m + 3*s_max, 1000)
s_values = linspace(s_max, s_min, 30)
f is max for x=m; smaller s gives larger max value
max_f = f(m, m, s_min)

Show the movie on the screen
and make hardcopies of frames simultaneously.

counter = 0
for s in s_values:

y = f(x, m, s)
plot(x, y, axis=[x[0], x[-1], -0.1, max_f],

xlabel=’x’, ylabel=’f’, legend=’s=%4.2f’ % s,
savefig=’tmp%04d.png’ % counter)

counter += 1
#time.sleep(0.2) # can insert a pause to control movie speed

Make movie file the simplest possible way:
movie(’tmp*.png’)

Note that the s values are decreasing (linspace handles this auto-
matically if the start value is greater than the stop value). Also note
that we, simply because we think it is visually more attractive, let the
y axis go from −0.1 although the f function is always greater than
zero. The complete code is found in the file movie1.py.

It is crucial to use the single, compound plot command shown above,
where axis, labels, legends, etc., are set in the same call. Splitting up
in individual calls to plot, axis, and so forth, results in jumping curves
and axis. Also, when visualizing more than one animated curve at a
time, make sure you send all data to a single plot command.

Animation in Matplotlib. Moving curves in Matplotlib require con-
structions that differ from the Easyviz recipe given above. The first
part of the program is the same where we define f, x, s_values, and so
on. Here we concentrate on the graphics part:

import matplotlib.pyplot as mpl
...
Make a first plot
mpl.ion()
y = f(x, m, s_max)

212 5 Array Computing and Curve Plotting

lines = mpl.plot(x, y)
mpl.axis([x[0], x[-1], -0.1, max_f])
mpl.xlabel(’x’)
mpl.ylabel(’f’)

Show the movie, and make hardcopies of frames simultaneously
counter = 0
for s in s_values:

y = f(x, m, s)
lines[0].set_ydata(y)
mpl.draw()
mpl.legend([’s=%4.2f’ % s])
mpl.savefig(’tmp_%04d.png’ % counter)
counter += 1

The mpl.ion() call is important, so is the first plot, where we grab
the result of the plot command, which is a list of Matplotlib’s Line2D

objects. The idea is then to update the data via lines[0].set_ydata

and show the plot via mpl.draw() for each frame. For multiple curves
we must update the y data for each curve, e.g.,

lines = plot(x, y1, x, y2, x, y3)

for parameter in parameters:
y1 = ...
y2 = ...
y3 = ...
for line, y in zip(lines, [y1, y2, y3]):

line.set_ydata(y)
mpl.draw()

The file movie1_mpl.py has a complete program doing animation with
native Matplotlib syntax.

Remarks on Filenames. For each frame (plot) in the movie we store
the plot in a file. The different files need different names and an easy
way of referring to the set of files in right order. We therefore suggest
to use filenames of the form tmp0001.png, tmp0002.png, tmp0003.png,
etc. The printf format 04d pads the integers with zeros such that 1

becomes 0001, 13 becomes 0013 and so on. The expression tmp*.png

will now expand (by an alphabetic sort) to a list of all files in proper
order. Without the padding with zeros, i.e., names of the form tmp1.png,
tmp2.png, ..., tmp12.png, etc., the alphabetic order will give a wrong
sequence of frames in the movie. For instance, tmp12.png will appear
before tmp2.png.

Note that the names of plot files specified when making hardcopies
must be consistent with the specification of names in the call to the
Easyviz movie function. Typically, one applies a Unix wildcard notation
in the call to movie, say plotfile*.eps, where the asterisk will match
any set of characters. When specifying hardcopies, we must then use
a filename that is consistent with plotfile*.eps, that is, the filename
must start with plotfile and end with .eps, but in between these two
parts we are free to construct (e.g.) a frame number padded with zeros.

5.3 Curve Plotting 213

We recommend to always remove previously generated plot files be-
fore a new set of files is made. Otherwise, the movie may get old and
new files mixed up. The following Python code removes all files of the
form tmp*.png:

import glob, os
for filename in glob.glob(’tmp*.png’):

os.remove(filename)

These code lines should be inserted at the beginning of the code exam-
ple above. Alternatively, one may store all plotfiles in a subfolder and
later delete the subfolder. Here is a suitable code segment10:

import shutil, os
subdir = ’temp’ # subfolder name for plot files
if os.path.isdir(subdir): # does the subfolder already exist?

shutil.rmtree(subdir) # delete the whole folder
os.mkdir(subdir) # make new subfolder
os.chdir(subdir) # move to subfolder
... perform all the plotting, make movie ...
os.chdir(os.pardir) # optional: move up to parent folder

Movie Formats. Having a set of (e.g.) tmp*.png files, one can simply
generate a movie by a movie(’tmp*.png’) call. The movie function gen-
erates a movie file called movie.html (HTML format), movie.avi (AVI
format), movie.mpeg (MPEG format), or movie.gif (animated GIF for-
mat) in the current working directory. The movie format depends on
the encoders found on your machine. The HTML format can always be
made and played. Hence this format is the natural choice if problems
with other formats occur. The corresponding movie call reads

movie(’tmp_*.png’, encoder=’html’, output_file=’tmpmovie.html’)

You can get complete control of the movie format and the name
of the movie file by supplying extra arguments to the movie function.
First, let us generate an animated GIF file called tmpmovie.gif:

movie(’tmp_*.eps’, encoder=’convert’, fps=2,
output_file=’tmpmovie.gif’)

The generation of animated GIF images applies the convert program
from the ImageMagick suite. This program must of course be installed
on the machine. The argument fps stands for frames per second so here
the speed of the movie is slow in that there is a delay of half a second
between each frame (image file). The complete convert command that
is run by movie is also printed on the screen. In this case it looks like

convert -delay 50 tmp_*.png tmpmovie.gif

which is a command you can run manually instead of calling movie.
To view the animated GIF file, one can use the animate program (also

10 Python and many other languages use the word directory instead of folder. Consequently,

the name of functions dealing with folders have a name with dir for “directory”.

214 5 Array Computing and Curve Plotting

from ImageMagick) and give the movie file as command-line argument.
One can alternatively put the GIF file in a web page in an IMG tag
such that a browser automatically displays the movie (see below).

An AVI movie can be generated by the call

movie(’tmp_*.eps’, encoder=’ffmpeg’, fps=4,
output_file=’tmpmovie1.avi’,

Alternatively, we may generate an MPEG movie using the ppmtompeg

encoder from the Netpbm suite of image manipulation tools:

movie(’tmp_*.eps’, encoder=’ppmtompeg’, fps=24,
output_file=’tmpmovie2.mpeg’,

The ppmtompeg supports only a few (high) frame rates.
The next sample call to movie uses the Mencoder tool and specifies

some additional arguments (video codec, video bitrate, and the quan-
tization scale):

movie(’tmp_*.eps’, encoder=’mencoder’, fps=24,
output_file=’tmpmovie.mpeg’,
vcodec=’mpeg2video’, vbitrate=2400, qscale=4)

Note that even if you prefer to make the individual plot files by
Matplotlib, Matlab, or whatever, the movie command from Easyviz is
still handy to make a movie file out of the individual plot files. All you
need to do is from scitools.std import movie and call movie with the
right specification of plot file names.

Playing movie files can be done by a lot of programs. Windows Media
Player is a default choice on Windows machines. On Unix, a variety of
tools are available. For animated GIF files the animate program from
the ImageMagick suite is suitable, or one can simply show the file in
a web page with the HTML command . AVI
and MPEG files can be played by, for example, the mplayer, vlc, or
totem programs. The HTML movie is always trouble-free to play: just
load tmpmovie.html into any web browser on any platform.

5.3.5 Curves in Pure Text

Sometimes it can be desirable to show a graph in pure ASCII text,
e.g., as part of a trial run of a program included in the program itself
(cf. the introduction to Chapter 1.8), or a graph can be illustrative in
a doc string. For such purposes we have slightly extended a module by
Imri Goldberg (aplotter.py) and included it as a module in SciTools.
Running pydoc on scitools.aplotter describes the capabilities of this
type of primitive plotting. Here we just give an example of what it can
do:

5.4 Plotting Difficulties 215

>>> import numpy as np
>>> x = np.linspace(-2, 2, 81)
>>> y = np.exp(-0.5*x**2)*np.cos(np.pi*x)
>>> from scitools.aplotter import plot
>>> plot(x, y)

|
// |\\

/ | \
/ | \

/ | \
/ | \

/ | \
/ | \

/ | \
-------\ / | \

---+-------\\-----------------/---------+--------\-----------------
-2 \ / | \ /

\\ / | \ //
\ / | \ /
\\ / | \ //
\ / | \ /
\ // | \- //
---- -0.63 ---/

|

>>> # plot circles at data points only:
>>> plot(x, y, dot=’o’, plot_slope=False)

|
o+1

oo |oo
o | o
o | o

|
o | o
o | o

|
oooooooo o | o

---+-------oo-----------------o---------+--------o-----------------
-2 o | o

oo o | o oo
o o | o o
oo o | o oo
o o | o o
o oo | oo oo
oooo -0.63 oooo

|
>>> p = plot(x, y, output=str) # store plot in a string p
>>> print p

(The last 13 characters of the output lines are here removed to make
the lines fit the maximum textwidth of this book.)

5.4 Plotting Difficulties

The previous examples on plotting functions demonstrate how easy
it is to make graphs. Nevertheless, the shown techniques might easily
fail to plot some functions correctly unless we are careful. Next we
address two types of difficult functions: piecewisely defined functions
and rapidly varying functions.

216 5 Array Computing and Curve Plotting

5.4.1 Piecewisely Defined Functions

A piecewisely defined function has different function definitions in dif-
ferent intervals along the x axis. The resulting function, made up of
pieces, may have discontinuities in the function value or in derivatives.
We have to be very careful when plotting such functions, as the next
two examples will show. The problem is that the plotting mechanism
draws straight lines between coordinates on the function’s curve, and
these straight lines may not yield a satisfactory visualization of the
function. The first example has a discontinuity in the function itself at
one point, while the other example has a discontinuity in the derivative
at three points.

Example: The Heaviside Function. Let us plot the Heaviside function

H(x) =

{
0, x < 0
1, x ≥ 0

The most natural way to proceed is first to define the function as

def H(x):
return (0 if x < 0 else 1)

The standard plotting procedure where we define a coordinate array x

and call y = H(x) will not work for array arguments x, of reasons to be
explained in Chapter 5.5.2. However, we may use techniques from that
chapter to create a function Hv(x) which works for array arguments.
Even with such a function we face difficulties with plotting it.

Since the Heaviside function consists of two flat lines, one may think
that we do not need many points along the x axis to describe the curve.
Let us try with nine points:

x = np.linspace(-10, 10, 9)
from scitools.std import plot
plot(x, Hv(x), axis=[x[0], x[-1], -0.1, 1.1])

However, so few x points are not able to describe the jump from 0 to 1
at x = 0, as shown by the solid line in Figure 5.8a. Using more points,
say 50 between −10 and 10,

x2 = np.linspace(-10, 10, 50)
plot(x, Hv(x), ’r’, x2, Hv(x2), ’b’,

legend=(’5 points’, ’50 points’),
axis=[x[0], x[-1], -0.1, 1.1])

makes the curve look better. However, the step is still not strictly ver-
tical. More points will improve the situation. Nevertheless, the best is
to draw two flat lines directly: from (−10, 0) to (0, 0), then to (0, 1)
and then to (10, 1):

5.4 Plotting Difficulties 217

plot([-10, 0, 0, 10], [0, 0, 1, 1],
axis=[x[0], x[-1], -0.1, 1.1])

The result is shown in Figure 5.8b.

Fig. 5.8 Plot of the Heaviside function: (a) using 9 equally spaced x points; (b) using a
“double point” at x = 0.

Some will argue that the plot of H(x) should not contain the vertical
line from (0, 0) to (0, 1), but only two horizontal lines. To make such a
plot, we must draw two distinct curves, one for each horizontal line:

plot([-10,0], [0,0], ’r-’, [0,10], [1,1], ’r-’,
axis=[x[0], x[-1], -0.1, 1.1])

Observe that we must specify the same line style for both lines (curves),
otherwise they would by default get different colors on the screen or
different line types in a hardcopy of the plot. We remark, however, that
discontinuous functions likeH(x) are often visualized with vertical lines
at the jumps, as we do in Figure 5.8b.

Example: A Hat Function. Let us plot the hat function N(x), defined
by (3.5) on page 105. The Python function N(x) shown right after (3.5)
does not work with array arguments x, but Chapter 5.5.3 explains how
to make a vectorized version Nv(x) which works for array arguments.
Nevertheless, this vectorized version faces challenges when it comes to
plotting.

A first approach to plotting could be

x = np.linspace(-2, 4, 6)
plot(x, Nv(x), ’r’, axis=[x[0], x[-1], -0.1, 1.1])

This results in the dashed line in Figure 5.9. What is the problem?
The problem lies in the computation of the x vector, which does not
contain the points x = 1 and x = 2 where the function makes significant
changes. The result is that the hat is “flattened”. Making an x vector
with all critical points in the function definitions, x = 0, 1, 2, provides
the necessary remedy, either

218 5 Array Computing and Curve Plotting

Fig. 5.9 Plot of a hat function. The solid line shows the exact function, while the dashed

line arises from using inappropriate points along the x axis.

x = np.linspace(-2, 4, 7)

or the simple

x = [-2, 0, 1, 2, 4]

Any of these x alternatives and a plot(x, Nv(x)) will result in the
solid line in Figure 5.9, which is the correct visualization of the N(x)
function.

As in the case of the Heaviside function, it is perhaps best to drop
using vectorized evaluations and just draw straight lines between the
critical points of the function (since the function is linear):

x = [-2, 0, 1, 2, 4]
y = [N(xi) for xi in x]
plot(x, y, ’r’, axis=[x[0], x[-1], -0.1, 1.1])

5.4.2 Rapidly Varying Functions

Let us now visualize the function f(x) = sin(1/x), using 10 and 1000
points:

def f(x):
return sin(1.0/x)

from scitools.std import linspace, plot
x1 = linspace(-1, 1, 10)

5.5 More Advanced Vectorization of Functions 219

x2 = linspace(-1, 1, 1000)
plot(x1, f(x1), label=’%d points’ % len(x))
plot(x2, f(x2), label=’%d points’ % len(x))

The two plots are shown in Figure 5.10. Using only 10 points gives a
completely wrong picture of this function, because the function oscil-
lates faster and faster as we approach the origin. With 1000 points we
get an impression of these oscillations, but the accuracy of the plot
in the vicinity of the origin is still poor. A plot with 100000 points
has better accuracy, in principle, but the extremely fast oscillations
near the origin just drowns in black ink (you can try it out your-
self).

Another problem with the f(x) = sin(1/x) function is that it is easy
to define an x vector containing x = 0, such that we get division by
zero. Mathematically, the f(x) function has a singularity at x = 0: it
is difficult to define f(0), so one should exclude this point from the
function definition and work with a domain x ∈ [−1,−ε]∪ [ε, 1], with ε
chosen small.

The lesson learned from these examples is clear. You must investigate
the function to be visualized and make sure that you use an appropriate
set of x coordinates along the curve. A relevant first step is to double
the number of x coordinates and check if this changes the plot. If not,
you probably have an adequate set of x coordinates.

Fig. 5.10 Plot of the function sin(1/x) with (a) 10 points and (b) 1000 points.

5.5 More Advanced Vectorization of Functions

So far we have seen that vectorization of a Python function f(x) im-
plementing some mathematical function f(x) seems trival: f(x) works
right away with an array argument x and, in that case, returns an array
where f is applied to each element in x. When the expression for f(x)
is given in terms of a string and the StringFunction tool is used to
generate the corresponding Python function f(x), one extra step must

220 5 Array Computing and Curve Plotting

be performed to vectorize the Python function. This step is explained
in Chapter 5.5.1.

The described vectorization works well as long as the expression f(x)
is a mathematical formula without any if test. As soon as we have
if tests (conditional mathematical expressions) the vectorization be-
comes more challenging. Some useful techniques are explained through
two examples in Chapters 5.5.2 and 5.5.3. The described techniques
are considered advanced material and only necessary when the time
spent on evaluating a function at a very large set of points needs to be
significantly decreased.

5.5.1 Vectorizing StringFunction Objects

The StringFunction object described in Chapter 4.1.4 does unfor-
tunately not work with array arguments unless we explicitly tell
the object to do so. The recipe is very simple. Say f is some
StringFunction object. To allow array arguments we are required to
call f.vectorize(globals()) once:

from numpy import *
x = linspace(0, 1, 30)
f(x) will in general not work

f.vectorize(globals())
values = f(x) # f works with array arguments

It is important that you import everything from numpy (or
scitools.std) before calling f.vectorize, exactly as shown.

You may take the f.vectorize call as a magic recipe. Still, some
readers want to know what problem f.vectorize solves. Inside the
StringFunction module we need to have access to mathematical func-
tions for expressions like sin(x)*exp(x) to be evaluated. These mathe-
matical functions are by default taken from the math module and hence
they do not work with array arguments. If the user, in the main pro-
gram, has imported mathematical functions that work with array ar-
guments, these functions are registered in a dictionary returned from
globals(). By the f.vectorize call we supply the StringFunction mod-
ule with the user’s global namespace so that the evaluation of the string
expression can make use of the mathematical functions for arrays from
the user’s program. Unless you use np.sin(x)*np.cos(x) etc. in the
string formulas, make sure you do a from numpy import * so that the
function names are defined without any prefix.

Even after calling f.vectorize(globals()), a StringFunction object
may face problems with vectorization. One example is a piecewise con-
stant function as specified by a string expression ’1 if x > 2 else 0’.
Chapter 5.5.2 explains why if tests fail for arrays and what the reme-
dies are.

5.5 More Advanced Vectorization of Functions 221

5.5.2 Vectorization of the Heaviside Function

We consider the Heaviside function defined in (3.25) on page 128. The
most compact way if implementing this function is

def H(x):
return (0 if x < 0 else 1)

Trying to call H(x) with an array argument x fails:

>>> def H(x): return (0 if x < 0 else 1)
...
>>> import numpy as np
>>> x = np.linspace(-10, 10, 5)
>>> x
array([-10., -5., 0., 5., 10.])
>>> H(x)
...
ValueError: The truth value of an array with more than
one element is ambiguous. Use a.any() or a.all()

The problem is related to the test x < 0, which results in an array of
boolean values, while the if test needs a single boolean value (essen-
tially taking bool(x < 0)):

>>> b = x < 0
>>> b
array([True, True, False, False, False], dtype=bool)
>>> bool(b) # evaluate b in a boolean context
...
ValueError: The truth value of an array with more than
one element is ambiguous. Use a.any() or a.all()
>>> b.any() # True if any element in b is True
True
>>> b.all() # True if all elements in b are True
False

The any and all calls do not help us since we want to take actions
element by element depending on whether x[i] < 0 or not.

There are four ways to find a remedy to our problems with the if x

< 0 test: (i) we can write an explicit loop for computing the elements,
(ii) we can use a tool for automatically vectorize H(x), (iii) we can
mix boolean and floating-point calculations, or (iv) we can manually
vectorize the H(x) function. All four methods will be illustrated next.

Loop. The following function works well for arrays if we insert a simple
loop over the array elements (such that H(x) operates on scalars only):

def H_loop(x):
r = np.zeros(len(x))
for i in xrange(len(x)):

r[i] = H(x[i])
return r

Example:
x = np.linspace(-5, 5, 6)
y = H_loop(x)

222 5 Array Computing and Curve Plotting

Automatic Vectorization. Numerical Python contains a method for au-
tomatically vectorizing a Python function H(x) that works with scalars
(pure numbers) as x argument:

import numpy as np
H_vec = np.vectorize(H)

The H_vec(x) function will now work with vector/array arguments x.
Unfortunately, such automatically vectorized functions runs at a fairly
slow speed compared to the implementations below (see the end of
Chapter 5.5.3 for specific timings).

Mixing Boolean and Floating-Point Calculations. It appears that a
very simple solution to vectorizing the H(x) function is to implement it
as

def H(x):
return x >= 0

The return value is now a bool object, not an int or float as we would
mathematically expect to be the proper type of the result. However,
the bool object works well in both scalar and vectorized operations as
long as we involve the returned H(x) in some arithmetic expression.
The True and False values are then interpreted as 1 and 0. Here is a
demonstration:

>>> x = np.linspace(-1, 1, 5)
>>> H(x)
array([False, False, True, True, True], dtype=bool)
>>> 1*H(x)
array([0, 0, 1, 1, 1])
>>> H(x) - 2
array([-2, -2, -1, -1, -1])
>>>
>>> x = 0.2 # test scalar argument
>>> H(x)
True
>>> 1*H(x)
1
>>> H(x) - 2
-1

If returning a boolean value is considered undesirable, we can turn the
bool object into the proper type by

def H(x):
r = x >= 0
if isinstance(x, (int,float)):

return int(r)
elif isinstance(x, np.ndarray):

return np.asarray(r, dtype=np.int)

Manual Vectorization. By manual vectorization we normally mean
translating the algorithm into a set of calls to functions in the numpy

package such that no loops are visible in the Python code. The last

5.5 More Advanced Vectorization of Functions 223

version of the H(x) is a manual vectorization, but now we shall look
at a more general technique when the result is not necessarily 0 or 1.
In general, manual vectorization is non-trivial and requires knowledge
of and experience with the underlying library for array computations.
Fortunately, there is a simple numpy recipe for turning functions of the
form

def f(x):
if condition:

r = <expression1>
else:

r = <expression2>
return r

into vectorized form:

def f_vectorized(x):
x1 = <expression1>
x2 = <expression2>
r = np.where(condition, x1, x2)
return r

The np.where function returns an array of the same length as condition,
whose element no. i equals x1[i] if condition[i] is True, and x2[i]

otherwise. With Python loops we can express this principle as

def my_where(condition, x1, x2):
r = np.zeros(len(condition)) # result
for i in xrange(condition):

r[i] = x1[i] if condition[i] else x2[i]
return r

The x1 and x2 variables can be pure numbers too in the call to np.where.
In our case we can use the np.where function as follows:

def Hv(x):
return np.where(x < 0, 0.0, 1.0)

Instead of using np.where we can apply boolean indexing. The idea
is that an array a allow to be indexed by an array b of boolean values:
a[b]. The result a[b] is a new array with all the elements a[i] where
b[i] is True:

>>> a
array([0. , 2.5, 5. , 7.5, 10.])
>>> b = a > 5
>>> b
array([False, False, False, True, True], dtype=bool)
>>> a[b]
array([7.5, 10.])

We can assign new values to the elements in a where b is True:

>>> a[b]
array([7.5, 10.])
>>> a[b] = np.array([-10, -20], dtype=np.float)
>>> a

224 5 Array Computing and Curve Plotting

array([0. , 2.5, 5. , -10. , -20.])
>>> a[b] = -4
>>> a
array([0. , 2.5, 5. , -4. , -4.])

To implement the Heaviside function, we start with an array of zeros
and then assign 1 to the elements where x >= 0:

def Hv(x):
r = np.zeros(len(x), dtype=np.int)
r[x >= 0] = 1
return r

5.5.3 Vectorization of a Hat Function

We now turn the attention to the hat function N(x) defined by (3.5) on
page 105. The corresponding Python implementation N(x) shown right
after (3.5) does not work with array arguments x, because the boolean
expressions, like x < 0, are arrays and they cannot yield a single True

or False value for the if tests, as explained in Chapter 5.5.2.
The simplest remedy is to use np.vectorize from Chapter 5.5.2:

N_vec = np.vectorize(N)

It is then important that N(x) returns float and not int values, oth-
erwise the vectorized version will produce int values and hence be
incorrect.

A manual rewrite, yielding a faster vectorized function, is more de-
manding than for the Heaviside function because we now have multiple
branches in the if test. One sketch is to replace

if condition1:
r = <expression1>

elif condition2:
r = <expression2>

elif condition3:
r = <expression3>

else:
r = <expression4>

by

x1 = <expression1>
x2 = <expression2>
x3 = <expression3>
x4 = <expression4>
r = np.where(condition1, x1, x4) # initialize with "else" expr.
r = np.where(condition2, x2, r)
r = np.where(condition3, x3, r)

Alternatively, we can use boolean indexing. Assuming that
<expressionX> is some expression involving an array x and coded
as a Python function fX(x) (X is 1, 2, 3, or 4), we can write

5.5 More Advanced Vectorization of Functions 225

r = f4(x)
r[condition1] = f1(x[condition1])
r[condition2] = f2(x[condition2])
r[condition3] = f2(x[condition3])

Specifically, when the function for scalar arguments x reads

def N(x):
if x < 0:

return 0.0
elif 0 <= x < 1:

return x
elif 1 <= x < 2:

return 2 - x
elif x >= 2:

return 0.0

a vectorized attempt would be

def Nv(x):
r = np.where(x < 0, 0.0, 0.0)
r = np.where(0 <= x < 1, x, r)
r = np.where(1 <= x < 2, 2-x, r)
r = np.where(x >= 2, 0.0, r)
return r

The first and last line are not strictly necessary as we could just start
with a zero vector (making the insertion of zeros for the first and last
condition a redundant operation).

However, any condition like 0 <= x < 1, which is equivalent to 0 <=

x and x < 1, does not work because the and operator does not work
with array arguments. Fortunately, there is a simple solution to this
problem. All operators in Python (+, -, and, or, etc.) are available
as pure functions in a module operator: operator.add, operator.sub,
operator.and_, operator.or_11, etc. A working Nv function must apply
operator.and_ instead in each condition:

import operator

def Nv1(x):
condition1 = x < 0
condition2 = operator.and_(0 <= x, x < 1)
condition3 = operator.and_(1 <= x, x < 2)
condition4 = x >= 2

r = np.where(condition1, 0.0, 0.0)
r = np.where(condition2, x, r)
r = np.where(condition3, 2-x, r)
r = np.where(condition4, 0.0, r)
return r

With boolean indexing we get the alternative form

11 Recall that and and or are reserved keywords, see page 10, so a module or program cannot
have variables or functions with these names. To circumvent this problem, the convention

is to add a trailing underscore to the name.

226 5 Array Computing and Curve Plotting

def Nv2(x):
condition1 = x < 0
condition2 = operator.and_(0 <= x, x < 1)
condition3 = operator.and_(1 <= x, x < 2)
condition4 = x >= 2

r = np.zeros(len(x))
r[condition1] = 0.0
r[condition2] = x[condition2]
r[condition3] = 2-x[condition3]
r[condition4] = 0.0
return r

Again, the first and last assignment to r can be omitted in this special
case where we start with a zero vector.

The file hat.py implements four vectorized versions of the N(x) func-
tion: N_loop, which is a plain loop calling up N(x) for each x[i] element
in the array x, N_vec which is the result of automatic vectorization via
np.vectorize, the Nv1 function shown above, which uses the np.where

constructions, and the Nv2 function which uses boolean indexing. With
a length of x of 1,000,000, the results on my computer12 became 4.8 s
for N_loop, 1 s N_vec, 0.3 s for Nv1, and 0.08 s for Nv2. Boolean indexing
is clearly the fastest method.

5.6 More on Numerical Python Arrays

This section lists some more advanced but useful operations with Nu-
merical Python arrays.

5.6.1 Copying Arrays

Let x be an array. The statement a = x makes a refer to the same array
as x. Changing a will then also affect x:

>>> import numpy as np
>>> x = np.array([1, 2, 3.5])
>>> a = x
>>> a[-1] = 3 # this changes x[-1] too!
>>> x
array([1., 2., 3.])

Changing a without changing x requires a to be a copy of x:

>>> a = x.copy()
>>> a[-1] = 9
>>> a
array([1., 2., 9.])
>>> x
array([1., 2., 3.])

12 MacBook Air 11”, 1.6 GHz Intel CPU, running Ubuntu in a VMWare virtual machine.

5.6 More on Numerical Python Arrays 227

5.6.2 In-Place Arithmetics

Let a and b be two arrays of the same shape. The expression a += b

means a = a + b, but this is not the complete story. In the statement
a = a + b, the sum a + b is first computed, yielding a new array, and
then the name a is bound to this new array. The old array a is lost
unless there are other names assigned to this array. In the statement
a += b, elements of b are added directly into the elements of a (in
memory). There is no hidden intermediate array as in a = a + b. This
implies that a += b is more efficient than a = a + b since Python avoids
making an extra array. We say that the operators +=, *=, and so on,
perform in-place arithmetics in arrays.

Consider the compound array expression

a = (3*x**4 + 2*x + 4)/(x + 1)

The computation actually goes as follows with seven hidden arrays for
storing intermediate results:

1. r1 = x**4

2. r2 = 3*r1

3. r3 = 2*x

4. r4 = r2 + r3

5. r5 = r4 + 4

6. r6 = x + 1

7. r7 = r5/r6

8. a = r7

With in-place arithmetics we can get away with creating three new
arrays, at a cost of a significantly less readable code:

a = x.copy()
a **= 4
a *= 3
a += 2*x
a += 4
a /= x + 1

The three extra arrays in this series of statement arise from copying x,
and computing the right-hand sides 2*x and x+1.

Quite often in computational science and engineering, a huge num-
ber of arithmetics is performed on very large arrays, and then saving
memory and array allocation time by doing in-place arithmetics is im-
portant.

The mix of assignment and in-place arithmetics makes it easy to
make unintended changes of more than one array. For example, this
code changes x:

a = x
a += y

since a refers to the same array as x and the change of a is done in-place.

228 5 Array Computing and Curve Plotting

5.6.3 Allocating Arrays

We have already seen that the np.zeros function is handy for making
a new array a of a given size. Very often the size and the type of array
elements have to match another existing array x. We can then either
copy the original array, e.g.,

a = x.copy()

and fill elements in a with the right new values, or we can say

a = np.zeros(x.shape, x.dtype)

The attribute x.dtype holds the array element type (dtype for data
type), and as mentioned before, x.shape is a tuple with the array di-
mensions.

Sometimes we may want to ensure that an object is an array, and
if not, turn it into an array. The np.asarray function is useful in such
cases:

a = np.asarray(a)

Nothing is copied if a already is an array, but if a is a list or tuple, a
new array with a copy of the data is created.

5.6.4 Generalized Indexing

Chapter 5.2.2 shows how slices can be used to extract and manipulate
subarrays. The slice f:t:i corresponds to the index set f, f+i, f+2*i,

... up to, but not including, t. Such an index set can be given explicitly
too: a[range(f,t,i)]. That is, the integer list from range can be used
as a set of indices. In fact, any integer list or integer array can be used
as index:

>>> a = np.linspace(1, 8, 8)
>>> a
array([1., 2., 3., 4., 5., 6., 7., 8.])
>>> a[[1,6,7]] = 10
>>> a
array([1., 10., 3., 4., 5., 6., 10., 10.])
>>> a[range(2,8,3)] = -2 # same as a[2:8:3] = -2
>>> a
array([1., 10., -2., 4., 5., -2., 10., 10.])

We can also use boolean arrays to generate an index set. The indices
in the set will correspond to the indices for which the boolean array
has True values. This functionality allows expressions like a[x<m]. Here
are two examples, continuing the previous interactive session:

5.6 More on Numerical Python Arrays 229

>>> a[a < 0] # pick out the negative elements of a
array([-2., -2.])
>>> a[a < 0] = a.max()
>>> a
array([1., 10., 10., 4., 5., 10., 10., 10.])
>>> # Replace elements where a is 10 by the first
>>> # elements from another array/list:
>>> a[a == 10] = [10, 20, 30, 40, 50, 60, 70]
>>> a
array([1., 10., 20., 4., 5., 30., 40., 50.])

Generalized indexing using integer arrays or lists is important for vec-
torized initialization of array elements. The syntax for generalized
indexing of higher-dimensional arrays is slightly different, see Chap-
ter 5.7.2.

5.6.5 Testing for the Array Type

Inside an interactive Python shell you can easily check an object’s type
using the type function (see Chapter 1.5.2). In case of a Numerical
Python array, the type name is ndarray:

>>> a = np.linspace(-1, 1, 3)
>>> a
array([-1., 0., 1.])
>>> type(a)
<type ’numpy.ndarray’>

Sometimes you need to test if a variable is an ndarray or a float or
int. The isinstance function can be used this purpose:

>>> isinstance(a, np.ndarray)
True
>>> isinstance(a, (float,int)) # float or int?
False

A typical use of isinstance and type to check on object’s type is shown
next.

Example: Vectorizing a Constant Function. Suppose we have a con-
stant function,

def f(x):
return 2

This function accepts an array argument x, but will return a float

while a vectorized version of the function should return an array of the
same shape as x where each element has the value 2. The vectorized
version can be realized as

def fv(x):
return np.zeros(x.shape, x.dtype) + 2

230 5 Array Computing and Curve Plotting

The optimal vectorized function would be one that works for both a
scalar and an array argument. We must then test on the argument
type:

def f(x):
if isinstance(x, (float, int)):

return 2
elif isinstance(x, np.ndarray):

return np.zeros(x.shape, x.dtype) + 2
else:

raise TypeError\
(’x must be int, float or ndarray, not %s’ % type(x))

5.6.6 Compact Syntax for Array Generation

There is a special compact syntax r_[f:t:s] for the linspace func-
tion:

>>> a = r_[-5:5:11j] # same as linspace(-5, 5, 11)
>>> print a
[-5. -4. -3. -2. -1. 0. 1. 2. 3. 4. 5.]

Here, 11j means 11 coordinates (between −5 and 5, including the upper
limit 5). That is, the number of elements in the array is given with the
imaginary number syntax.

5.6.7 Shape Manipulation

The shape attribute in array objects holds the shape, i.e., the size of
each dimension. A function size returns the total number of elements
in an array. Here are a few equivalent ways of changing the shape of
an array:

>>> a = np.linspace(-1, 1, 6)
>>> print a
[-1. -0.6 -0.2 0.2 0.6 1.]
>>> a.shape
(6,)
>>> a.size
6
>>> a.shape = (2, 3)
>>> a = a.reshape(2, 3) # alternative
>>> a.shape
(2, 3)
>>> print a
[[-1. -0.6 -0.2]
[0.2 0.6 1.]]
>>> a.size # total no of elements
6
>>> len(a) # no of rows
2
>>> a.shape = (a.size,) # reset shape

Note that len(a) always returns the length of the first dimension of an
array.

5.7 Higher-Dimensional Arrays 231

5.7 Higher-Dimensional Arrays

5.7.1 Matrices and Arrays

Vectors appeared when mathematicians needed to calculate with a list
of numbers. When they needed a table (or a list of lists in Python ter-
minology), they invented the concept of matrix (singular) and matrices
(plural). A table of numbers has the numbers ordered into rows and
columns. One example is

⎡
⎣ 0 12 −1 5
−1 −1 −1 0
11 5 5 −2

⎤
⎦

This table with three rows and four columns is called a 3× 4 matrix13.
If the symbol A is associated with this matrix, Ai,j denotes the number
in row number i and column number j. Counting rows and columns
from 0, we have, for instance, A0,0 = 0 and A2,3 = −2. We can write a
general m× n matrix A as

⎡
⎢⎣

A0,0 · · · A0,n−1
...

. . .
...

Am−1,0 · · · Am−1,n−1

⎤
⎥⎦

Matrices can be added and subtracted. They can also be multiplied by
a scalar (a number), and there is a concept of “length”. The formulas
are quite similar to those presented for vectors, but the exact form is
not important here.

We can generalize the concept of table and matrix to array, which
holds quantities with in general d indices. Equivalently we say that
the array has rank d. For d = 3, an array A has elements with three
indices: Ap,q,r. If p goes from 0 to np − 1, q from 0 to nq − 1, and r
from 0 to nr − 1, the A array has np × nq × nr elements in total. We
may speak about the shape of the array, which is a d-vector holding
the number of elements in each “array direction”, i.e., the number
of elements for each index. For the mentioned A array, the shape is
(np, nq, nr).

The special case of d = 1 is a vector, and d = 2 corresponds to a
matrix. When we program we may skip thinking about vectors and
matrices (if you are not so familiar with these concepts from a mathe-
matical point of view) and instead just work with arrays. The number
of indices corresponds to what is convenient in the programming prob-
lem we try to solve.

13 Mathematicians don’t like this sentence, but it suffices for our purposes.

232 5 Array Computing and Curve Plotting

5.7.2 Two-Dimensional Numerical Python Arrays

Recall the nested list from Chapter 2.4, where [C, F] pairs are elements
in a list table. The construction of table goes as follows:

>>> Cdegrees = [-30 + i*10 for i in range(3)]
>>> Fdegrees = [9./5*C + 32 for C in Cdegrees]
>>> table = [[C, F] for C, F in zip(Cdegrees, Fdegrees)]
>>> print table
[[-30, -22.0], [-20, -4.0], [-10, 14.0]]

Note that the table list is a nested list. This nested list can be turned
into an array,

>>> table2 = np.array(table)
>>> print table2
[[-30. -22.]
[-20. -4.]
[-10. 14.]]
>>> type(table2)
<type ’numpy.ndarray’>

We say that table2 is a two-dimensional array, or an array of rank 2.
The table list and the table2 array are stored very differently in

memory. The table variable refers to a list object containing three
elements. Each of these elements is a reference to a separate list ob-
ject with two elements, where each element refers to a separate float

object. The table2 variable is a reference to a single array object that
again refers to a consecutive sequence of bytes in memory where the six
floating-point numbers are stored. The data associated with table2 are
found in one “chunk” in the computer’s memory, while the data associ-
ated with table are scattered around in memory. On today’s machines,
it is much more expensive to find data in memory than to compute
with the data. Arrays make the data fetching more efficient, and this
is major reason for using arrays. However, this efficiency gain is only
present for very large arrays, not for a 3× 2 array.

Indexing a nested list is done in two steps, first the outer list is
indexed, giving access to an element that is another list, and then this
latter list is indexed:

>>> table[1][0] # table[1] is [-20,4], whose index 0 holds -20
-20

This syntax works for two-dimensional arrays too:

>>> table2[1][0]
-20.0

but there is another syntax which is more common for arrays:

>>> table2[1,0]
-20.0

5.7 Higher-Dimensional Arrays 233

A two-dimensional array reflects a table and has a certain number of
“rows” and “columns”. We refer to “rows” as the first dimension of the
array and “columns” as the second dimension. These two dimensions
are available as table2.shape:

>>> table2.shape
(3, 2)

Here, 3 is the number of “rows” and 2 is the number of “columns”.
A loop over all the elements in a two-dimensional array is usually

expressed as two nested for loops, one for each index:

>>> for i in range(table2.shape[0]):
... for j in range(table2.shape[1]):
... print ’table2[%d,%d] = %g’ % (i, j, table2[i,j])
...
table2[0,0] = -30
table2[0,1] = -22
table2[1,0] = -20
table2[1,1] = -4
table2[2,0] = -10
table2[2,1] = 14

An alternative (but less efficient) way of visiting each element in an
array with any number of dimensions makes use of a single for loop:

>>> for index_tuple, value in np.ndenumerate(table2):
... print ’index %s has value %g’ % \
... (index_tuple, table2[index_tuple])
...
index (0,0) has value -30
index (0,1) has value -22
index (1,0) has value -20
index (1,1) has value -4
index (2,0) has value -10
index (2,1) has value 14

In the same way as we can extract sublists of lists, we can extract
subarrays of arrays using slices.

table2[0:table2.shape[0], 1] # 2nd column (index 1)
array([-22., -4., 14.])

>>> table2[0:, 1] # same
array([-22., -4., 14.])

>>> table2[:, 1] # same
array([-22., -4., 14.])

To illustrate array slicing further, we create a bigger array:

>>> t = np.linspace(1, 30, 30).reshape(5, 6)
>>> t
array([[1., 2., 3., 4., 5., 6.],

[7., 8., 9., 10., 11., 12.],
[13., 14., 15., 16., 17., 18.],
[19., 20., 21., 22., 23., 24.],
[25., 26., 27., 28., 29., 30.]])

234 5 Array Computing and Curve Plotting

>>> t[1:-1:2, 2:]
array([[9., 10., 11., 12.],

[21., 22., 23., 24.]])

To understand the slice, look at the original t array and pick out the
two rows corresponding to the first slice 1:-1:2,

[7., 8., 9., 10., 11., 12.]
[19., 20., 21., 22., 23., 24.]

Among the rows, pick the columns corresponding to the second slice
2:,

[9., 10., 11., 12.]
[21., 22., 23., 24.]

Another example is

>>> t[:-2, :-1:2]
array([[1., 3., 5.],

[7., 9., 11.],
[13., 15., 17.]])

Generalized indexing as described for one-dimensional arrays in Chap-
ter 5.6.4 requires a more comprehensive syntax for higher-dimensional
arrays. Say we want to extract a subarray of t that consists of the rows
with indices 0 and 3 and the columns with indices 1 and 2:

>>> t[np.ix_([0,3], [1,2])]
array([[2., 3.],

[20., 21.]])
>>> t[np.ix_([0,3], [1,2])] = 0
>>> t
array([[1., 0., 0., 4., 5., 6.],

[7., 8., 9., 10., 11., 12.],
[13., 14., 15., 16., 17., 18.],
[19., 0., 0., 22., 23., 24.],
[25., 26., 27., 28., 29., 30.]])

Recall that slices only gives a view to the array, not a copy of the
values:

>>> a = t[1:-1:2, 1:-1]
>>> a
array([[8., 9., 10., 11.],

[0., 0., 22., 23.]])
>>> a[:,:] = -99
>>> a
array([[-99., -99., -99., -99.],

[-99., -99., -99., -99.]])
>>> t # is t changed to? yes!
array([[1., 0., 0., 4., 5., 6.],

[7., -99., -99., -99., -99., 12.],
[13., 14., 15., 16., 17., 18.],
[19., -99., -99., -99., -99., 24.],
[25., 26., 27., 28., 29., 30.]])

5.7 Higher-Dimensional Arrays 235

5.7.3 Array Computing

The operations on vectors in Chapter 5.1.3 can quite straightforwardly
be extended to arrays of any dimension. Consider the definition of
applying a function f(v) to a vector v: we apply the function to each
element vi in v. For a two-dimensional array A with elements Ai,j ,
i = 0, . . . ,m, j = 0, . . . , n, the same definition yields

f(A) =
(
f(A0,0), . . . , f(Am−1,0), f(A1,0), . . . , f(Am−1,n−1)

)
.

For an array B with any rank, f(B) means applying f to each array
entry.

The asterisk operation from Chapter 5.1.3 is also naturally extended
to arrays: A ∗B means multiplying an element in A by the correspond-
ing element in B, i.e., element (i, j) in A ∗B is Ai,jBi,j . This definition
naturally extends to arrays of any rank, provided the two arrays have
the same shape.

Adding a scalar to an array implies adding the scalar to each element
in the array. Compound expressions involving arrays, e.g., exp(−A ∗
∗2) ∗ A + 1, work as for vectors. One can in fact just imagine that all
the array elements are stored after each other in a long vector14, and
the array operations can then easily be defined in terms of the vector
operations from Chapter 5.1.3.

Remark. Readers with knowledge of matrix computations may ask how
an expression like A2 interfere with A∗∗2. In matrix computing, A2 is a
matrix-matrix product, which is very different from squaring each ele-
ment in A as A∗∗2 or A∗A implies. Fortunately, the matrix computing
operations look different from the array computing operations in math-
ematical typesetting. In a program, however, A*A and A**2 are identical
computations, but the first one could lead to a confusion with a matrix-
matrix product AA. With NumPy arrays the matrix-matrix product
is obtained by dot(A, A). The matrix-vector product Ax, where x is
a vector, is computed by dot(A, x). With matrix objects (see Chap-
ter 5.7.5) A*A implies the mathematical matrix multiplication AA.

5.7.4 Two-Dimensional Arrays and Functions of Two Variables

Given a function of two variables, say

def f(x, y):
return sin(sqrt(x**2 + y**2))

we can plot this function by writing

14 This is the way the array elements are stored in the computer’s memory.

236 5 Array Computing and Curve Plotting

from scitools.std import sin, sqrt, linspace, ndgrid, mesh
x = y = linspace(-5, 5, 21) # coordinates in x and y direction
xv, yv = ndgrid(x, y)
z = f(xv, yv)
mesh(xv, yv, z)

There are two new things here: (i) the call to ndgrid, which is nec-
essary to transform one-dimensional coordinate arrays in the x and y
direction into arrays valid for evaluating f over a two-dimensional grid;
and (ii) the plot function whose name now is mesh, which is one out of
many plot functions for two-dimensional functions. Another plot type
you can try out is

surf(xv, yv, z)

More material on visualizing f(x, y) functions is found in the section
“Visualizing Scalar Fields” in the Easyviz tutorial. This tutorial can be
reached through the command pydoc scitools.easyviz in a terminal
window or from Googlecode.

5.7.5 Matrix Objects

This section only makes sense if you are familiar with basic linear al-
gebra and the matrix concept. The arrays created so far have been of
type ndarray. NumPy also has a matrix type called matrix or mat for
one- and two-dimensional arrays. One-dimensional arrays are then ex-
tended with one extra dimension such that they become matrices, i.e.,
either a row vector or a column vector:

>>> import numpy as np
>>> x1 = np.array([1, 2, 3], float)
>>> x2 = np.matrix(x1) # or mat(x1)
>>> x2 # row vector
matrix([[1., 2., 3.]])
>>> x3 = mat(x).transpose() # column vector
>>> x3
matrix([[1.],

[2.],
[3.]])

>>> type(x3)
<class ’numpy.matrixlib.defmatrix.matrix’>
>>> isinstance(x3, np.matrix)
True

A special feature of matrix objects is that the multiplication operator
represents the matrix-matrix, vector-matrix, or matrix-vector product
as we know from linear algebra:

>>> A = eye(3) # identity matrix
>>> A
array([[1., 0., 0.],

[0., 1., 0.],
[0., 0., 1.]])

5.8 Summary 237

>>> A = mat(A)
>>> A
matrix([[1., 0., 0.],

[0., 1., 0.],
[0., 0., 1.]])

>>> y2 = x2*A # vector-matrix product
>>> y2
matrix([[1., 2., 3.]])
>>> y3 = A*x3 # matrix-vector product
>>> y3
matrix([[1.],

[2.],
[3.]])

One should note here that the multiplication operator between stan-
dard ndarray objects is quite different, as the next interactive session
demonstrates.

>>> A*x1 # no matrix-array product!
Traceback (most recent call last):
...
ValueError: matrices are not aligned

>>> # try array*array product:
>>> A = (zeros(9) + 1).reshape(3,3)
>>> A
array([[1., 1., 1.],

[1., 1., 1.],
[1., 1., 1.]])

>>> A*x1 # [A[0,:]*x1, A[1,:]*x1, A[2,:]*x1]
array([[1., 2., 3.],

[1., 2., 3.],
[1., 2., 3.]])

>>> B = A + 1
>>> A*B # element-wise product
array([[2., 2., 2.],

[2., 2., 2.],
[2., 2., 2.]])

>>> A = mat(A); B = mat(B)
>>> A*B # matrix-matrix product
matrix([[6., 6., 6.],

[6., 6., 6.],
[6., 6., 6.]])

Readers who are familiar with Matlab, or intend to use Python
and Matlab together, should seriously think about programming with
matrix objects instead of ndarray objects, because the matrix type be-
haves quite similar to matrices and vectors in Matlab. Nevertheless,
matrix cannot be used for arrays of larger dimension than two.

5.8 Summary

5.8.1 Chapter Topics

This chapter has introduced computing with arrays and plotting curve
data stored in arrays. The Numerical Python package contains lots of
functions for array computing, including the ones listed in Table 5.1.
Plotting has been done with tools that resemble the syntax of Matlab.

238 5 Array Computing and Curve Plotting

Table 5.1 Summary of important functionality for Numerical Python arrays.

array(ld) copy list data ld to a numpy array

asarray(d) make array of data d

(copy if list, no copy if already array)

zeros(n) make a float vector/array of length n, with zeros
zeros(n, int) make an int vector/array of length n with zeros

zeros((m,n)) make a two-dimensional float array with shape (m,n)
zeros(x.shape, x.dtype) make array of same shape as x

and same element data type
linspace(a,b,m) uniform sequence of m numbers between a and b

(b is included in the sequence)
a.shape tuple containing a’s shape

a.size total no of elements in a

len(a) length of a one-dim. array a (same as a.shape[0])

a.reshape(3,2) return a reshaped as 3× 2 array
a[i] vector indexing
a[i,j] two-dim. array indexing

a[1:k] slice: reference data with indices 1, . . . , k-1
a[1:8:3] slice: reference data with indices 1, 4, . . . , 7

b = a.copy() copy an array
sin(a), exp(a), ... numpy functions applicable to arrays

c = concatenate((a, b)) c contains a with b appended
c = where(cond, a1, a2) c[i] = a1[i] if cond[i], else c[i] = a2[i]

isinstance(a, ndarray) is True if a is an array

Array Computing. When we apply a Python function f(x) to a Nu-
merical Python array x, the result is the same as if we apply f to each
element in x separately. However, when f contains if statements, these
are in general invalid if an array x enters the boolean expression. We
then have to rewrite the function, often by applying the where function
from Numerical Python.

Plotting Curves. Chapters 5.3.1 and 5.3.2 provide a quick overview
of how to plot curves with the aid of Matplotlib. The same examples
coded with the Easyviz plotting interface appear in Chapter 5.3.3.

Making Movies. Each frame in a movie must be a hardcopy of
a plot, i.e., a plotfile in some standard format such as PNG or
PostScript. These plotfiles should have names containing a counter
padded with leading zeros. One example may be forceplot_0001.eps,
forceplot_0002.eps. Having the plotfiles with names on this form, we
can make a movie file movie.gif with two frames per second by the
movie function from Easyviz (from scitools.std import movie):

movie(’forceplot_*.png’, encoder=’convert’,
output_file=’movie.gif’, fps=2)

The resulting movie, in the animated GIF format, can be shown in a
web page or displayed by the animate program.

Other movie formats can be produced by using other encoders, e.g.,
ppmtompeg and ffmpeg for the MPEG format, or mencoder for the AVI

5.8 Summary 239

format. There are lots of options to the movie function, which you can
see by writing pydoc scitools.easyviz.movie (see page 78 for how to
run such a command).

5.8.2 Example: Animating a Function

Problem. In this chapter’s summarizing example we shall visualize how
the temperature varies downward in the earth as the surface temper-
ature oscillates between high day and low night values. One question
may be: What is the temperature change 10 m down in the ground if
the surface temperature varies between 2 C in the night and 15 C in
the day?

Let the z axis point downwards, towards the center of the earth,
and let z = 0 correspond to the earth’s surface. The temperature at
some depth z in the ground at time t is denoted by T (z, t). If the
surface temperature has a periodic variation around some mean value
T0, according to

T (0, t) = T0 +A cos(ωt),

one can find, from a mathematical model for heat conduction, that the
temperature at an arbitrary depth is

T (z, t) = T0 +Ae−az cos(ωt− az), a =

√
ω

2k
. (5.13)

The parameter k reflects the ground’s ability to conduct heat (k is
called the thermal diffusivity or the heat conduction coefficient).

The task is to make an animation of how the temperature profile in
the ground, i.e., T as a function of z, varies in time. Let ω correspond
to a time period of 24 hours. The mean temperature T0 is taken as
10 C, and the maximum variation A is assumed to be 10 C. The heat
conduction coefficient k may be set as 1 mm2/s (which is 10−6 m2/s in
proper SI units).

Solution. To animate T (z, t) in time, we need to make a loop over
points in time, and in each pass in the loop we must save a plot of
T , as a function of z, to file. The plot files can then be combined to a
movie. The algorithm becomes

for ti = iΔt, i = 0, 1, 2 . . . , n:
plot the curve y(z) = T (z, ti)
store the plot in a file

combine all the plot files into a movie

It can be wise to make a general animate function where we just
feed in some f(x, t) function and make all the plot files. If animate has

240 5 Array Computing and Curve Plotting

arguments for setting the labels on the axis and the extent of the y
axis, we can easily use animate also for a function T (z, t) (we just use
z as the name for the x axis and T as the name for the y axis in the
plot). Recall that it is important to fix the extent of the y axis in a
plot when we make animations, otherwise most plotting programs will
automatically fit the extent of the axis to the current data, and the
tick marks on the y axis will jump up and down during the movie. The
result is a wrong visual impression of the function.

The names of the plot files must have a common stem appended with
some frame number, and the frame number should have a fixed number
of digits, such as 0001, 0002, etc. (if not, the sequence of the plot files
will not be correct when we specify the collection of files with an aster-
isk for the frame numbers, e.g., as in tmp*.png). We therefore include
an argument to animate for setting the name stem of the plot files.
By default, the stem is tmp_, resulting in the filenames tmp_0000.png,
tmp_0001.png, tmp_0002.png, and so forth. Other convenient arguments
for the animate function are the initial time in the plot, the time lag
Δt between the plot frames, and the coordinates along the x axis. The
animate function then takes the form

def animate(tmax, dt, x, function, ymin, ymax, t0=0,
xlabel=’x’, ylabel=’y’, filename=’tmp_’):

t = t0
counter = 0
while t <= tmax:

y = function(x, t)
plot(x, y,

axis=[x[0], x[-1], ymin, ymax],
title=’time=%2d h’ % (t/3600.0),
xlabel=xlabel, ylabel=ylabel,
savefig=filename + ’%04d.png’ % counter)

t += dt
counter += 1

The T (z, t) function is easy to implement, but we need to decide
whether the parameters A, ω, T0, and k shall be arguments to the
Python implementation of T (z, t) or if they shall be global variables.
Since the animate function expects that the function to be plotted has
only two arguments, we must implement T (z, t) as T(z,t) in Python
and let the other parameters be global variables (Chapters 7.1.1 and
7.1.2 explain this problem in more detail and present a better imple-
mentation). The T(z,t) implementation then reads

def T(z, t):
T0, A, k, and omega are global variables
a = sqrt(omega/(2*k))
return T0 + A*exp(-a*z)*cos(omega*t - a*z)

Suppose we plot T (z, t) at n points for z ∈ [0, D]. We make such
plots for t ∈ [0, tmax] with a time lag Δt between the them. The frames
in the movie are now made by

5.8 Summary 241

set T0, A, k, omega, D, n, tmax, dt
z = linspace(0, D, n)
animate(tmax, dt, z, T, T0-A, T0+A, 0, ’z’, ’T’)

We have here set the extent of the y axis in the plot as [T0−A, T0+A],
which is in accordance with the T (z, t) function.

The call to animate above creates a set of files with names of the
form tmp_*.png. The animation is then created by a call

movie(’tmp_*.png’, encoder=’convert’, fps=2,
output_file=’tmp_heatwave.gif’)

It now remains to assign proper values to all the global variables
in the program: n, D, T0, A, omega, dt, tmax, and k. The oscillation
period is 24 hours, and ω is related to the period P of the cosine
function by ω = 2π/P (realize that cos(t2π/P) has period P). We then
express P = 24 h = 24 · 60 · 60 s and compute ω = 2π/P . The total
simulation time can be 3 periods, i.e., tmax = 3P . The T (z, t) function
decreases exponentially with the depth z so there is no point in having
the maximum depth D larger than the depth where T is approximately
zero, say 0.001. We have that e−aD = 0.001 when D = −a−1 ln 0.001,
so we can use this estimate in the program. The proper initialization
of all parameters can then be expressed as follows15:

k = 1E-6 # thermal diffusivity (in m*m/s)
P = 24*60*60.# oscillation period of 24 h (in seconds)
omega = 2*pi/P
dt = P/24 # time lag: 1 h
tmax = 3*P # 3 day/night simulation
T0 = 10 # mean surface temperature in Celsius
A = 10 # amplitude of the temperature variations in Celsius
a = sqrt(omega/(2*k))
D = -(1/a)*log(0.001) # max depth
n = 501 # no of points in the z direction

We encourage you to run the program heatwave.py to see the movie.
The hardcopy of the movie is in the file tmp_heatwave.gif. Figure 5.11
displays two snapshots in time of the T (z, t) function.

Scaling. In this example, as in many other scientific problems, it was
easier to write the code than to assign proper physical values to the
input parameters in the program. To learn about the physical process,
here how heat propagates from the surface and down in the ground, it
is often advantageous to scale the variables in the problem so that we
work with dimensionless variables. Through the scaling procedure we
normally end up with much fewer physical parameters which must be
assigned values. Let us show how we can take advantage of scaling the
present problem.

15 Note that it is very important to use consistent units. Here we express all units in terms

of meter, second, and Kelvin or Celsius.

242 5 Array Computing and Curve Plotting

Fig. 5.11 Plot of the temperature T (z, t) in the ground for two different t values.

Consider a variable x in a problem with some dimension. The idea
of scaling is to introduce a new variable x̄ = x/xc, where xc is a char-
acteristic size of x. Since x and xc have the same dimension, the di-
mension cancels in x̄ such that x̄ is dimensionless. Choosing xc to be
the expected maximum value of x, ensures that x̄ ≤ 1, which is usu-
ally considered a good idea. That is, we try to have all dimensionless
variables varying between zero and one. For example, we can introduce
a dimensionless z coordinate: z̄ = z/D, and now z̄ ∈ [0, 1]. Doing a
proper scaling of a problem is challenging so for now it is sufficient to
just follow the steps below – and not worry why we choose a certain
scaling.

In the present problem we introduce these dimensionless variables:

z̄ = z/D

T̄ =
T − T0

A
t̄ = ωt

We now insert z = z̄D and t = t̄/ω in the expression for T (z, t) and
get

T = T0 +Ae−bz̄ cos(t̄− bz̄), b = aD

or

T̄ (z̄, t̄) =
T − T0

A
= e−bz̄ cos(t̄− bz̄).

We see that T̄ depends on only one dimensionless parameter b in addi-
tion to the independent dimensionless variables z̄ and t̄. It is common
practice at this stage of the scaling to just drop the bars and write

T (z, t) = e−bz cos(t− bz). (5.14)

This function is much simpler to plot than the one with lots of physical
parameters, because now we know that T varies between −1 and 1, t
varies between 0 and 2π for one period, and z varies between 0 and 1.

5.9 Exercises 243

The scaled temperature has only one “free” parameter b. That is, the
shape of the graph is completely determined by b.

In our previous movie example, we used specific values for D, ω,
and k, which then implies a certain b = D

√
ω/(2k) (≈ 6.9). However,

we can now run different b values and see the effect on the heat prop-
agation. Different b values will in our problems imply different periods
of the surface temperature variation and/or different heat conduction
values in the ground’s composition of rocks. Note that doubling ω and
k leaves the same b – it is only the fraction ω/k that influences the
value of b.

We can reuse the animate function also in the scaled case, but we
need to make a new T (z, t) function and, e.g., a main program where
b can be read from the command line:

def T(z, t):
return exp(-b*z)*cos(t - b*z) # b is global

b = float(sys.argv[1])
n = 401
z = linspace(0, 1, n)
animate(3*2*pi, 0.05*2*pi, z, T, -1.2, 1.2, 0, ’z’, ’T’)
movie(’tmp_*.png’, encoder=’convert’, fps=2,

output_file=’tmp_heatwave.gif’)

Running the program, found as the file heatwave_scaled.py, for dif-
ferent b values shows that b governs how deep the temperature varia-
tions on the surface z = 0 penetrate. A large b makes the temperature
changes confined to a thin layer close to the surface (see Figure 5.12
for b = 20), while a small b leads to temperature variations also deep
down in the ground (see Figure 5.13 for b = 2).

We can understand the results from a physical perspective. Think
of increasing ω, which means reducing the oscillation period so we
get a more rapid temperature variation. To preserve the value of b
we must increase k by the same factor. Since a large k means that
heat quickly spreads down in the ground, and a small k implies the
opposite, we see that more rapid variations at the surface requires a
larger k to more quickly conduct the variations down in the ground.
Similarly, slow temperature variations on the surface can penetrate
deep in the ground even if the ground’s ability to conduct (k) is
low.

5.9 Exercises

Exercise 5.1. Fill lists with function values.
Define

h(x) =
1√
2π

e−
1

2
x2

. (5.15)

244 5 Array Computing and Curve Plotting

Fig. 5.12 Plot of the dimensionless temperature T (z, t) in the ground for two different t
values and b = 20.

Fig. 5.13 Plot of the dimensionless temperature T (z, t) in the ground for two different t
values and b = 2.

Fill lists xlist and hlist with x and h(x) values for 41 uniformly
spaced x coordinates in [−4, 4]. Hint: You may adapt the example in
Chapter 5.2.1. Name of program file: fill_lists.py. �

Exercise 5.2. Fill arrays; loop version.
The aim is to fill two arrays x and y with x and h(x) values, respec-

tively, where h(x) is defined in (5.15). Let the x values be as in Exer-
cise 5.1. Create empty arrays x and y arrays and compute each element
in x and y with a for loop. Name of program file: fill_arrays_loop.py.
�

Exercise 5.3. Fill arrays; vectorized version.
Vectorize the code in Exercise 5.2 by creating the x values using the

linspace function from the numpy package and by evaluating h(x) for
an array argument. Name of program file: fill_arrays_vectorized.py.
�

Exercise 5.4. Plot a function.
Make a plot of the function in Exercise 5.1 for x ∈ [−4, 4]. Name of

program file: plot_Gaussian.py. �

5.9 Exercises 245

Exercise 5.5. Apply a function to a vector.
Given a vector v = (2, 3,−1) and a function f(x) = x3 + xex + 1,

apply f to each element in v. Then calculate f(v) as v3 + v ∗ ev + 1
using vector computing rules. Show that the two results are equal. �

Exercise 5.6. Simulate by hand a vectorized expression.
Suppose x and t are two arrays of the same length, entering a vec-

torized expression

y = cos(sin(x)) + exp(1/t)

If x holds two elements, 0 and 2, and t holds the elements 1 and
1.5, calculate by hand (using a calculator) the y array. Thereafter,
write a program that mimics the series of computations you did by
hand (typically a sequence of operations of the kind we listed on
page 192 – use explicit loops, but at the end you can use Numeri-
cal Python functionality to check the results). Name of program file:
simulate_vector_computing.py. �

Exercise 5.7. Demonstrate array slicing.
Create an array w with values 0, 0.1, 0.2, . . . , 3. Write out w[:],

w[:-2], w[::5], w[2:-2:6]. Convince yourself in each case that you
understand which elements of the array that are printed. Name of pro-
gram file: slicing.py. �

Exercise 5.8. Replace list operations by array computing.
The data analysis problem in Chapter 2.6.2 is solved by list oper-

ations. Convert the list to a two-dimensional array and perform the
three tasks using array operations. There should be no explicit loops
in this Python program. Name of program file: sun_data_vec.py. �

Exercise 5.9. Plot a formula.
Make a plot of the function y(t) = v0t−0.5gt2 for v0 = 10, g = 9.81,

and t ∈ [0, 2v0/g]. The label on the x axis should be ‘time (s)’ and
the label on the y axis should be ‘height (m)’. Name of program file:
plot_ball1.py. �

Exercise 5.10. Plot a formula for several parameters.
Make a program that reads a set of v0 values from the command

line and plots the corresponding curves y(t) = v0t− 0.5gt2 in the same
figure (set g = 9.81). Let t ∈ [0, 2v0/g] for each curve, which implies
that you need a different vector of t coordinates for each curve. Name
of program file: plot_ball2.py. �

Exercise 5.11. Specify the x and y axes in Exer. 5.10.
Extend the program from Exercises 5.10 such that the minimum and

maximum x and y values are computed, and use the extreme values
to specify the extent of the x and y axes. Add some space above the
highest curve. Name of program file: plot_ball3.py. �

246 5 Array Computing and Curve Plotting

Exercise 5.12. Plot exact and inexact Fahrenheit–Celsius formulas.
Exercise 2.2 introduces a simple rule to quickly compute the Celsius

temperature from the Fahrenheit degrees: C = (F − 30)/2. Compare
this curve against the exact curve C = (F−32)5/9 in a plot. Let F vary
between −20 and 120. Name of program file: f2c_shortcut_plot.py. �

Exercise 5.13. Plot the trajectory of a ball.
The formula for the trajectory of a ball is given in (1.5) on page 39.

In a program, first read the input data y0, θ, and v0 from the command
line. Then plot the trajectory y = f(x) for y ≥ 0. Name of program
file: plot_trajectory.py. �

Exercise 5.14. Implement Lagrange’s interpolation formula.
Imagine we have n+1 measurements of some quantity y that depends

on x: (x0, y0), (x1, y1), . . . , (xn, yn). We may think of y as a function of
x and ask what y is at some arbitrary point x not coinciding with any of
the points x0, . . . , xn. This problem is known as interpolation. One way
to solve this problem is to fit a continuous function that goes through
all the n + 1 points and then evaluate this function for any desired x.
A candidate for such a function is the polynomial of degree n that goes
through all the points. This polynomial can be written

pL(x) =
n∑

k=0

ykLk(x), (5.16)

where

Lk(x) =
n∏

i=0,i �=k

x− xi
xk − xi

. (5.17)

The
∏

notation corresponds to
∑

, but the terms are multiplied. For
example,

n∏
i=0,i �=k

xi = x0x1 · · ·xk−1xk+1 · · ·xn .

The polynomial pL(x) is known as Lagrange’s interpolation formula,
and the points (x0, y0), . . . , (xn, yn) are called interpolation points.

Make functions p_L(x, xp, yp) and L_k(x, k, xp, yp) that evaluate
pL(x) and Lk(x) by (5.16) and (5.17), respectively, at the point x.
The arrays xp and yp contain the x and y coordinates of the n + 1
interpolation points, respectively. That is, xp holds x0, . . . , xn, and yp

holds y0, . . . , yn.
To verify the program, we observe that Lk(xk) = 1 and that

Lk(xi) = 0 for i �= k, implying that pL(xk) = yk. That is, the poly-
nomial pL goes through all the points (x0, y0), . . . , (xn, yn). Write a
function verify(xp, yp) that computes |pL(xk) − yk| at all the inter-
polation points (xk, yk) and checks that the value is approximately
zero. Call verify with xp and yp corresponding to 5 equally spaced

5.9 Exercises 247

points along the curve y = sin(x) for x ∈ [0, π]. Thereafter, evaluate
pL(x) for an x in the middle of two interpolation points and compare
the value of pL(x) with the exact one, sin(x). Name of program file:
Lagrange_poly1.py. �

Exercise 5.15. Plot the polynomial in Exer. 5.14.
Write a function graph(f, n, xmin, xmax, resolution=1001) for

plotting pL(x) in Exercise 5.14, based on interpolation points taken
from some mathematical function f(x) represented by the argument f.
The argument n denotes the number of interpolation points sampled
from the f(x) function, and resolution is the number of points between
xmin and xmax used to plot pL(x). The x coordinates of the n interpola-
tion points can be uniformly distributed between xmin and xmax. In the
graph, the interpolation points (x0, y0), . . . , (xn, yn) should be marked
by small circles. Test the graph function by choosing 5 points in [0, π]
and f as sinx.

Make a module Lagrange_poly2 containing the p_L, L_k, verify, and
graph functions. The call to verify described in Exercise 5.14 and the
call to graph described above should appear in the module’s test block.
Name of program file: Lagrange_poly2.py. �

Exercise 5.16. Investigate the polynomial in Exer. 5.14.
Unfortunately, the polynomial pL(x) defined and implemented in

Exercise 5.14 can exhibit some undesired oscillatory behavior which we
shall explore graphically in this exercise. Compute n+ 1 interpolation
points taken from the curve f(x) = |x| for x ∈ [−2, 2]: xk = −2 +
4k/n and yk = |xk|, k = 0, 1, . . . , n. Call the graph function from
Exercise 5.15. for n = 2, 4, 6, 10. All the graphs of pL(x) should appear
in the same plot for comparison. In addition, make a new figure with
calls to graph for n = 13 and n = 20. All the calls to graph should
appear in some separate program file which imports the Lagrange_poly2
module made in Exercise 5.15.

The purpose of the pL(x) function is to compute (x, y) between some
given (often measured) data points (x0, y0), . . . , (xn, yn). We see from
the graphs that for a small number of interpolation points, pL(x) is
quite close to the curve y = |x| we used to generate the data points,
but as n increases, pL(x) starts to oscillate, especially toward the
end points (x0, y0) and (xn, yn). Much research has historically been
focused on methods that do not result in such strange oscillations
when fitting a polynomial to a set of points. Name of program file:
Lagrange_poly2b.py. �

Exercise 5.17. Plot a wave packet.
The function

f(x, t) = e−(x−3t)2 sin
(
3π(x− t)

)
(5.18)

248 5 Array Computing and Curve Plotting

describes for a fixed value of t a wave localized in space. Make a program
that visualizes this function as a function of x on the interval [−4, 4]
when t = 0. Name of program file: plot_wavepacket.py. �
Exercise 5.18. Judge a plot.

Assume you have the following program for plotting a parabola:

import numpy as np
x = np.linspace(0, 2, 20)
y = x*(2 - x)
import matplotlib.pyplot as plt
plt.plot(x, y)
plt.show()

Then you switch to the function cos(18πx) by altering the computation
of y to y = cos(18*pi*x). Judge the resulting plot. Is it correct? Display
the cos(18πx) function with 1000 points in the same plot. Name of
program file: judge_plot.py. �
Exercise 5.19. Plot the viscosity of water.

The viscosity of water, μ, varies with the temperature T (in Kelvin)
according to

μ(T) = A · 10B/(T−C), (5.19)

where A = 2.414 · 10−5 Pa s, B = 247.8 K, and C = 140 K. Plot
μ(T) for T between 0 and 100 degrees Celsius. Label the x axis with
‘temperature (C)’ and the y axis with ‘viscosity (Pa s)’. Note that
T in the formula for μ must be in Kelvin. Name of program file:
water_viscosity.py. �
Exercise 5.20. Explore a complicated function graphically.

The wave speed c of water surface waves depends on the length λ of
the waves. The following formula relates c to λ:

c(λ) =

√
gλ

2π

(
1 + s

4π2

ρgλ2

)
tanh

(
2πh

λ

)
. (5.20)

Here, g is the acceleration of gravity (981 cm/s), s is the air-water
surface tension (7.9 · 10−4 N/cm), ρ is the density of water (can be
taken as 1 kg/cm3), and h is the water depth in cm. Let us fix h at
5000 cm. First make a plot of c(λ) (in cm/s) for small λ (0.1 cm to
10 cm). Then make a plot c(λ) for larger λ (1 m to 2 km, but converted
to cm since this cm is the length scale in the values for ρ, s, and g).
Name of program file: water_wave_velocity.py. �
Exercise 5.21. Plot Taylor polynomial approximations to sinx.

The sine function can be approximated by a polynomial according
to the following formula:

sinx ≈ S(x;n) =
n∑

j=0

(−1)j
x2j+1

(2j + 1)!
. (5.21)

5.9 Exercises 249

The expression (2j + 1)! is the factorial (see Exercise 3.19). The error
in the approximation S(x;n) decreases as n increases and in the limit
we have that limn→∞ S(x;n) = sinx. The purpose of this exercise is to
visualize the quality of various approximations S(x;n) as n increases.

The first part of the exercise is to write a Python function S(x,

n) that computes S(x;n). Use a straightforward approach where you
compute each term as it stands in the formula, i.e., (−1)jx2j+1 divided
by the factorial (2j + 1)!. (We remark that Exercise A.18 outlines a
much more efficient computation of the terms in the series.)

The next part of the exercise is to plot sinx on [0, 4π] together
with the approximations S(x; 1), S(x; 2), S(x; 3), S(x; 6), and S(x; 12).
Name of program file: plot_Taylor_sin.py. �

Exercise 5.22. Animate a wave packet.
Display an animation of the function f(x, t) in Exercise 5.17 by plot-

ting f as a function of x on [−6, 6] for a set of t values in [−1, 1].
Also make an animated GIF file. A suitable resolution can be 1000
intervals (1001 points) along the x axis, 60 intervals (61 points) in
time, and 6 frames per second in the animated GIF file. Use the
recipe in Chapter 5.3.4 and remember to remove the family of old
plot files in the beginning of the program. Name of program file:
plot_wavepacket_movie.py. �

Exercise 5.23. Animate a smoothed Heaviside function.
Visualize the smoothed Heaviside function Hε(x), defined in (3.26)

on page 128, as an animation where ε starts at 2 and then goes to zero.
Name of program file: smoothed_Heaviside_movie.py. �

Exercise 5.24. Animate two-scale temperature variations.
We consider temperature oscillations in the ground as addressed in

Chapter 5.8.2. Now we want to visualize daily and annual variations.
Let A1 be the amplitude of annual variations and A2 the amplitude of
the day/night variations. Let also P1 = 365 days and P2 = 24 h be the
periods of the annual and the daily oscillations. The temperature at
time t and depth z is then given by16

T (z, t) = T0 +A1e
−a1z sin(ω1t− a1z) +A2e

−a2z sin(ω2t− a2z), (5.22)

where

ω1 = 2πP1,

ω2 = 2πP2,

16 Here we assume that the temperature T equals the reference temperature T0 at t = 0,

resulting in a sine variation rather than the cosine variation in (5.13).

250 5 Array Computing and Curve Plotting

a1 =

√
ω1

2k
,

a2 =

√
ω2

2k
.

Choose k = 10−6 m2/s, A1 = 15 C, A2 = 7 C, and the resolution Δt as
P2/10. Modify the heatwave.py program in order to animate this new
temperature function. Name of program file: heatwave2.py. �

Exercise 5.25. Improve the solution in Exer. 5.24.
Watching the animation in Exercise 5.24 reveals that there are rapid

oscillations in a small layer close to z = 0. The variations away from
z = 0 are much smaller in time and space. It would therefore be wise to
use more z coordinates close to z = 0 than for larger z values. Given a
set x0 < x1 < · · · < xn of uniformly spaced coordinates in [a, b], we can
compute new coordinates x̄i, stretched toward x = a, by the formula

x̄i = a+ (b− a)

(
xi − a

b− a

)s

,

for some s > 1. Use this formula to stretch the z coordinates to the
left. Experiment with s ∈ [1.2, 3] and few points (say 15) and visualize
the curve as a line with circles at the points so that you can easily see
the distribution of points toward the left end. Run the animation with
no circles and (say) 501 points when a suitable s has been found.

We say that the new z coordinates are adapted to the curve, meaning
that we have distributed the z coordinates where we need them most,
i.e., where there are rapid variations of the curve. Name of program
file: heatwave2a.py. �

Exercise 5.26. Animate a sequence of approximations to π.
Exercise 3.11 outlines an idea for approximating π as the length of

a polygon inside the circle. Wrap the code from Exercise 3.11 in a
function pi_approx(N) which returns the approximation to π using a
polygon with N +1 equally distributed points. The task of the present
exercise is to visually display the polygons as a movie, where each frame
shows the polygon with N+1 points together with the circle and a title
reflecting the corresponding error in the approximate value of π. The
whole movie arises from lettingN run through 4, 5, 6, . . . ,K, whereK is
some (large) prescribed value. Let there be a pause of 0.3 s between each
frame in the movie. By playing the movie you will see how the polygons
move closer and closer to the circle and how the approximation to π
improves. Name of program file: pi_polygon_movie.py. �

Exercise 5.27. Animate a planet’s orbit.
A planet’s orbit around a star has the shape of an ellipse. The pur-

pose of this exercise is to make an animation of the movement along

5.9 Exercises 251

the orbit. One should see a small disk, representing the planet, moving
along an elliptic curve. An evolving solid line shows the development
of the planet’s orbit as the planet moves.

The points (x, y) along the ellipse are given by the expressions

x = a cos(ωt), y = b sin(ωt),

where a is the semimajor axis of the ellipse, b is the semiminor axis,
ω is an angular velocity of the planet around the star, and t denotes
time. One complete orbit corresponds to t ∈ [0, 2π/ω]. Let us discretize
time into time points tk = kΔt, where Δt = 2π/(ωn). Each frame
in the movie corresponds to (x, y) points along the curve with t val-
ues t0, t1, . . . , ti, i representing the frame number (i = 1, . . . , n). Let
the plot title of each frame display the planet’s instantaneous velocity
magnitude. This magnitude is the length of the velocity vector

(
dx

dt
,
dy

dt

)
=

(
−ωa sin(ωt), ωb cos(ωt)

)
,

which becomes ω
√
a2 sin2(ωt) + b2 cos2(ωt).

Implement the visualization of the planet’s orbit using the method
above. Run the special case of a circle and verify that the magnitude
of the velocity remains constant as the planet moves. Name of program
file: planet_orbit.py. �

Exercise 5.28. Animate the evolution of Taylor polynomials.
A general series approximation (to a function) can be written as

S(x;M,N) =

N∑
k=M

fk(x).

For example, the Taylor polynomial of degreeN for ex equals S(x; 0, N)
with fk(x) = xk/k!. The purpose of the exercise is to make a movie of
how S(x;M,N) develops (and hopefully improves as an approximation)
as we add terms in the sum. That is, the frames in the movie correspond
to plots of S(x;M,M), S(x;M,M+1), S(x;M,M+2), . . . , S(x;M,N).

Make a function

animate_series(fk, M, N, xmin, xmax, ymin, ymax, n, exact)

for creating such animations. The argument fk holds a Python function
implementing the term fk(x) in the sum, M and N are the summation
limits, the next arguments are the minimum and maximum x and y
values in the plot, n is the number of x points in the curves to be plotted,
and exact holds the function that S(x) aims at approximating.

Here is some more information on how to write the animate_series

function. The function must accumulate the fk(x) terms in a variable
s, and for each k value, s is plotted against x together with a curve

252 5 Array Computing and Curve Plotting

reflecting the exact function. Each plot must be saved in a file, say
with names tmp_0000.png, tmp_0001.png, and so on (these filenames
can be generated by tmp_%04d.png, using an appropriate counter). Use
the movie function to combine all the plot files into a movie in a desired
movie format.

In the beginning of the animate_series function, it is necessary to
remove all old plot files of the form tmp_*.png. This can be done by
the glob module and the os.remove function as exemplified in Chap-
ter 5.3.4.

Test the animate_series function in two cases:

1. The Taylor series for sinx, where fk(x) = (−1)kx2k+1/(2k + 1)!,
and x ∈ [0, 13π], M = 0, N = 40, y ∈ [−2, 2].

2. The Taylor series for e−x, where fk(x) = (−x)k/k!, and x ∈ [0, 15],
M = 0, N = 30, y ∈ [−0.5, 1.4].

Name of program file: animate_Taylor_series.py. �

Exercise 5.29. Plot the velocity profile for pipeflow.
A fluid that flows through a (very long) pipe has zero velocity on

the pipe wall and a maximum velocity along the centerline of the pipe.
The velocity v varies through the pipe cross section according to the
following formula:

v(r) =

(
β

2μ0

)1/n n

n+ 1

(
R1+1/n − r1+1/n

)
, (5.23)

where R is the radius of the pipe, β is the pressure gradient (the force
that drives the flow through the pipe), μ0 is a viscosity coefficient (small
for air, larger for water and even larger for toothpaste), n is a real
number reflecting the viscous properties of the fluid (n = 1 for water
and air, n < 1 for many modern plastic materials), and r is a radial
coordinate that measures the distance from the centerline (r = 0 is the
centerline, r = R is the pipe wall).

Make a function that evaluates v(r). Plot v(r) as a function of
r ∈ [0, R], with R = 1, β = 0.02, μ = 0.02, and n = 0.1. There-
after, make an animation of how the v(r) curves varies as n goes from
1 and down to 0.01. Because the maximum value of v(r) decreases
rapidly as n decreases, each curve can be normalized by its v(0) value
such that the maximum value is always unity. Name of program file:
plot_velocity_pipeflow.py. �

Exercise 5.30. Plot the functions from Exer. 3.13.
Exercise 3.13 defines the approximation S(t;n) to a function f(t).

Plot S(t; 1), S(t; 3), S(t; 20), S(t; 200), and the exact f(t) function in
the same plot. Use T = 2π. Name of program file: sinesum1_plot.py. �

5.9 Exercises 253

Exercise 5.31. Make a movie of the functions from Exer. 3.13.
First perform Exercise 5.30. A natural next step is to animate the

evolution of S(t;n) as n increases. Create such an animation and ob-
serve how the discontinuity in f(t) is poorly approximated by S(t;n),
even when n grows large (plot f(t) in each frame). This is a well-known
deficiency, called Gibb’s phenomenon, when approximating discontin-
uous functions by sine or cosine (Fourier) series. Name of program file:
sinesum1_movie.py. �

Exercise 5.32. Plot functions from the command line.
For quickly getting a plot a function f(x) for x ∈ [xmin, xmax] it

could be nice to a have a program that takes the minimum amount of
information from the command line and produces a plot on the screen
and saves the plot to a file tmp.png. The usage of the program goes as
follows:

Terminal

plotf.py "f(x)" xmin xmax

A specific example is

Terminal

plotf.py "exp(-0.2*x)*sin(2*pi*x)" 0 4*pi

Hint: Make x coordinates from the second and third command-line
arguments and then use eval (or StringFunction from Chapters 4.1.4
and 5.5.1) on the first argument. Try to write as short program as
possible (we leave it to Exercise 5.33 to test for valid input). Name of
program file: plotf_v1.py. �

Exercise 5.33. Improve the program from Exercise 5.32.
Equip the program from Exercise 5.32 with tests on valid input on

the command line. Also allow an optional fourth command-line argu-
ment for the number of points along the function curve. Set this number
to 501 if it is not given. Name of program file: plotf.py. �

Exercise 5.34. Demonstrate energy concepts from physics.
The vertical position y(t) of a ball thrown upward is given by

y(t) = v0t − 0.5gt2, where g is the acceleration of gravity and v0 is
the velocity at t = 0. Two important physical quantities in this context
are the potential energy, obtained by doing work against gravity, and
the kinetic energy, arising from motion. The potential energy is defined
as P = mgy, where m is the mass of the ball. The kinetic energy is
defined as K = 1

2mv2, where v is the velocity of the ball, related to y
by v(t) = y′(t). Plot P (t) and K(t) in the same plot, along with their
sum P +K. Let t ∈ [0, 2v0/g]. Read m and v0 from the command line.
Run the program with various choices of m and v0 and observe that
P+K is always constant in this motion. In fact, it turns out that P+K

254 5 Array Computing and Curve Plotting

is constant for a large class of motions, and this is a very important
result in physics. Name of program file: energy_physics.py. �

Exercise 5.35. Plot a w-like function.
Define mathematically a function that looks like the ‘w’ character.

Plot this function. Name of program file: plot_w.py. �

Exercise 5.36. Plot a piecewise constant function.
Consider the piecewise constant function defined in Exercise 3.27.

Make a Python function plot_piecewise(data, xmax) which draws a
graph of the function, where data is the nested list explained in Ex-
ercise 3.27 and xmax is the maximum x coordinate. Use ideas from
Chapter 5.4.1. Name of program file: plot_piecewise_constant.py. �

Exercise 5.37. Vectorize a piecewise constant function.
Consider the piecewise constant function defined in Exercise 3.27.

Make vectorized version implementation. Name of program file:
piecewise_constant_vec.py. �

Exercise 5.38. Visualize approximations in the Midpoint integration
rule.

Consider the midpoint rule for integration from Exercise 3.8. Use
Matplotlib to make an illustration of the midpoint rule as shown in
Figure 5.14a. Look up the documentation of the Matplotlib function
fill_between and use this function to create the filled areas between
f(x) and the approximating rectangles. The f(x) function used in Fig-
ure 5.14 is

f(x) = x(12− x) + sin(πx), x ∈ [0, 10].

Note that the fill_between requires the two curves to have the same
number of points. For accurate visualization of f(x) you need quite
many x coordinates, and the rectangular approximation to f(x) must
be drawn using the same set of x coordinates. Name of program file:
viz_midpoint.py. �

Exercise 5.39. Visualize approximations in the Trapezoidal integra-
tion rule.

Redo Exercise 5.38 for the Trapezoidal rule from Exercise 3.7 to
produce the graph shown in Figure 5.14b. Name of program file:
viz_trapezoidal.py. �

Exercise 5.40. Experience overflow in a function.
When an object (ball, car, airplane) moves through the air, there is

a very, very thin layer of air close to the object’s surface where the air
velocity varies dramatically17, from the same value as the velocity of

17 This layer is called a boundary layer. The physics in the boundary layer is very important

for air resistance and cooling/heating of objects.

5.9 Exercises 255

Fig. 5.14 Visualization of numerical integration rules: (a) the Midpoint rule; (b) the Trape-
zoidal rule. The filled areas illustrate the errors in the approximation of the area under the

curve.

the object at the object’s surface to zero a few centimeters away. The
change in velocity is quite abrupt and can be modeled by the function

v(x) =
1− ex/μ

1− e1/μ
,

where x = 1 is the object’s surface, and x = 0 is some distance away
where one cannot notice any wind velocity v because of the passing
object (v = 0). The vind velocity coincides with the velocity of the
object at x = 1, here set to v = 1. The parameter μ is very small
and related to the viscosity of air. With a small value of μ, it becomes
difficult to calculate v(x) on a computer.

Make a function v(x, mu=1E-6, exp=math.exp) for calculating the
formula for v(x) using exp as a possibly user-given exponential function.
Let the v function return the nominator and denominator in the formula
as well as the fraction (result). Call the v function for various x values
between 0 and 1 in a for loop, let mu be 1E-3, and have an inner for loop
over two different exp functions: math.exp and numpy.exp. The output
will demonstrate how the denominator is subject to overflow and how
difficult it is to calculate this function on a computer.

Also plot v(x) for μ = 1, 0.01, 0.001 on [0, 1] using 10,000
points to see what the function looks like. Name of program file:
boundary_layer_func1.py. �
Exercise 5.41. Experience less overflow in a function.

In the program from Exercise 5.40, convert x and eps to a higher
precision representation of real numbers, with the aid of the NumPy
type float96:

import numpy
x = numpy.float96(x); mu = numpy.float96(e)

Call the v function with these type of variables observe how much “bet-
ter” results we get with float96 compared the standard float value

256 5 Array Computing and Curve Plotting

(which is float64 – the number reflects the number of bits in the ma-
chine’s representation of a real number). Also call the v function with x

and mu as float32 variables and report how the function now behaves.
Name of program file: boundary_layer_func2.py. �

Exercise 5.42. Extend Exer. 5.5 to a rank 2 array.
Let A be the two-dimensional array

⎡
⎣ 0 12 −1
−1 −1 −1
11 5 5

⎤
⎦

Apply the function f from Exercise 5.5 to each element in A. Then
calculate the result of the array expression A ∗ ∗3 + A ∗ eA + 1, and
demonstrate that the end result of the two methods are the same. �

Exercise 5.43. Explain why array computations fail.
The following loop computes the array y from x:

>>> import numpy as np
>>> x = np.linspace(0, 1, 3)
>>> y = np.zeros(len(x))
>>> for i in range(len(x)):
... y[i] = x[i] + 4

However, the alternative loop

>>> for xi, yi in zip(x, y):
... yi = xi + 5

leaves y unchanged. Why? Explain in detail what happens in each pass
of this loop and write down the contents of xi, yi, x, and y as the loop
progresses. �

Files, Strings, and Dictionaries 6

Files are used for permanent storage of information on a computer.
From previous computer experience you are hopefully used to save in-
formation to files and open the files at a later time for inspection again.
The present chapter tells you how Python programs can access informa-
tion in files (Chapter 6.1) and also create new files (Chapter 6.5). The
chapter builds on programming concepts introduced in Chapters 1–5.

Since files often contain structured information that one wants to
map to objects in a running program, there is a need for flexible objects
where various kinds of other objects can be stored. Dictionaries are very
handy for this purpose and are described in Chapter 6.2.

Information in files often appear as pure text, so to interpret and
extract data from files it is sometimes necessary to carry out sophisti-
cated operations on the text. Python strings have many methods for
performing such operations, and the most important functionality is
described in Chapter 6.3.

The World Wide Web is full of information and scientific data that
may be useful to access from a program. Chapter 6.4 tells you how to
read web pages from a program and interpret the contents using string
operations.

The folder src/files contains all the program example files referred
to in the present chapter.

6.1 Reading Data from File

Suppose we have recorded some measurements in a file data1.txt, lo-
cated in the src/files folder. The goal of our first example of reading
files is to read the measurement values in data1.txt, find the average
value, and print it out in the terminal window.

H.P. Langtangen, A Primer on Scientific Programming with Python,
Texts in Computational Science and Engineering 6,

DOI 10.1007/978-3-642-30293-0 6, c© Springer-Verlag Berlin Heidelberg 2012

257

http://dx.doi.org/10.1007/978-3-642-30293-0_6

258 6 Files, Strings, and Dictionaries

Before trying to let a program read a file, we must know the file for-
mat, i.e., what the contents of the file looks like, because the structure
of the text in the file greatly influences the set of statements needed to
read the file. We therefore start with viewing the contents of the file
data1.txt. To this end, load the file into a text editor or viewer1. What
we see is a column with numbers:

21.8
18.1
19
23
26
17.8

Our task is to read this column of numbers into a list in the program
and compute the average of the list items.

6.1.1 Reading a File Line by Line

To read a file, we first need to open the file. This action creates a file
object, here stored in the variable infile:

infile = open(’data1.txt’, ’r’)

The second argument to the open function, the string ’r’, tells that
we want to open the file for reading. We shall later see that a file
can be opened for writing instead, by providing ’w’ as the second ar-
gument. After the file is read, one should close the file object with
infile.close().

For Loop over Lines. We can read the contents of the file in various
ways. The basic recipe for reading the file line by line applies a for loop
like this:

for line in infile:
do something with line

The line variable is a string holding the current line in the file. The
for loop over lines in a file has the same syntax as when we go through
a list. Just think of the file object infile as a collection of elements,
here lines in a file, and the for loop visits these elements in sequence
such that the line variable refers to one line at a time. If something
seemingly goes wrong in such a loop over lines in a file, it is useful to
do a print line inside the loop.

Instead of reading one line at a time, we can load all lines into a list
of strings (lines) by

1 You can use emacs, vim, more, or less on Unix and Mac. On Windows, WordPad is
appropriate, or the type command in a DOS window. Word processors such as OpenOffice

or Microsoft Word can also be used.

6.1 Reading Data from File 259

lines = infile.readlines()

This statement is equivalent to

lines = []
for line in infile:

lines.append(line)

or the list comprehension:

lines = [line for line in infile]

In the present example, we load the file into the list lines. The next
task is to compute the average of the numbers in the file. Trying a
straightforward sum of all numbers on all lines,

mean = 0
for number in lines:

mean = mean + number
mean = mean/len(lines)

gives an error message:

TypeError: unsupported operand type(s) for +: ’int’ and ’str’

The reason is that lines holds each line (number) as a string, not a
float or int that we can add to other numbers. A fix is to convert each
line to a float:

mean = 0
for line in lines:

number = float(line)
mean = mean + number

mean = mean/len(lines)

This code snippet works fine. The complete code can be found in the
file files/mean1.py.

Summing up a list of numbers is often done in numerical programs, so
Python has a special function sum for performing this task. However,
sum must in the present case operate on a list of floats, not strings.
We can use a list comprehension to turn all elements in lines into
corresponding float objects:

mean = sum([float(line) for line in lines])/len(lines)

An alternative implementation is to load the lines into a list of float

objects directly. Using this strategy, the complete program (found in
file mean2.py) takes the form

infile = open(’data1.txt’, ’r’)
numbers = [float(line) for line in infile.readlines()]
infile.close()
mean = sum(numbers)/len(numbers)
print mean

260 6 Files, Strings, and Dictionaries

A newcomer to programming might find it confusing to see that
one problem is solved by many alternative sets of statements, but this
is the very nature of programming. A clever programmer will judge
several alternative solutions to a programming task and choose one
that is either particularly compact, easy to understand, and/or easy to
extend later. We therefore present more examples on how to read the
data1.txt file and compute with the data.

While Loop over Lines. The call infile.readline() returns a string
containing the text at the current line. A new infile.readline() will
read the next line. When infile.readline() returns an empty string,
the end of the file is reached and we must stop further reading. The fol-
lowing while loop reads the file line by line using infile.readline():

while True:
line = infile.readline()
if not line:

break
process line

This is perhaps a somewhat strange loop, but it is a well-established
way of reading a file in Python (especially in older codes). The shown
while loop runs forever since the condition is always True. However,
inside the loop we test if line is False, and it is False when we reach
the end of the file, because line then becomes an empty string, which
in Python evaluates to False. When line is False, the break statement
breaks the loop and makes the program flow jump to the first statement
after the while block.

Computing the average of the numbers in the data1.txt file can now
be done in yet another way:

infile = open(’data1.txt’, ’r’)
mean = 0
n = 0
while True:

line = infile.readline()
if not line:

break
mean += float(line)
n += 1

mean = mean/float(n)

Reading a File into a String. The call infile.read() reads the whole
file and returns the text as a string object. The following interactive
session illustrates the use and result of infile.read():

>>> infile = open(’data1.txt’, ’r’)
>>> filestr = infile.read()
>>> filestr
’21.8\n18.1\n19\n23\n26\n17.8\n’
>>> print filestr
21.8
18.1

6.1 Reading Data from File 261

19
23
26
17.8

Note the difference between just writing filestr and writing print

filestr. The former dumps the string with newlines as “backslash n”
characters, while the latter is a “pretty print” where the string is writ-
ten out without quotes and with the newline characters as visible line
shifts2.

Having the numbers inside a string instead of inside a file does not
look like a major step forward. However, string objects have many use-
ful functions for extracting information. A very useful feature is split :
filestr.split() will split the string into words (separated by blanks
or any other sequence of characters you have defined). The “words” in
this file are the numbers:

>>> words = filestr.split()
>>> words
[’21.8’, ’18.1’, ’19’, ’23’, ’26’, ’17.8’]
>>> numbers = [float(w) for w in words]
>>> mean = sum(numbers)/len(numbers)
>>> print mean
20.95

A more compact program looks as follows (mean3.py):

infile = open(’data1.txt’, ’r’)
numbers = [float(w) for w in infile.read().split()]
mean = sum(numbers)/len(numbers)

The next section tells you more about splitting strings.

6.1.2 Reading a Mixture of Text and Numbers

The data1.txt file has a very simple structure since it contains num-
bers only. Many data files contain a mix of text and numbers. The file
rainfall.dat provides an example3:

Average rainfall (in mm) in Rome: 1188 months between 1782 and 1970
Jan 81.2
Feb 63.2
Mar 70.3
Apr 55.7
May 53.0
Jun 36.4
Jul 17.5
Aug 27.5
Sep 60.9
Oct 117.7
Nov 111.0
Dec 97.9
Year 792.9

2 The difference between these two outputs is explained in Chapter 7.3.9.
3 http://www.worldclimate.com/cgi-bin/data.pl?ref=N41E012+2100+1623501G1

http://www.worldclimate.com/cgi-bin/data.pl?ref=N41E012+2100+1623501G1

262 6 Files, Strings, and Dictionaries

How can we read the rainfall data in this file and make a plot of the
values?

The most straightforward solution is to read the file line by line, and
for each line split the line into words, pick out the last (second) word
on the line, convert this word to float, and store the float objects
in a list. Having the rainfall values in a list of real numbers, we can
make a plot of the values versus the month number. The complete code,
wrapped in a function, may look like this (file rainfall.py):

def extract_data(filename):
infile = open(filename, ’r’)
infile.readline() # skip the first line
numbers = []
for line in infile:

words = line.split()
number = float(words[1])
numbers.append(number)

infile.close()
return numbers

values = extract_data(’rainfall.dat’)
from scitools.std import plot
month_indices = range(1, 13)
plot(month_indices, values[:-1], ’o2’)

Note that the first line in the file is just a comment line and of no
interest to us. We therefore read this line by infile.readline(). The
for loop over the lines in the file will then start from the next (second)
line.

Also note that numbers contain data for the 12 months plus the aver-
age annual rainfall. We want to plot the average rainfall for the months
only, i.e., values[0:12] or simply values[:-1] (everything except the
last entry). Along the “x” axis we put the index of a month, starting
with 1. A call to range(1,13) generates these indices.

We can condense the for loop over lines in the file, if desired, by
using a list comprehension:

def extract_data(filename):
infile = open(filename, ’r’)
infile.readline() # skip the first line
numbers = [float(line.split()[1]) for line in infile]
infile.close()
return numbers

6.1.3 What Is a File, Really?

This section is not mandatory for understanding the rest of the book.
However, we think the information here is fundamental for understand-
ing what files are about.

A file is simply a sequence of characters. In addition to the sequence
of characters, a file has some data associated with it, typically the
name of the file, its location on the disk, and the file size. These data

6.1 Reading Data from File 263

are stored somewhere by the operating system. Without this extra in-
formation beyond the pure file contents as a sequence of characters,
the operating system cannot find a file with a given name on the disk.

Each character in the file is represented as a byte, consisting of eight
bits. Each bit is either 0 or 1. The zeros and ones in a byte can be
combined in 28 = 256 ways. This means that there are 256 differ-
ent types of characters. Some of these characters can be recognized
from the keyboard, but there are also characters that do not have
a familiar symbol. The name of such characters looks cryptic when
printed.

Pure Text Files. To see that a file is really just a sequence of characters,
invoke an editor for plain text, e.g., the editor you use to write Python
programs. Write the four characters ABCD into the editor, do not press
the Return key, and save the text to a file test1.txt. Use your favorite
tool for file and folder overview and move to the folder containing the
test1.txt file. This tool may be Windows Explorer, My Computer, or a
DOS window on Windows; a terminal window, Konqueror, or Nautilus
on Linux; or a terminal window or Finder on Mac. If you choose a
terminal window, use the cd (change directory) command to move to
the proper folder and write dir (Windows) or ls -l (Linux/Mac) to list
the files and their sizes. In a graphical program like Windows Explorer,
Konqueror, Nautilus, or Finder, select a view that shows the size of each
file4. You will see that the test1.txt file has a size of 4 bytes5. The 4
bytes are exactly the 4 characters ABCD in the file. Physically, the file is
just a sequence of 4 bytes on your hard disk.

Go back to the editor again and add a newline by pressing the Return
key. Save this new version of the file as test2.txt. When you now check
the size of the file it has grown to five bytes. The reason is that we added
a newline character (symbolically known as “backslash n”).

Instead of examining files via editors and folder viewers we may use
Python interactively:

>>> file1 = open(’test1.txt’, ’r’).read() # read file into string
>>> file1
’ABCD’
>>> len(file1) # length of string in bytes/characters
4
>>> file2 = open(’test2.txt’, ’r’).read()
>>> file2
’ABCD\n’
>>> len(file2)
5

Python has in fact a function that returns the size of a file directly:

4 Choose “view as details” in Windows Explorer, “View as List” in Nautilus, the list view
icon in Finder, or you just point at a file icon in Konqueror and watch the pop-up text.
5 If you use ls -l, the size measured in bytes is found in column 5, right before the date.

264 6 Files, Strings, and Dictionaries

>>> import os
>>> size = os.path.getsize(’test1.txt’)
>>> size
4

Word Processor Files. Most computer users write text in a word pro-
cessing program, such as Microsoft Word or OpenOffice. Let us inves-
tigate what happens with our four characters ABCD in such a program.
Start the word processor, open a new document, and type in the four
characters ABCD only. Save the document as a .doc file (Microsoft Word)
or an .odt file (OpenOffice). Load this file into an editor for pure text
and look at the contents. You will see that there are numerous strange
characters that you did not write (!). This additional “text” contains
information on what type of document this is, the font you used, etc.
The OpenOffice version of this file has 5725 bytes! However, if you save
the file as a pure text file, with extension .txt, the size is not more than
four bytes, and the text file contains just the corresponding characters
ABCD.

Instead of loading the OpenOffice file into an editor we can again
read the file contents into a string in Python and examine this string:

>>> infile = open(’test3.odt’, ’r’) # open OpenOffice file
>>> s = infile.read()
>>> len(s) # file size
5725
>>> s
’PK\x03\x04\x14\x00\x00\x00\x00\x00r\x80E6^\xc62\x0c\...
\x00\x00mimetypeapplication/vnd.oasis.opendocument.textPK\x00...
\x00\x00content.xml\xa5VMS\xdb0\x10\xbd\xf7Wx|\xe8\xcd\x11...’

Each backslash followed by x and a number is a code for a special char-
acter not found on the keyboard (recall that there are 256 characters
and only a subset is associated with keyboard symbols). Although we
show just a small portion of all the characters in this file in the above
output6, we can guarantee that you cannot find the pure sequence of
characters ABCD. However, the computer program that generated the
file, OpenOffice in this example, can easily interpret the meaning of
all the characters in the file and translate the information into nice,
readable text on the screen.

Image Files. A digital image – captured by a digital camera or a mobile
phone – is a file. And since it is a file, the image is just a sequence of
characters. Loading some JPEG file into a pure text editor, you can see
all the strange characters in there. On the first line you will (normally)
find some recognizable text in between the strange characters. This
text reflects the type of camera used to capture the image and the
date and time when the picture was taken. The next lines contain

6 Otherwise, the output would have occupied several pages in this book with about five

thousand backslash-x-number symbols. . .

6.1 Reading Data from File 265

more information about the image. Thereafter, the file contains a set of
numbers representing the image. The basic representation of an image
is a set of m × n pixels, where each pixel has a color represented as a
combination of 256 values of red, green, and blue, which can be stored
as three bytes (resulting in 2563 color values). A 6 megapixel camera
will then need to store 3× 6 · 106 = 18 megabytes for one picture. The
JPEG file contains only a couple of megabytes. The reason is that JPEG
is a compressed file format, produced by applying a smart technique
that can throw away pixel information in the original picture such that
the human eye hardly can detect the inferior quality.

A video is just a sequence of images, and therefore a video is also a
stream of bytes. If the change from one video frame (image) to the next
is small, one can use smart methods to compress the image information
in time. Such compression is particularly important for videos since
the file sizes soon get too large for being transferred over the Internet.
A small video file occasionally has bad visual quality, caused by too
much compression.

Music Files. An MP3 file is much like a JPEG file: First, there is some
information about the music (artist, title, album, etc.), and then comes
the music itself as a stream of bytes. A typical MP3 file has a size of
something like five million bytes7, i.e., five megabytes (5 Mb). On a 2 Gb
MP3 player you can then store roughly 2,000,000,000/5,000,000 = 400
MP3 files. MP3 is, like JPEG, a compressed format. The complete data
of a song on a CD (the WAV file) contains about ten times as many
bytes. As for pictures, the idea is that one can throw away a lot of
bytes in an intelligent way, such that the human ear hardly detects
the difference between a compressed and uncompressed version of the
music file.

PDF Files. Looking at a PDF file in a pure text editor shows that the
file contains some readable text mixed with some unreadable charac-
ters. It is not possible for a human to look at the stream of bytes and
deduce the text in the document8. A PDF file reader can easily inter-
pret the contents of the file and display the text in a human-readable
form on the screen.

Remarks. We have repeated many times that a file is just a stream of
bytes. A human can interpret (read) the stream of bytes if it makes
sense in a human language – or a computer language (provided the
human is a programmer). When the series of bytes does not make

7 The exact size depends on the complexity of the music, the length of the track, and the
MP3 resolution.
8 From the assumption that there are always some strange people doing strange things,
there might be somebody out there who – with a lot of training – can interpret the pure

PDF code with the eyes.

266 6 Files, Strings, and Dictionaries

sense to any human, a computer program must be used to interpret
the sequence of characters.

Think of a report. When you write the report as pure text in a text
editor, the resulting file contains just the characters you typed in from
the keyboard. On the other hand, if you applied a word processor like
Microsoft Word or OpenOffice, the report file contains a large number
of extra bytes describing properties of the formatting of the text. This
stream of extra bytes does not make sense to a human, and a computer
program is required to interpret the file content and display it in a form
that a human can understand. Behind the sequence of bytes in the file
there are strict rules telling what the series of bytes means. These
rules reflect the file format. When the rules or file format is publicly
documented, a programmer can use this documentation to make her
own program for interpreting the file contents9. It happens, though,
that secret file formats are used, which require certain programs from
certain companies to interpret the files.

6.2 Dictionaries

So far in the book we have stored information in various types of ob-
jects, such as numbers, strings, list, and arrays. A dictionary is a very
flexible object for storing various kind of information, and in particular
when reading files. It is therefore time to introduce the dictionary type.

A list is a collection of objects indexed by an integer going from 0 to
the number of elements minus one. Instead of looking up an element
through an integer index, it can be more handy to use a text. Roughly
speaking, a list where the index can be a text is called a dictionary
in Python. Other computer languages use other names for the same
thing: HashMap, hash, associative array, or map.

6.2.1 Making Dictionaries

Suppose we need to store the temperatures from three cities: Oslo,
London, and Paris. For this purpose we can use a list,

temps = [13, 15.4, 17.5]

but then we need to remember the sequence of cities, e.g., that index
0 corresponds to Oslo, index 1 to London, and index 2 to Paris. That
is, the London temperature is obtained as temps[1]. A dictionary with
the city name as index is more convenient, because this allows us to

9 Interpreting such files is much more complicated than our examples on reading human-

readable files in this book.

6.2 Dictionaries 267

write temps[’London’] to look up the temperature in London. Such a
dictionary is created by one of the following two statements

temps = {’Oslo’: 13, ’London’: 15.4, ’Paris’: 17.5}
or
temps = dict(Oslo=13, London=15.4, Paris=17.5)

Additional text-value pairs can be added when desired. We can, for
instance, write

temps[’Madrid’] = 26.0

The temps dictionary has now four text-value pairs, and a print temps

yields

{’Oslo’: 13, ’London’: 15.4, ’Paris’: 17.5, ’Madrid’: 26.0}

6.2.2 Dictionary Operations

The string “indices” in a dictionary are called keys. To loop over the
keys in a dictionary d, one writes for key in d: and works with key

and the corresponding value d[key] inside the loop. We may apply this
technique to write out the temperatures in the temps dictionary from
the previous paragraph:

>>> for city in temps:
... print ’The temperature in %s is %g’ % (city, temps[city])
...
The temperature in Paris is 17.5
The temperature in Oslo is 13
The temperature in London is 15.4
The temperature in Madrid is 26

We can check if a key is present in a dictionary by the syntax if key

in d:

>>> if ’Berlin’ in temps:
... print ’Berlin:’, temps[’Berlin’]
... else:
... print ’No temperature data for Berlin’
...
No temperature data for Berlin

Writing key in d yields a standard boolean expression, e.g.,

>>> ’Oslo’ in temps
True

The keys and values can be extracted as lists from a dictionary:

>>> temps.keys()
[’Paris’, ’Oslo’, ’London’, ’Madrid’]
>>> temps.values()
[17.5, 13, 15.4, 26.0]

268 6 Files, Strings, and Dictionaries

An important feature of the keys method in dictionaries is that the
order of the returned list of keys is unpredictable. If you need to traverse
the keys in a certain order, you can sort the keys. A loop over the keys
in the temps dictionary in alphabetic order is written as

>>> for city in sorted(temps):
... print city
...
London
Madrid
Oslo
Paris

Python also has a special dictionary type, called OrderedDict, found
in the collections module. This dictionary remembers the order of
key-value pairs as they were created. A for loop over an OrderedDict

object will always visit the keys in this particular order.
A key-value pair can be removed by del d[key]:

>>> del temps[’Oslo’]
>>> temps
{’Paris’: 17.5, ’London’: 15.4, ’Madrid’: 26.0}
>>> len(temps) # no of key-value pairs in dictionary
3

Sometimes we need to take a copy of a dictionary:

>>> temps_copy = temps.copy()
>>> del temps_copy[’Paris’] # this does not affect temps
>>> temps_copy
{’London’: 15.4, ’Madrid’: 26.0}
>>> temps
{’Paris’: 17.5, ’London’: 15.4, ’Madrid’: 26.0}

Note that if two variables refer to the same dictionary and we change
the contents of the dictionary through either of the variables, the change
will be seen in both variables:

>>> t1 = temps
>>> t1[’Stockholm’] = 10.0 # change t1
>>> temps # temps is also changed
{’Stockholm’: 10.0, ’Paris’: 17.5, ’London’: 15.4, ’Madrid’: 26.0}

To avoid that temps is affected by adding a new key-value pair to t1,
t1 must be a copy of temps.

Remark. In Python version 2.x, temps.keys() returns a list object
while in Python version 3.x, temps.keys() only enables iterating over
the keys. To write code that works with both versions one can use
list(temps.keys()) in the cases where a list is really needed and just
temps.keys() in a for loop over the keys.

6.2 Dictionaries 269

6.2.3 Example: Polynomials as Dictionaries

The keys in a dictionary are not restricted to be strings. In fact, any
Python object whose contents cannot be changed can be used as key10.
For example, we may use integers as keys in a dictionary. This is a
handy way of representing polynomials, as will be explained next.

Consider the polynomial

p(x) = −1 + x2 + 3x7.

The data associated with this polynomial can be viewed as a set of
power-coefficient pairs, in this case the coefficient −1 belongs to power
0, the coefficient 1 belongs to power 2, and the coefficient 3 belongs to
power 7. A dictionary can be used to map a power to a coefficient:

p = {0: -1, 2: 1, 7: 3}

A list can, of course, also be used, but in this case we must fill in all
the zero coefficients too, since the index must match the power:

p = [-1, 0, 1, 0, 0, 0, 0, 3]

The advantage with a dictionary is that we need to store only the non-
zero coefficients. For the polynomial 1 + x100 the dictionary holds two
elements while the list holds 101 elements (see Exercise 6.16).

The following function can be used to evaluate a polynomial repre-
sented as a dictionary:

def poly1(data, x):
sum = 0.0
for power in data:

sum += data[power]*x**power
return sum

The data argument must be a dictionary where data[power] holds the
coefficient associated with the term x**power. A more compact imple-
mentation can make use of Python’s sum function to sum the elements
of a list:

def poly1(data, x):
return sum([data[p]*x**p for p in data])

That is, we first make a list of the terms in the polynomial using a
list comprehension, and then we feed this list to the sum function. Note
that the name sum is different in the two implementations: In the first,
sum is a float object, and in the second, sum is a function. When we
set sum=0.0 in the first implementation, we bind the name sum to a

10 Such objects are known as immutable data types and consist of int, float, complex,

str, and tuple. Lists and dictionaries can change their contents and are called mutable
objects. These cannot be used as keys in dictionaries. If you desire a list as key, use a tuple

instead.

270 6 Files, Strings, and Dictionaries

new float object, and the built-in Python function associated with
the name sum is then no longer accessible inside the poly1 function11.
Outside the function, nevertheless, sum will be the summation function
(unless we have bound the global name sum to another object some-
where else in the main program.

With a list instead of dictionary for representing the polynomial,
a slightly different evaluation function is needed:

def poly2(data, x):
sum = 0
for power in range(len(data)):

sum += data[power]*x**power
return sum

If there are many zeros in the data list, poly2 must perform all the
multiplications with the zeros, while poly1 computes with the non-zero
coefficients only and is hence more efficient.

Another major advantage of using a dictionary to represent a poly-
nomial rather than a list is that negative powers are easily allowed,
e.g.,

p = {-3: 0.5, 4: 2}

can represent 1
2x

−3 + 2x4. With a list representation, negative powers
require much more book-keeping. We may, for example, set

p = [0.5, 0, 0, 0, 0, 0, 0, 2]

and remember that p[i] is the coefficient associated with the power
i-3. In particular, the poly2 function will no longer work for such lists,
while the poly1 function works also for dictionaries with negative keys
(powers).

There is (in Python v2.7/v3.1) a dictionary counterpart to list com-
prehensions, called dictionary comprehensions, for quickly generating
parameterized key-value pairs with a for loop. Such a construction is
convenient to generate the coefficients in a polynomial:

from math import factorial
d = {k: (-1)**k/factorial(k) for k in range(n+1)}

The d dictionary now contains the power-coefficient pairs of the Taylor
polynomial of degree n for e−x.

You are now encouraged to solve Exercise 6.17 on page 333 to become
more familiar with the concept of dictionaries.

11 This is not strictly correct, because sum is a local variable while the summation function

is associated with a global name sum, which can be reached through globals()[’sum’].

6.2 Dictionaries 271

6.2.4 Dictionaries with Default Values and Ordering

Dictionaries with Default Values. Looking up keys that are not present
in the dictionary requires special treatment. Consider a polynomial
dictionary of the type introduced in Chapter 6.2.3. Say we have 2x−3−
1.5x−1 − 2x2 represented by

p1 = {-3: 2, -1: -1.5, 2: -2}

If the code tries to look up p1[1], this operation results in a KeyError

since 1 is not a registered key in p1. We therefore need to do either

if key in p1:
value = p1[key]

or use

value = p1.get(key, 0.0)

where p1.get returns p1[key] if key in p1 and the default value 0.0

if not. A third possibility is to work with a dictionary with a default
value:

from collections import defaultdict

def polynomial_coeff_default():
default value for polynomial dictionary
return 0.0

p2 = defaultdict(polynomial_coeff_default)
p2.update(p1)

The p2 can be indexed by any key, and for unregistered keys the
polynomial_coeff_default function is called to provide a value. This
must be a function without arguments. Usually, a separate function is
never made, but either a type is inserted or a lambda function. The
example above is equivalent to

p2 = defaultdict(lambda: 0.0)
p2 = defaultdict(float)

In the latter case float() is called for each unknown key, and float()

returns a float object with zero value. Now we can look up p2[1] and
get the default value 0. It must be remarked that this key is then a
part of the dictionary:

>>> p2 = defaultdict(lambda: 0.0)
>>> p2.update({2: 8}) # only one key
>>> p2[1]
0.0
>>> p2[0]
0.0
>>> p2[-2]
0.0
>>> print p2
{0: 0.0, 1: 0.0, 2: 8, -2: 0.0}

272 6 Files, Strings, and Dictionaries

Ordered Dictionaries. The elements of a dictionary has an undefined
order. For example,

>>> p1 = {-3: 2, -1: -1.5, 2: -2}
>>> print p1
{2: -2, -3: 2, -1: -1.5}

One can control the order my sorting the keys, either by the default
sorting (alphabetically for string keys, ascending order for number
keys):

>>> for key in sorted(p1):
... print key, p1[key]
...
-3 2
-1 -1.5
2 -2

The sorted function also accept an optional argument where the user
can supply a function that sorts two keys (see Exercise 3.32).

However, Python features a dictionary type that preserves the order
of the keys as they were registered:

>>> from collections import OrderedDict
>>> p2 = OrderedDict({-3: 2, -1: -1.5, 2: -2})
>>> print p2
OrderedDict([(2, -2), (-3, 2), (-1, -1.5)])
>>> p2[-5] = 6
>>> for key in p2:
... print key, p2[key]
...
2 -2
-3 2
-1 -1.5
-5 6

Here is an example with dates as keys where the order is important.

>>> data = {’Jan 2’: 33, ’Jan 16’: 0.1, ’Feb 2’: 2}
>>> for date in data:
... print date, data[date]
...
Feb 2 2
Jan 2 33
Jan 16 0.1

The order of the keys in the loop is not the right registered order, but
this is easily achieved by OrderedDict

>>> data = OrderedDict()
>>> data[’Jan 2’] = 33
>>> data[’Jan 16’] = 0.1
>>> data[’Feb 2’] = 2
>>> for date in data:
... print date, data[date]
...
Jan2 33
Jan 16 0.1
Feb 2 2

6.2 Dictionaries 273

A comment on alternative solutions should be made here. Trying to
sort the data dictionary when it is an ordinary dict object does not
help, as by default the sorting will be alphabetically, resulting in the
sequence ’Feb 2’, ’Jan 16’, and ’Jan 2’. What does help, however, is
to use Python’s datetime objects as keys reflecting dates, since these
objects will be correctly sorted. A datetime object can be created from
a string like ’Jan 2, 2017’ using a special syntax (see the module doc-
umentation). The relevant code is

>>> import datetime
>>> data = {}
>>> d = datetime.datetime.strptime # short form
>>> data[d(’Jan 2, 2017’, ’%b %d, %Y’)] = 33
>>> data[d(’Jan 16, 2017’, ’%b %d, %Y’)] = 0.1
>>> data[d(’Feb 2, 2017’, ’%b %d, %Y’)] = 2

Printing out in sorted order gives the right sequence of dates:

>>> for date in sorted(data):
... print date, data[date]
...
2017-01-02 00:00:00 33
2017-01-16 00:00:00 0.1
2017-02-02 00:00:00 2

The time is automatically part of a datetime object and set to 00:00:00

when not specified.
While OrderedDict provides a simpler and shorter solution to keeping

keys (here dates) in the right order in a dictionary, using datetime

objects for dates has many advantages: dates can be formatted and
written out in various ways, counting days between two dates is easy
(see Appendix A.1.1), calculating the corresponding week number and
name of the weekday is supported, to mention some functionality.

6.2.5 Example: File Data in Dictionaries

Problem. The file files/densities.dat contains a table of densities of
various substances measured in g/cm3:

air 0.0012
gasoline 0.67
ice 0.9
pure water 1.0
seawater 1.025
human body 1.03
limestone 2.6
granite 2.7
iron 7.8
silver 10.5
mercury 13.6
gold 18.9
platinium 21.4
Earth mean 5.52
Earth core 13
Moon 3.3
Sun mean 1.4
Sun core 160
proton 2.8E+14

274 6 Files, Strings, and Dictionaries

In a program we want to access these density data. A dictionary
with the name of the substance as key and the corresponding density
as value seems well suited for storing the data.

Solution. We can read the densities.dat file line by line, split each
line into words, use a float conversion of the last word as density value,
and the remaining one or two words as key in the dictionary.

def read_densities(filename):
infile = open(filename, ’r’)
densities = {}
for line in infile:

words = line.split()
density = float(words[-1])

if len(words[:-1]) == 2:
substance = words[0] + ’ ’ + words[1]

else:
substance = words[0]

densities[substance] = density
infile.close()
return densities

densities = read_densities(’densities.dat’)

This code is found in the file density.py. With string operations from
Chapter 6.3.1 we can avoid the special treatment of one or two words
in the name of the substance and achieve simpler and more general
code, see Exercise 6.10.

6.2.6 Example: File Data in Nested Dictionaries

Problem. We are given a data file with measurements of some proper-
ties with given names (here A, B, C ...). Each property is measured a
given number of times. The data are organized as a table where the
rows contain the measurements and the columns represent the mea-
sured properties:

A B C D
1 11.7 0.035 2017 99.1
2 9.2 0.037 2019 101.2
3 12.2 no no 105.2
4 10.1 0.031 no 102.1
5 9.1 0.033 2009 103.3
6 8.7 0.036 2015 101.9

The word “no” stands for no data, i.e., we lack a measurement. We
want to read this table into a dictionary data so that we can look
up measurement no. i of (say) property C as data[’C’][i]. For each
property p, we want to compute the mean of all measurements and
store this as data[p][’mean’].

Algorithm. The algorithm for creating the data dictionary goes as fol-
lows:

6.2 Dictionaries 275

examine the first line: split it into words and
initialize a dictionary with the property names
as keys and empty dictionaries ({}) as values

for each of the remaining lines in the file:
split the line into words
for each word after the first:

if the word is not “no”:
transform the word to a real number and store

the number in the relevant dictionary

Implementation. The solution requires familiarity with dictionaries and
list slices (also called sublists, see Chapter 2.4.3). A new aspect needed
in the solution is nested dictionaries, that is, dictionaries of dictionaries.
The latter topic is first explained, via an example:

>>> d = {’key1’: {’key1’: 2, ’key2’: 3}, ’key2’: 7}

Observe here that the value of d[’key1’] is a dictionary which we can
index with its keys key1 and key2:

>>> d[’key1’] # this is a dictionary
{’key2’: 3, ’key1’: 2}
>>> type(d[’key1’]) # proof
<type ’dict’>
>>> d[’key1’][’key1’] # index a nested dictionary
2
>>> d[’key1’][’key2’]
3

In other words, repeated indexing works for nested dictionaries as for
nested lists. The repeated indexing does not apply to d[’key2’] since
that value is just an integer:

>>> d[’key2’][’key1’]
...

TypeError: unsubscriptable object
>>> type(d[’key2’])
<type ’int’>

When we have understood the concept of nested dictionaries, we are
in a position to present a complete code that solves our problem of
loading the tabular data in the file table.dat into a nested dictionary
data and computing mean values. First, we list the program, stored in
the file table2dict.py, and display the program’s output. Thereafter,
we dissect the code in detail.

infile = open(’table.dat’, ’r’)
lines = infile.readlines()
infile.close()
data = {} # data[property][measurement_no] = propertyvalue
first_line = lines[0]

276 6 Files, Strings, and Dictionaries

properties = first_line.split()
for p in properties:

data[p] = {}

for line in lines[1:]:
words = line.split()
i = int(words[0]) # measurement number
values = words[1:] # values of properties
for p, v in zip(properties, values):

if v != ’no’:
data[p][i] = float(v)

Compute mean values
for p in data:

values = data[p].values()
data[p][’mean’] = sum(values)/len(values)

for p in sorted(data):
print ’Mean value of property %s = %g’ % (p, data[p][’mean’])

The corresponding output from this program becomes
Mean value of property A = 10.1667
Mean value of property B = 0.0344
Mean value of property C = 2015
Mean value of property D = 102.133

To view the nested data dictionary, we may insert

import scitools.pprint2; scitools.pprint2.pprint(data)

which produces something like

{’A’: {1: 11.7, 2: 9.2, 3: 12.2, 4: 10.1, 5: 9.1, 6: 8.7,
’mean’: 10.1667},

’B’: {1: 0.035, 2: 0.037, 4: 0.031, 5: 0.033, 6: 0.036,
’mean’: 0.0344},

’C’: {1: 2017, 2: 2019, 5: 2009, 6: 2015, ’mean’: 2015},
’D’: {1: 99.1,

2: 101.2,
3: 105.2,
4: 102.1,
5: 103.3,
6: 101.9,
’mean’: 102.133}}

Dissection. To understand a computer program, you need to under-
stand what the result of every statement is. Let us work through the
code, almost line by line, and see what it does.

First, we load all the lines of the file into a list of strings called lines.
The first_line variable refers to the string

’ A B C D’

We split this line into a list of words, called properties, which then
contains

[’A’, ’B’, ’C’, ’D’]

With each of these property names we associate a dictionary with the
measurement number as key and the property value as value, but first
we must create these “inner” dictionaries as empty before we can add
the measurements:

6.2 Dictionaries 277

for p in properties:
data[p] = {}

The first pass in the for loop picks out the string

’1 11.7 0.035 2017 99.1’

as the line variable. We split this line into words, the first word
(words[0]) is the measurement number, while the rest words[1:] is
a list of property values, here named values. To pair up the right
properties and values, we loop over the properties and values lists
simultaneously:

for p, v in zip(properties, values):
if v != ’no’:

data[p][i] = float(v)

Recall that some values may be missing and we drop to record that
value12. Because the values list contains strings (words) read from the
file, we need to explicitly transform each string to a float number
before we can compute with the values.

After the for line in lines[1:] loop, we have a dictionary data

of dictionaries where all the property values are stored for each mea-
surement number and property name. Figure 6.1 shows a graphical
representation of the data dictionary.

It remains to compute the average values. For each property name
p, i.e., key in the data dictionary, we can extract the recorded values
as the list data[p].values() and simply send this list to Python’s sum

function and divide by the number of measured values for this property,
i.e., the length of the list:

for p in data:
values = data[p].values()
data[p][’mean’] = sum(values)/len(values)

Alternatively, we can write an explicit loop to compute the average:

for p in data:
sum_values = 0
for value in data[p]:

sum_values += value
data[p][’mean’] = sum_values/len(data[p])

When we want to look up a measurement no. n of property B, we
must recall that this particular measurement may be missing so we
must do a test if n is key in the dictionary data[p]:

if n in data[’B’]:
value = data[’B’][n]

alternative:
value = data[’B’][n] if n in data[’B’] else None

12 We could, alternatively, set the value to None.

278 6 Files, Strings, and Dictionaries

Fig. 6.1 Illustration of the nested dictionary created in the table2dict.py program.

6.2.7 Example: Comparing Stock Prices

Problem. We want to compare the evolution of the stock prices of
three giant companies in the computer industry: Microsoft, Sun Mi-
crosystems, and Google. Relevant data files for stock prices can be
downloaded from finance.yahoo.com. Fill in the company’s name and
click on “GET QUOTES” in the top bar of this page, then choose “His-
torical Prices”. On the resulting web page we can specify start and end
dates for the historical prices of the stock. We let this be January 1,
1988, for Microsoft and Sun, and January 1, 2005, for Google. The end
dates were set to June 1, 2008, in this example. Ticking off “Monthly”

6.2 Dictionaries 279

values and clicking “Get Prices” result in a table of stock prices. We
can download the data in a tabular format by clicking “Download To
Spreadsheet” below the table. Here is an example of such a file:

Date,Open,High,Low,Close,Volume,Adj Close
2008-06-02,12.91,13.06,10.76,10.88,16945700,10.88
2008-05-01,15.50,16.37,12.37,12.95,26140700,12.95
2008-04-01,15.78,16.23,14.62,15.66,10330100,15.66
2008-03-03,16.35,17.38,15.41,15.53,12238800,15.53
2008-02-01,17.47,18.03,16.06,16.40,12147900,16.40
2008-01-02,17.98,18.14,14.20,17.50,15156100,17.50
2007-12-03,20.61,21.55,17.96,18.13,9869900,18.13
2007-11-01,5.65,21.60,5.10,20.78,17081500,20.78

The file format is simple: columns are separated by comma, the first
line contains column headings, and the data lines have the date in the
first column and various measures of stock prices in the next columns.
Reading about the meaning of the various data on the Yahoo! web pages
reveals that our interest concerns the final column (these prices are ad-
justed for splits and dividends). Three relevant data files can be found
in src/files with the names company_monthly.csv, where company is
Microsoft, Sun, or Google.

The task is to plot the evolution of stock prices of the three compa-
nies. It is natural to scale the prices to start at a unit value in January
1988 and let the Google price start at the maximum of the Sun and
Microsoft stock values in January 2005.

Solution. There are two major parts of this problem: (i) reading the file
and (ii) plotting the data. The reading part is quite straightforward,
while the plotting part needs some special considerations since the “x”
values in the plot are dates and not real numbers. In the forthcom-
ing text we solve the individual subproblems one by one, showing the
relevant Python snippets. The complete program is found in the file
stockprices.py.

We start with the reading part. Since the reading will be repeated
for three files, we make a function with the filename as argument. The
result of reading a file should be two lists (or arrays) with the dates
and the stock prices, respectively. We therefore return these two lists
from the function. The algorithm for reading the data goes as follows:

open the file
create two empty lists, dates and prices, for collecting the data
read the first line (of no interest)
for each line in the rest of the file:

split the line wrt. comma
append the first word on the line to the dates list
append the last word on the line to the prices list

close the file

There are a couple of additional points to consider. First, the words on
a line are strings, and at least the prices (last word) should be converted

280 6 Files, Strings, and Dictionaries

to a float. The first word, the date, has the form year-month-day (e.g.,
2008-02-04). Since we asked for monthly data only, the day part is of no
interest. Skipping the day part can be done by extracting a substring of
the date string: date[:-3], which means everything in the string except
the last three characters (see Chapter 6.3.1 for more on substrings). The
remaining date specification is now of the form year-month (e.g., 2008-
02), represented as a string. Turning this into a number for plotting is
not so easy, so we keep this string as it is in the list of dates.

The second point of consideration in the algorithm above is the se-
quence of data in the two lists: the files have the most recent date at
the top and the oldest at the bottom, while it is natural to plot the
evolution of stock prices against increasing time. Therefore, we must
reverse the two lists of data before we return them to the calling code.

The algorithm above, together with the two additional comments,
can now be translated into Python code:

def read_file(filename):
infile = open(filename, ’r’)
infile.readline() # read column headings
dates = []; prices = []
for line in infile:

columns = line.split(’,’)
date = columns[0]
date = date[:-3] # skip day of month
price = columns[-1]
dates.append(date)
prices.append(float(price))

infile.close()
dates.reverse()
prices.reverse()
return dates, prices

The reading of a file is done by a call to this function, e.g.,

dates_Google, prices_Google = read_file(’stockprices_Google.csv’)

Instead of working with separate variables for the file data, we may
collect the data in dictionaries, with the company name as key. One
possibility is to use two dictionaries:

dates = {}; prices = {}
d, p = read_file(’stockprices_Sun.csv’)
dates[’Sun’] = d; prices[’Sun’] = p
d, p = read_file(’stockprices_Microsoft.csv’)
dates[’MS’] = d; prices[’MS’] = p
d, p = read_file(’stockprices_Google.csv’)
dates[’Google’] = d; prices[’Google’] = p

We can also collect the dates and prices dictionaries in a dictionary
data:

data = {’prices’: prices, ’dates’: dates}

Note that data is a nested dictionary, so that to extract, e.g., the prices
of the Microsoft stock, one writes data[’prices’][’MS’].

6.2 Dictionaries 281

The next task is to normalize the stock prices so that we can easily
compare them. The idea is to let Sun and Microsoft start out with
a unit price and let Google start out with the best of the Sun and
Microsoft prices. Normalizing the Sun and Microsoft prices is done by
dividing by the first prices:

norm_price = prices[’Sun’][0]
prices[’Sun’] = [p/norm_price for p in prices[’Sun’]]

with a similar code for the Microsoft prices. Normalizing the Google
prices is more involved as we need to extract the prices of Sun and
Microsoft stocks from January 2005. Since the dates and prices lists
correspond to each other, element by element, we can get the index
corresponding to the date ’2005-01’ in the list of dates and use this
index to extract the corresponding price. The normalization can then
be coded as

jan05_MS = prices[’MS’][dates[’MS’].index(’2005-01’)]
jan05_Sun = prices[’Sun’][dates[’Sun’].index(’2005-01’)]
norm_price = prices[’Google’][0]/max(jan05_MS, jan05_Sun)
prices[’Google’] = [p/norm_price for p in prices[’Google’]]

The purpose of the final plot is to show how the prices evolve in
time. The problem is that our time data consists of strings of the form
year-month. We need to convert this string information to some “x”
coordinate information in the plot. The simplest strategy is to just plot
the prices against the list index, i.e., the “x” coordinates correspond to
counting months. Suitable lists of monthly based indices for Sun and
Microsoft are straightforward to create with the range function:

x = {}
x[’Sun’] = range(len(prices[’Sun’]))
x[’MS’] = range(len(prices[’MS’]))

The “x” coordinates for the Google prices are somewhat more com-
plicated, because the indices must start at the index corresponding to
January 2005 in the Sun and Microsoft data. However, we extracted
that index in the normalization of the Google prices, so we have already
done most of the work:

jan05 = dates[’Sun’].index(’2005-01’)
x[’Google’] = range(jan05, jan05 + len(prices[’Google’]), 1)

The final step is to plot the three set of data:

from scitools.std import plot
plot(x[’MS’], prices[’MS’], ’r-’,

x[’Sun’], prices[’Sun’], ’b-’,
x[’Google’], prices[’Google’], ’y-’,
legend=(’Microsoft’, ’Sun’, ’Google’))

Figure 6.2 displays the resulting plot. As seen from the plot, the best
investment would be to start with Microsoft stocks in 1988 and switch

282 6 Files, Strings, and Dictionaries

all the money to Google stocks in 2005. You can easily modify the
program to explores what would happen if you started out with Sun
stocks and switched to Google in 2005.

Fig. 6.2 The evolution of stock prices for three companies in the period January 1998 to
June 2008.

Generalization. We can quite easily generalize the program to handle
data from an arbitrary collection of companies, at least if we restrict
the time period to be the same for all stocks. Exercise 6.18 asks you to
do this. As you will realize, the use of dictionaries instead of separate
variables in our program constitutes one important reason why the
program becomes easy to extend. Avoiding different time periods for
different price data also makes the generalized program simpler than
the one we developed above.

6.3 Strings

Many programs need to manipulate text. For example, when we read
the contents of a file into a string or list of strings (lines), we may want
to change parts of the text in the string(s) – and maybe write out the
modified text to a new file. So far in this chapter we have converted
parts of the text to numbers and computed with the numbers. Now it
is time to learn how to manipulate the text strings themselves.

6.3.1 Common Operations on Strings

Python has a rich set of operations on string objects. Some of the most
common operations are listed below.

6.3 Strings 283

Substring Specification. The expression s[i:j] extracts the substring
starting with character number i and ending with character number
j-1 (similarly to lists, 0 is the index of the first character):

>>> s = ’Berlin: 18.4 C at 4 pm’
>>> s[8:] # from index 8 to the end of the string
’18.4 C at 4 pm’
>>> s[8:12] # index 8, 9, 10 and 11 (not 12!)
’18.4’

A negative upper index counts, as usual, from the right such that s[-1]
is the last element, s[-2] is the next last element, and so on.

>>> s[8:-1]
’18.4 C at 4 p’
>>> s[8:-8]
’18.4 C’

Searching for Substrings. The call s.find(s1) returns the index where
the substring s1 first appears in s. If the substring is not found, −1 is
returned.

>>> s.find(’Berlin’) # where does ’Berlin’ start?
0
>>> s.find(’pm’)
20
>>> s.find(’Oslo’) # not found
-1

Sometimes the aim is to just check if a string is contained in another
string, and then we can use the syntax:

>>> ’Berlin’ in s:
True
>>> ’Oslo’ in s:
False

Here is a typical use of the latter construction in an if test:

>>> if ’C’ in s:
... print ’C found’
... else:
... print ’no C’
...
C found

Two other convenient methods for checking if a string starts with or
ends with a specified string are startswith and endswith:

>>> s.startswith(’Berlin’)
True
>>> s.endswith(’am’)
False

Substitution. The call s.replace(s1, s2) replaces substring s1 by s2

everywhere in s:

284 6 Files, Strings, and Dictionaries

>>> s.replace(’ ’, ’_’)
’Berlin:_18.4_C__at_4_pm’
>>> s.replace(’Berlin’, ’Bonn’)
’Bonn: 18.4 C at 4 pm’

A variant of the last example, where several string operations are put
together, consists of replacing the text before the first colon13:

>>> s.replace(s[:s.find(’:’)], ’Bonn’)
’Bonn: 18.4 C at 4 pm’

String Splitting. The call s.split() splits the string s into words sep-
arated by whitespace (space, tabulator, or newline):

>>> s.split()
[’Berlin:’, ’18.4’, ’C’, ’at’, ’4’, ’pm’]

Splitting a string s into words separated by a text t can be done by
s.split(t). For example, we may split with respect to colon:

>>> s.split(’:’)
[’Berlin’, ’ 18.4 C at 4 pm’]

We know that s contains a city name, a colon, a temperature, and
then C:

>>> s = ’Berlin: 18.4 C at 4 pm’

With s.splitlines(), a multi-line string is split into lines (very useful
when a file has been read into a string and we want a list of lines):

>>> t = ’1st line\n2nd line\n3rd line’
>>> print t
1st line
2nd line
3rd line
>>> t.splitlines()
[’1st line’, ’2nd line’, ’3rd line’]

Upper and Lower Case. s.lower() transforms all characters to their
lower case equivalents, and s.upper() performs a similar transformation
to upper case letters:

>>> s.lower()
’berlin: 18.4 c at 4 pm’
>>> s.upper()
’BERLIN: 18.4 C AT 4 PM’

Strings Are Constant. A string cannot be changed, i.e., any change
always results in a new string. Replacement of a character is not pos-
sible:

13 Take a “break” and convince yourself that you understand how we specify the substring

to be replaced.

6.3 Strings 285

>>> s[18] = 5
...
TypeError: ’str’ object does not support item assignment

If we want to replace s[18], a new string must be constructed, for
example by keeping the substrings on either side of s[18] and inserting
a ’5’ in between:

>>> s[:18] + ’5’ + s[19:]
’Berlin: 18.4 C at 5 pm’

Strings with Digits Only. One can easily test whether a string contains
digits only or not:

>>> ’214’.isdigit()
True
>>> ’ 214 ’.isdigit()
False
>>> ’2.14’.isdigit()
False

Whitespace. We can also check if a string contains spaces only by calling
the isspacemethod. More precisely, isspace tests for whitespace, which
means the space character, newline, or the TAB character:

>>> ’ ’.isspace() # blanks
True
>>> ’ \n’.isspace() # newline
True
>>> ’ \t ’.isspace() # TAB
True
>>> ’’.isspace() # empty string
False

The isspace is handy for testing for blank lines in files. An alternative
is to strip first and then test for an empty string:

>>> line = ’ \n’
>>> empty.strip() == ’’
True

Stripping off leading and/or trailing spaces in a string is sometimes
useful:

>>> s = ’ text with leading/trailing space \n’
>>> s.strip()
’text with leading/trailing space’
>>> s.lstrip() # left strip
’text with leading/trailing space \n’
>>> s.rstrip() # right strip
’ text with leading/trailing space’

Joining Strings. The opposite of the split method is join, which joins
elements in a list of strings with a specified delimiter in between. That
is, the following two types of statements are inverse operations:

286 6 Files, Strings, and Dictionaries

t = delimiter.join(words)
words = t.split(delimiter)

An example on using join may be

>>> strings = [’Newton’, ’Secant’, ’Bisection’]
>>> t = ’, ’.join(strings)
>>> t
’Newton, Secant, Bisection’

As an illustration of the usefulness of split and join, we want to
remove the first two words on a line. This task can be done by first
splitting the line into words and then joining the words of interest:

>>> line = ’This is a line of words separated by space’
>>> words = line.split()
>>> line2 = ’ ’.join(words[2:])
>>> line2
’a line of words separated by space’

There are many more methods in string objects. All methods are
described in the Python Library Reference, see “string methods” in
the index.

6.3.2 Example: Reading Pairs of Numbers

Problem. Suppose we have a file consisting of pairs of real numbers, i.e.,
text of the form (a, b), where a and b are real numbers. This notation
for a pair of numbers is often used for points in the plane, vectors in
the plane, and complex numbers. A sample file may look as follows:

(1.3,0) (-1,2) (3,-1.5)
(0,1) (1,0) (1,1)
(0,-0.01) (10.5,-1) (2.5,-2.5)

The file can be found as read_pairs1.dat. Our task is to read this
text into a nested list pairs such that pairs[i] holds the pair with
index i, and this pair is a tuple of two float objects. We assume that
there are no blanks inside the parentheses of a pair of numbers (we rely
on a split operation which would otherwise not work).

Solution. To solve this programming problem, we can read in the file
line by line; for each line: split the line into words (i.e., split with
respect to whitespace); for each word: strip off the parentheses, split
with respect to comma, and convert the resulting two words to floats.
Our brief algorithm can be almost directly translated to Python code:

lines = open(’read_pairs1.dat’, ’r’).readlines()

pairs = [] # list of (n1, n2) pairs of numbers
for line in lines:

words = line.split()
for word in words:

http://docs.python.org/lib/string-methods.html
http://docs.python.org/lib/genindex.html

6.3 Strings 287

word = word[1:-1] # strip off parenthesis
n1, n2 = word.split(’,’)
n1 = float(n1); n2 = float(n2)
pair = (n1, n2)
pairs.append(pair) # add 2-tuple to last row

This code is available in the file read_pairs1.py. Figure 6.3 shows
a snapshot of the state of the variables in the program after having
treated the first line. You should explain each line in the program to
yourself, and compare your understanding with the figure.

Fig. 6.3 Illustration of the variables in the read pairs.py program after the first pass in
the loop over words in the first line of the data file.

The output from the program becomes

[(1.3, 0.0),
(-1.0, 2.0),
(3.0, -1.5),
(0.0, 1.0),
(1.0, 0.0),
(1.0, 1.0),
(0.0, -0.01),
(10.5, -1.0),
(2.5, -2.5)]

We remark that our solution to this programming problem relies
heavily on the fact that spaces inside the parentheses are not allowed.
If spaces were allowed, the simple split to obtain the pairs on a line as
words would not work. What can we then do?

We can first strip off all blanks on a line, and then observe that the
pairs are separated by the text ’)(’. The first and last pair on a line

288 6 Files, Strings, and Dictionaries

will have an extra parenthesis that we need to remove. The rest of code
is similar to the previous code and can be found in read_pairs2.py:

infile = open(’read_pairs2.dat’, ’r’)
lines = infile.readlines()

pairs = [] # list of (n1, n2) pairs of numbers
for line in lines:

line = line.strip() # remove whitespace such as newline
line = line.replace(’ ’, ’’) # remove all blanks
words = line.split(’)(’)
strip off leading/trailing parenthesis in first/last word:
words[0] = words[0][1:] # (-1,3 -> -1,3
words[-1] = words[-1][:-1] # 8.5,9) -> 8.5,9
for word in words:

n1, n2 = word.split(’,’)
n1 = float(n1); n2 = float(n2)
pair = (n1, n2)
pairs.append(pair)

infile.close()

The program can be tested on the file read_pairs2.dat:

(1.3 , 0) (-1 , 2) (3, -1.5)
(0 , 1) (1, 0) (1 , 1)
(0,-0.01) (10.5,-1) (2.5, -2.5)

A third approach is to notice that if the pairs were separated by
commas,

(1, 3.0), (-1, 2), (3, -1.5)
(0, 1), (1, 0), (1, 1)

the file text is very close to the Python syntax of a list of 2-tuples. By
adding enclosing brackets, plus a comma at the end of each line,

[(1, 3.0), (-1, 2), (3, -1.5),
(0, 1), (1, 0), (1, 1),]

we have a string to which we can apply eval to get the pairs list
directly. Here is the code doing this (program read_pairs3.py):

infile = open(’read_pairs3.dat’, ’r’)
listtext = ’[’
for line in infile:

add line, without newline (line[:-1]), with a trailing comma:
listtext += line[:-1] + ’, ’

infile.close()
listtext = listtext + ’]’
pairs = eval(listtext)

In general, it is a good idea to construct file formats that are as close
as possible to valid Python syntax such that one can take advantage
of the eval or exec functions to turn text into “live objects”.

6.3.3 Example: Reading Coordinates

Problem. Suppose we have a file with coordinates (x, y, z) in three-
dimensional space. The file format looks as follows:

6.3 Strings 289

x=-1.345 y= 0.1112 z= 9.1928
x=-1.231 y=-0.1251 z= 1001.2
x= 0.100 y= 1.4344E+6 z=-1.0100
x= 0.200 y= 0.0012 z=-1.3423E+4
x= 1.5E+5 y=-0.7666 z= 1027

The goal is to read this file and create a list with (x,y,z) 3-tuples,
and thereafter convert the nested list to a two-dimensional array with
which we can compute.

Note that there is sometimes a space between the = signs and the
following number and sometimes not. Splitting with respect to space
and extracting every second word is therefore not an option. We shall
present three solutions.

Solution 1: Substring Extraction. The file format looks very regular
with the x=, y=, and z= texts starting in the same columns at every line.
By counting characters, we realize that the x= text starts in column 2,
the y= text starts in column 16, while the z= text starts in column 31.
Introducing

x_start = 2
y_start = 16
z_start = 31

the three numbers in a line string are obtained as the substrings

x = line[x_start+2:y_start]
y = line[y_start+2:z_start]
z = line[z_start+2:]

The following code, found in file file2coor_v1.py, creates the coor

array with shape (n, 3), where n is the number of (x, y, z) coordinates.

infile = open(’xyz.dat’, ’r’)
coor = [] # list of (x,y,z) tuples
for line in infile:

x_start = 2
y_start = 16
z_start = 31
x = line[x_start+2:y_start]
y = line[y_start+2:z_start]
z = line[z_start+2:]
print ’debug: x="%s", y="%s", z="%s"’ % (x,y,z)
coor.append((float(x), float(y), float(z)))

infile.close()

import numpy as np
coor = np.array(coor)
print coor.shape, coor

The print statement inside the loop is always wise to include when do-
ing string manipulations, simply because counting indices for substring
limits quickly leads to errors. Running the program, the output from
the loop looks like this

debug: x="-1.345 ", y=" 0.1112 ", z=" 9.1928
"

290 6 Files, Strings, and Dictionaries

for the first line in the file. The double quotes show the exact extent of
the extracted coordinates. Note that the last quote appears on the next
line. This is because line has a newline at the end (this newline must be
there to define the end of the line), and the substring line[z_start:]

contains the newline at the of line. Writing line[z_start:-1] would
leave the newline out of the z coordinate. However, this has no effect
in practice since we transform the substrings to float, and an extra
newline or other blanks make no harm.

The coor object at the end of the program has the value

[[-1.34500000e+00 1.11200000e-01 9.19280000e+00]
[-1.23100000e+00 -1.25100000e-01 1.00120000e+03]
[1.00000000e-01 1.43440000e+06 -1.01000000e+00]
[2.00000000e-01 1.20000000e-03 -1.34230000e+04]
[1.50000000e+05 -7.66600000e-01 1.02700000e+03]]

Solution 2: String Search. One problem with the solution approach
above is that the program will not work if the file format is subject to
a change in the column positions of x=, y=, or z=. Instead of hardcoding
numbers for the column positions, we can use the find method in string
objects to locate these column positions:

x_start = line.find(’x=’)
y_start = line.find(’y=’)
z_start = line.find(’z=’)

The rest of the code is similar to the complete program listed above,
and the complete code is stored in the file file2coor_v2.py.

Solution 3: String Split. String splitting is a powerful tool, also in the
present case. Let us split with respect to the equal sign. The first line
in the file then gives us the words

[’x’, ’-1.345 y’, ’ 0.1112 z’, ’ 9.1928’]

We throw away the first word, and strip off the last character in the
next word. The final word can be used as is. The complete program is
found in the file file2coor_v3.py and looks like

infile = open(’xyz.dat’, ’r’)
coor = [] # list of (x,y,z) tuples
for line in infile:

words = line.split(’=’)
x = float(words[1][:-1])
y = float(words[2][:-1])
z = float(words[3])
coor.append((x, y, z))

infile.close()

import numpy as np
coor = np.array(coor)
print coor.shape, coor

More sophisticated examples of string operations appear in Chap-
ter 6.4.4.

6.4 Reading Data from Web Pages 291

6.4 Reading Data from Web Pages

Python has a module urllib which makes it possible to read data from
a web page as easily as we can read data from an ordinary file14. Before
we do this, a few concepts from the Internet world must be touched.

6.4.1 About Web Pages

Web pages are viewed with a web browser. There are many browsers:
Firefox, Internet Explorer, Safari, Opera, and Google Chrome to men-
tion the most famous. Any web page you visit is associated with an
address, usually something like

http://www.some.where.net/some/file.html

This type of web address is called a URL (which stands for Uniform
Resource Locator15). The graphics you see in a web browser, i.e., the
web page you see with your eyes, is produced by a series of commands
that specifies the text on the page, the images, buttons to be pressed,
etc. Roughly speaking, these commands are like statements in computer
programs. The commands are stored in a text file and follow rules in
a language, exactly as you are used to when writing statements in a
programming language.

The common language for defining web pages is HTML. A web page
is then simply a text file with text containing HTML commands. In-
stead of a physical file, the web page can also be the output text from
a program. In that case the URL is the name of the program file.

The web browser interprets the text and the HTML commands, and
then decides how to display the information visually. Let us demon-
strate this for a very simple web page shown in Figure 6.4. This page
was produced by the following text with embedded HTML commands:

<html>
<body bgcolor="orange">
<h1>A Very Simple HTML Page</h1> <!-- headline -->
Web pages are written in a language called
HTML.
Ordinary text is written as ordinary text, but when we
need links, headlines, lists,

emphasized words, or
 boldface text,

we need to embed the text inside HTML tags. We can also
insert GIF or PNG images, taken from other Internet sites,
if desired.
<hr> <!-- horizontal line -->

14 In principle this is true, but in practice the text in web pages tend to be much more
complicated than the text in the files we have treated so far.
15 Another term is URI (Uniform Resource Identifier), which is replacing URL in technical
documentation. We stick to URL, however, in this book because Python’s tools for accessing

resources on the Internet have url as part of module and function names.

http://www.some.where.net/some/file.html

292 6 Files, Strings, and Dictionaries

Fig. 6.4 Example of what a very simple HTML file looks like in a web browser.

</body>
</html>

A typical HTML command consists of an opening and a closing tag.
For example, emphasized text is specified by enclosing the text inside
em (emphasize) tags:

emphasized words

The opening tag is enclosed in less than and greater than signs, while
the closing tag has an additional forward slash before the tag name.

In the HTML file we see an opening and closing html tag around the
whole text in the file. Similarly, there is a pair of body tags, where the
first one also has a parameter bgcolor which can be used to specify a
background color in the web page. Section headlines are specified by
enclosing the headline text inside h1 tags. Subsection headlines apply h2

tags, which results in a smaller font compared with h1 tags. Comments
appear inside <!-- and -->. Links to other web pages are written inside
a tags, with an argument href for the link’s web address. Lists apply
the ul (unordered list) tag, while each item is written with just an
opening tag li (list item), but no closing tag is necessary. Images are
also specified with just an opening tag having name img, and the image
file is given as a file name or URL of a file, enclosed in double quotes,
as the src parameter.

The ultra-quick HTML course in the previous paragraphs gives a
glimpse of how web pages can be constructed. One can either write the
HTML file by hand in a pure text editor, or one can use programs such
as Dream Weaver to help design the page graphically in a user-friendly
environment, and then the program can automatically generate the
right HTML syntax in files.

6.4.2 How to Access Web Pages in Programs

Why is it useful to know some HTML and how web pages are con-
structed? The reason is that the web is full of information that we can

6.4 Reading Data from Web Pages 293

get access to through programs and use in new contexts. What we can
get access to is not the visual web page you see, but the underlying
HTML file. The information you see on the screen appear in text form
in the HTML file, and by extracting text, we can get hold of the text’s
information in a program.

Given the URL as a string stored in a variable, there are two ways
of accessing the HTML text in a Python program:

1. Download the HTML file and store it as a local file with a given
name, say webpage.html:

import urllib
url = ’http://www.simula.no/research/scientific/cbc’
urllib.urlretrieve(url, filename=’webpage.html’)

2. Open the HTML file as a file-like object:

infile = urllib.urlopen(url)

This infile object has methods such as read, readline, and readlines.

6.4.3 Example: Reading Pure Text Files

Some web pages are just pure text files. Extracting the data from such
pages are as easy as reading ordinary text files. Here is an example of
historic weather data from the UK:

http://www.metoffice.gov.uk/climate/uk/stationdata/

We may choose a station, say Oxford, which directs us to the page

http://www.metoffice.gov.uk/climate/uk/stationdata/oxforddata.txt

We can download this data file by

import urllib
url = \
’http://www.metoffice.gov.uk/climate/uk/stationdata/oxforddata.txt’
urllib.urlretrieve(url, filename=’Oxford.txt’)

The files looks as follows:

Oxford
Location: 4509E 2072N, 63 metres amsl
Estimated data is marked with a * after the value.
Missing data (more than 2 days missing in month) is marked by ---.
Sunshine data taken from an automatic ...

yyyy mm tmax tmin af rain sun
degC degC days mm hours

1853 1 8.4 2.7 4 62.8 ---
1853 2 3.2 -1.8 19 29.3 ---
1853 3 7.7 -0.6 20 25.9 ---
1853 4 12.6 4.5 0 60.1 ---
1853 5 16.8 6.1 0 59.5 ---

...

2010 1 4.7 -1.0 17 56.4 68.2
2010 2 7.1 1.3 7 79.8 59.3
2010 3 11.3 3.2 8 47.6 130.2

http://www.metoffice.gov.uk/climate/uk/stationdata/
http://www.metoffice.gov.uk/climate/uk/stationdata/oxforddata.txt

294 6 Files, Strings, and Dictionaries

2010 4 15.8 4.9 0 25.5 209.5
2010 5 17.6 7.3 0 28.6 207.4
2010 6 23.0 11.1 0 34.5 230.5
2010 7 23.3* 14.1* 0* 24.4* 184.4* Provisional
2010 8 21.4 12.0 0 146.2 123.8 Provisional
2010 9 19.0 10.0 0 48.1 118.6 Provisional
2010 10 14.6 7.4 2 43.5 128.8 Provisional

After the 7 header lines the data consists of 7 or 8 columns of numbers,
the 8th being of no interest. Some numbers may have * or # appended
to them, but this character must be stripped off before using the num-
ber. The columns contain the year, the month number (1–12), average
maximum temperature, average minimum temperature, total number
of days of air frost (af) during the month, total rainfall during the
month, and the total number of hours with sun during the month. The
temperature averages are taken over the maximum and minimum tem-
peratures for all days in the month. Unavailable data are marked by
three dashes.

The data can be conveniently stored in a dictionary with, e.g., three
main keys: place (name), location (the info on the 2nd), and data. The
latter is a dictionary with two keys: year and month.

The following program creates the data dictionary:

infile = open(local_file, ’r’)
data = {}
data[’place’] = infile.readline().strip()
data[’location’] = infile.readline().strip()
Skip the next 5 lines
for i in range(5):

infile.readline()

data[’data’] ={}
for line in infile:

columns = line.split()

year = int(columns[0])
month = int(columns[1])

if columns[-1] == ’Provisional’:
del columns[-1]

for i in range(2, len(columns)):
if columns[i] == ’---’:

columns[i] = None
elif columns[i][-1] == ’*’ or columns[i][-1] == ’#’:

Strip off trailing character
columns[i] = float(columns[i][:-1])

else:
columns[i] = float(columns[i])

tmax, tmin, air_frost, rain, sun = columns[2:]

if not year in data[’data’]:
data[’data’][year] = {}

data[’data’][year][month] = {’tmax’: tmax,
’tmin’: tmin,
’air frost’: air_frost,
’sun’: sun}

The code is available in the file historic_weather.py.

6.4 Reading Data from Web Pages 295

With a few lines of code, we can extract the data we want, say a
two-dimensional array of the number of sun hours in a month (these
data are available from year 1929):

sun = [[data[’data’][y][m][’sun’] for m in range(1,13)] \
for y in range(1929, 2010)]

import numpy as np
sun = np.array(sun)

One can now do analysis of the data as exemplified in Chapter 2.6.2
and Exercise 5.8.

6.4.4 Example: Extracting Data from HTML

Very often, interesting data in a web page appear inside HTML code.
We then need to interpret the text using string operations and store
the data in variables. An example will clarify the principle.

The web site www.worldclimate.com contains data on temperature
and rainfall in a large number of cities around the world. For example,

http://www.worldclimate.com/cgi-bin/data.pl?ref=N38W009+2100+08535W

contains a table of the average rainfall for each month of the year in
the town Lisbon, Portugal. Our task is to download this web page and
extract the tabular data (rainfall per month) in a list.

Downloading the file is done with urllib as explained in Chap-
ters 6.4.2 and 6.4.3. Before attempting to read and interpret the text
in the file, we need to look at the HTML code to find the interesting
parts and determine how we can extract the data. The table with the
rainfall data appears in the middle of the file. A sketch of the relevant
HTML code goes as follows:

<p>Weather station LISBOA ...
<tr><th align=right><th> Jan<th> Feb<th> ...

<tr><td> mm <td align=right> 95.2 <td align=right> 86.7 ...

<tr><td>inches <td align=right>3.7<td align=right>3.4 ...

Our task is to walk through the file line by line and stop for processing
the first and third line above:

infile = open(’Lisbon_rainfall.html’, ’r’)
rainfall = []
for line in infile:

if ’Weather station’ in line:
station = line.split(’’)[0].split(’’)[0]

if ’<td> mm <td’ in line:
data = line.split(’<td align=right>’)

The resulting data list looks like

[’<tr><td> mm ’, ’ 95.2 ’, ..., ’702.4
 \n’]

To process this list further, we strip off the
... part of the last
element:

http://www.worldclimate.com/cgi-bin/data.pl?ref=N38W009+2100+08535W

296 6 Files, Strings, and Dictionaries

data[-1] = data[-1].split(’
’)[0]

Then we drop the first element and convert the others to float ob-
jects:

data = [float(x) for x in data[1:]]

Now we have the rainfall data for each month as a list of real numbers.
The complete program appears in the file Lisbon_rainfall.py. The
recipe provided in this example can be used to interpret many other
types of web pages where HTML code and data are wired together.

6.5 Writing Data to File

Writing data to file is easy. There is basically one function to pay
attention to: outfile.write(s), which writes a string s to a file handled
by the file object outfile. Unlike print, outfile.write(s) does not
append a newline character to the written string. It will therefore often
be necessary to add a newline character,

outfile.write(s + ’\n’)

if the string s is meant to appear on a single line in the file and s does
not already contain a trailing newline character. File writing is then a
matter of constructing strings containing the text we want to have in
the file and for each such string call outfile.write.

Writing to a file demands the file object f to be opened for writing:

write to new file, or overwrite file:
outfile = open(filename, ’w’)

append to the end of an existing file:
outfile = open(filename, ’a’)

6.5.1 Example: Writing a Table to File

Problem. As a worked example of file writing, we shall write out a
nested list with tabular data to file. A sample list may take look as

[[0.75, 0.29619813, -0.29619813, -0.75],
[0.29619813, 0.11697778, -0.11697778, -0.29619813],
[-0.29619813, -0.11697778, 0.11697778, 0.29619813],
[-0.75, -0.29619813, 0.29619813, 0.75]]

Solution. We iterate through the rows (first index) in the list, and for
each row, we iterate through the column values (second index) and
write each value to the file. At the end of each row, we must insert a
newline character in the file to get a linebreak. The code resides in the
file write1.py:

6.5 Writing Data to File 297

data = [[0.75, 0.29619813, -0.29619813, -0.75],
[0.29619813, 0.11697778, -0.11697778, -0.29619813],
[-0.29619813, -0.11697778, 0.11697778, 0.29619813],
[-0.75, -0.29619813, 0.29619813, 0.75]]

outfile = open(’tmp_table.dat’, ’w’)
for row in data:

for column in row:
outfile.write(’%14.8f’ % column)

outfile.write(’\n’)
outfile.close()

The resulting data file becomes

0.75000000 0.29619813 -0.29619813 -0.75000000
0.29619813 0.11697778 -0.11697778 -0.29619813
-0.29619813 -0.11697778 0.11697778 0.29619813
-0.75000000 -0.29619813 0.29619813 0.75000000

An extension of this program consists in adding column and row
headings:

column 1 column 2 column 3 column 4
row 1 0.75000000 0.29619813 -0.29619813 -0.75000000
row 2 0.29619813 0.11697778 -0.11697778 -0.29619813
row 3 -0.29619813 -0.11697778 0.11697778 0.29619813
row 4 -0.75000000 -0.29619813 0.29619813 0.75000000

To obtain this end result, we need to the add some statements to the
program write1.py. For the column headings we need to know the
number of columns, i.e., the length of the rows, and loop from 1 to this
length:

ncolumns = len(data[0])
outfile.write(’ ’)
for i in range(1, ncolumns+1):

outfile.write(’%10s ’ % (’column %2d’ % i))
outfile.write(’\n’)

Note the use of a nested printf construction: The text we want to insert
is itself a printf string. We could also have written the text as ’column
’ + str(i), but then the length of the resulting string would depend
on the number of digits in i. It is recommended to always use printf
constructions for a tabular output format, because this gives automatic
padding of blanks so that the width of the output strings remain the
same. As always, the tuning of the widths is done in a trial-and-error
process.

To add the row headings, we need a counter over the row numbers:

row_counter = 1
for row in data:

outfile.write(’row %2d’ % row_counter)
for column in row:

outfile.write(’%14.8f’ % column)
outfile.write(’\n’)
row_counter += 1

The complete code is found in the file write2.py. We could, alterna-
tively, iterate over the indices in the list:

298 6 Files, Strings, and Dictionaries

for i in range(len(data)):
outfile.write(’row %2d’ % (i+1))
for j in range(len(data[i])):

outfile.write(’%14.8f’ % data[i][j])
outfile.write(’\n’)

6.5.2 Standard Input and Output as File Objects

Reading user input from the keyboard applies the function raw_input as
explained in Chapter 4.1. The keyboard is a medium that the computer
in fact treats as a file, referred to as standard input.

The print command prints text in the terminal window. This
medium is also viewed as a file from the computer’s point of view and
called standard output. All general-purpose programming languages al-
low reading from standard input and writing to standard output. This
reading and writing can be done with two types of tools, either file-like
objects or special tools like raw_input (see Chapter 4.1.1) and print in
Python. We will here describe the file-line objects: sys.stdin for stan-
dard input and sys.stdout for standard output. These objects behave
as file objects, except that they do not need to be opened or closed.
The statement

s = raw_input(’Give s:’)

is equivalent to

print ’Give s: ’,
s = sys.stdin.readline()

Recall that the trailing comma in the print statement avoids the new-
line that print by default adds to the output string. Similarly,

s = eval(raw_input(’Give s:’))

is equivalent to

print ’Give s: ’,
s = eval(sys.stdin.readline())

For output to the terminal window, the statement

print s

is equivalent to

sys.stdout.write(s + ’\n’)

Why it is handy to have access to standard input and output as file
objects can be illustrated by an example. Suppose you have a function
that reads data from a file object infile and writes data to a file object
outfile. A sample function may take the form

6.5 Writing Data to File 299

def x2f(infile, outfile, f):
for line in infile:

x = float(line)
y = f(x)
outfile.write(’%g\n’ % y)

This function works with all types of files, including web pages as
infile (see Chapter 6.4). With sys.stdin as infile and/or sys.stdout
as outfile, the x2f function also works with standard input and/or
standard output. Without sys.stdin and sys.stdout, we would need
different code, employing raw_input and print, to deal with standard
input and output. Now we can write a single function that deals with
all file media in a unified way.

There is also something called standard error. Usually this is the
terminal window, just as standard output, but programs can distinguish
between writing ordinary output to standard output and error messages
to standard error, and these output media can be redirected to, e.g.,
files such that one can separate error messages from ordinary output.
In Python, standard error is the file-like object sys.stderr. A typical
application of sys.stderr is to report errors:

if x < 0:
sys.stderr.write(’Illegal value of x’); sys.exit(1)

This message to sys.stderr is an alternative to print or raising an
exception.

Redirecting Standard Input, Output, and Error. Standard output from
a program prog can be redirected to a file output instead of the screen,
by using the greater than sign16:

Terminal

Terminal> prog > output

Similarly, output to the medium called standard error can be redirected
by

Terminal

Terminal> prog &> output

For example, error messages are normally written to standard error,
which is exemplified in this little terminal session on a Unix machine:

Terminal

Unix> ls bla-bla1 bla-bla2
ls: cannot access bla-bla1: No such file or directory
ls: cannot access bla-bla2: No such file or directory
Unix> ls bla-bla1 bla-bla2 &> errors
Unix> cat errors # print the file errors

16 prog can be any program, including a Python program run as, e.g., python myprog.py.

300 6 Files, Strings, and Dictionaries

ls: cannot access bla-bla1: No such file or directory
ls: cannot access bla-bla2: No such file or directory

When the program reads from standard input (the keyboard), we can
equally well redirect standard input to a file, say with name raw_input,
such that the program reads from this file rather than from the key-
board:

Terminal

Terminal> prog < input

Combinations are also possible:

Terminal

Terminal> prog < input > output

Note. The redirection of standard output, input, and error does not
work for programs run inside IPython, only when run directly in the
operating system in a terminal window.

Inside a Python program we can also let standard input, output, and
error work with ordinary files instead. Here is the technique:

sys_stdout_orig = sys.stdout
sys.stdout = open(’output’, ’w’)
sys_stdin_orig = sys.stdin
sys.stdin = open(’input’, ’r’)

Now, any print statement will write to the output file, and any
raw_input call will read from the input file. (Without storing the orig-
inalsys.stdout and sys.stdin objects in new variables, these objects
would get lost in the redefinition above and we would never be able to
reach the common standard input and output in the program.)

6.5.3 Reading and Writing Spreadsheet Files

From school you are probably used to spreadsheet programs such as
Microsoft Excel or OpenOffice. This type of program is used to rep-
resent a table of numbers and text. Each table entry is known as a
cell, and one can easily perform calculations with cells that contain
numbers. The application of spreadsheet programs for mathematical
computations and graphics is steadily growing.

Also Python may be used to do spreadsheet-type calculations on
tabular data. The advantage of using Python is that you can easily
extend the calculations far beyond what a spreadsheet program can do.
However, even if you can view Python as a substitute for a spreadsheet
program, it may be beneficial to combine the two. Suppose you have
some data in a spreadsheet. How can you read these data into a Python

6.5 Writing Data to File 301

program, perform calculations on the data, and thereafter read the data
back to the spreadsheet program? This is exactly what we will explain
below through an example. With this example, you should understand
how easy it is to combine Excel or OpenOffice with your own Python
programs.

The table of data in a spreadsheet can be saved in so-called CSV
files, where CSV stands for comma separated values. The CSV file for-
mat is very simple: each row in the spreadsheet table is a line in the
file, and each cell in the row is separated by a comma or some other
specified separation character. CSV files can easily be read into Python
programs, and the table of cell data can be stored in a nested list (ta-
ble, cf. Chapter 2.4), which can be processed as we desire. The modified
table of cell data can be written back to a CSV file and read into the
spreadsheet program for further processing.

Fig. 6.5 A simple spreadsheet in OpenOffice.

Figure 6.5 shows a simple spreadsheet in the OpenOffice program.
The table contains 4 × 4 cells, where the first row contains column
headings and the first column contains row headings. The remaining
3 × 3 subtable contains numbers that we may compute with. Let us
save this spreadsheet to a file in the CSV format. The complete file
will typically look as follows:

,"year 1","year 2","year 3"
"person 1",651000,651000,651000
"person 2",1100500,950100,340000
"person 3",740000,780000,800000

Reading CSV Files. Our goal is to write a Python code for loading
the spreadsheet data into a table. The table is technically a nested list,
where each list element is a row of the table, and each row is a list of
the table’s column values. CSV files can be read, row by row, using the

302 6 Files, Strings, and Dictionaries

csv module from Python’s standard library. The recipe goes like this,
if the data reside in the CSV file budget.csv:

infile = open(’budget.csv’, ’r’)
import csv
table = []
for row in csv.reader(infile):

table.append(row)
infile.close()

The row variable is a list of column values that are read from the file
by the csv module. The three lines computing table can be condensed
to one using a list comprehension:

table = [row for row in csv.reader(infile)]

We can easily print table,

import pprint
pprint.pprint(table)

to see what the spreadsheet looks like when it is represented as a nested
list in a Python program:

[[’’, ’year 1’, ’year 2’, ’year 3’],
[’person 1’, ’651000’, ’651000’, ’651000’],
[’person 2’, ’1100500’, ’950100’, ’340000’],
[’person 3’, ’740000’, ’780000’, ’800000’]]

Observe now that all entries are surrounded by quotes, which means
that all entries are string (str) objects. This is a general rule: the csv

module reads all cells into string objects. To compute with the numbers,
we need to transform the string objects to float objects. The transfor-
mation should not be applied to the first row and first column, since
the cells here hold text. The transformation from strings to numbers
therefore applies to the indices r and c in table (table[r][c]), such
that the row counter r goes from 1 to len(table)-1, and the column
counter c goes from 1 to len(table[0])-1 (len(table[0]) is the length
of the first row, assuming the lengths of all rows are equal to the length
of the first row). The relevant Python code for this transformation task
becomes

for r in range(1,len(table)):
for c in range(1, len(table[0])):

table[r][c] = float(table[r][c])

A pprint.pprint(table) statement after this transformation yields

[[’’, ’year 1’, ’year 2’, ’year 3’],
[’person 1’, 651000.0, 651000.0, 651000.0],
[’person 2’, 1100500.0, 950100.0, 340000.0],
[’person 3’, 740000.0, 780000.0, 800000.0]]

The numbers now have a decimal and no quotes, indicating that the
numbers are float objects and hence ready for mathematical calcula-
tions.

6.5 Writing Data to File 303

Processing Data. Let us perform a very simple calculation with table,
namely adding a final row with the sum of the numbers in the
columns:

row = [0.0]*len(table[0])
row[0] = ’sum’
for c in range(1, len(row)):

s = 0
for r in range(1, len(table)):

s += table[r][c]
row[c] = s

As seen, we first create a list row consisting of zeros. Then we insert
a text in the first column, before we invoke a loop over the numbers
in the table and compute the sum of each column. The table list now
represents a spreadsheet with four columns and five rows:

[[’’, ’year 1’, ’year 2’, ’year 3’],
[’person 1’, 651000.0, 651000.0, 651000.0],
[’person 2’, 1100500.0, 950100.0, 340000.0],
[’person 3’, 740000.0, 780000.0, 800000.0],
[’sum’, 2491500.0, 2381100.0, 1791000.0]]

Writing CSV Files. Our final task is to write the modified table list
back to a CSV file so that the data can be loaded in a spreadsheet
program. The write task is done by the code segment

outfile = open(’budget2.csv’, ’w’)
writer = csv.writer(outfile)
for row in table:

writer.writerow(row)
outfile.close()

The budget2.csv looks like this:

,year 1,year 2,year 3
person 1,651000.0,651000.0,651000.0
person 2,1100500.0,950100.0,340000.0
person 3,740000.0,780000.0,800000.0
sum,2491500.0,2381100.0,1791000.0

The final step is to read budget2.csv into a spreadsheet. The result is
displayed in Figure 6.6 (in OpenOffice one must specify in the “open”
dialog that the spreadsheet data are separated by commas, i.e., that
the file is in CSV format).

The complete program reading the budget.csv file, processing its
data, and writing the budget2.csv file can be found in rw_csv.py. With
this example at hand, you should be in a good position to combine
spreadsheet programs with your own Python programs.

Remark. You may wonder why we used the csv module to read and
write CSV files when such files have comma separated values which
we can extract by splitting lines with respect to the comma (in Chap-
ter 6.2.7 use used this technique to read a CSV file):

304 6 Files, Strings, and Dictionaries

Fig. 6.6 A spreadsheet processed in a Python program and loaded back into OpenOffice.

infile = open(’budget.csv’, ’r’)
for line in infile:

row = line.split(’,’)

This works well for the present budget.csv file, but the technique
breaks down when a text in a cell contains a comma, for instance
"Aug 8, 2007". The line.split(’,’) will split this cell text, while the
csv.reader functionality is smart enough to avoid splitting text cells
with a comma.

Representing Number Cells with Numerical Python Arrays. Instead of
putting the whole spreadsheet into a single nested list, we can make a
Python data structure more tailored to the data at hand. What we have
are two headers (for rows and columns, respectively) and a subtable
of numbers. The headers can be represented as lists of strings, while
the subtable could be a two-dimensional Numerical Python array. The
latter makes it easier to implement various mathematical operations on
the numbers. A dictionary can hold all the three items: two header lists
and one array. The relevant code for reading, processing, and writing
the data is shown below and can be found in the file rw_csv_numpy.py:

infile = open(’budget.csv’, ’r’)
import csv
table = [row for row in csv.reader(infile)]
infile.close()

Convert subtable of numbers (string to float)
subtable = [[float(c) for c in row[1:]] for row in table[1:]]

data = {’column headings’: table[0][1:],
’row headings’: [row[0] for row in table[1:]],
’array’: array(subtable)}

Add a new row with sums
data[’row headings’].append(’sum’)

6.6 Examples from Analyzing DNA 305

a = data[’array’] # short form
data[’column sum’] = [sum(a[:,c]) for c in range(a.shape[1])]

outfile = open(’budget2.csv’, ’w’)
writer = csv.writer(outfile)
Aurn data dictionary into a nested list first (for easy writing)
table = a.tolist() # transform array to nested list
table.append(data[’column sum’])
table.insert(0, data[’column headings’])
Axtend table with row headings (a new column)
table = [table[r].insert(0, data[’row headings’][r]) \

for r in range(len(table))]
for row in table:

writer.writerow(row)
outfile.close()

The code makes heavy use of list comprehensions, and the transforma-
tion between a nested list, for file reading and writing, and the data

dictionary, for representing the data in the Python program, is non-
trivial. If you manage to understand every line in this program, you
have digested a lot of topics in Python programming!

6.6 Examples from Analyzing DNA

We shall here continue the bioinformatics applications started in Chap-
ter 3.3. Analysis of DNA sequences is conveniently done in Python,
much with the aid of lists, dictionaries, numpy arrays, strings, and files.
This will be illustrated through a series of examples.

6.6.1 Computing Frequencies

Your genetic code is essentially the same from you are born until you
die, and the same in your blood and your brain. Which genes that are
turned on and off make the difference between the cells. This regulation
of genes is orchestrated by an immensely complex mechanism, which
we have only started to understand. A central part of this mechanism
consists of molecules called transcription factors that float around in
the cell and attach to DNA, and in doing so turn nearby genes on or off.
These molecules bind preferentially to specific DNA sequences, and this
binding preference pattern can be represented by a table of frequencies
of given symbols at each position of the pattern. More precisely, each
row in the table corresponds to the bases A, C, G, and T, while column
j reflects how many times the base appears in position j in the DNA
sequence.

For example, if our set of DNA sequences are TAG, GGT, and GGG,
the table becomes

306 6 Files, Strings, and Dictionaries

base 0 1 2

A 0 1 0
C 0 0 0
G 2 2 2
T 1 0 1

From this table we can read that base A appears once in index 1 in the
DNA strings, base C does not appear at all, base G appears twice in
all positions, and base T appears once in the beginning and end of the
strings.

In the following we shall present different data structures to hold
such a table and different ways of computing them. The table is known
as a frequency matrix in bioinformatics and this is the term used here
too.

Separate Frequency Lists. Since we know that there are only four rows
in the frequency matrix, an obvious data structure would be four lists,
each holding a row. A function computing these lists may look like

def freq_lists(dna_list):
n = len(dna_list[0])
A = [0]*n
T = [0]*n
G = [0]*n
C = [0]*n
for dna in dna_list:

for index, base in enumerate(dna):
if base == ’A’:

A[index] += 1
elif base == ’C’:

C[index] += 1
elif base == ’G’:

G[index] += 1
elif base == ’T’:

T[index] += 1
return A, C, G, T

We need to initialize the lists with the right length and a zero for
each element, since each list element is to be used as a counter. Creating
a list of length n with object x in all positions is done by [x]*n. Finding
the proper length is here carried out by inspecting the length of the
first element in dna_list, the list of all DNA strings to be counted,
assuming that all elements in this list have the same length.

In the for loop we apply the enumerate function which is used to
extract both the element value and the element index when iterating
over a sequence. For example,

>>> for index, base in enumerate([’t’, ’e’, ’s’, ’t’]):
... print index, base
...
0 t
1 e
2 s
3 t

6.6 Examples from Analyzing DNA 307

Here is a test,

dna_list = [’GGTAG’, ’GGTAC’, ’GGTGC’]
A, C, G, T = freq_lists(dna_list)
print A
print C
print G
print T

with output

[0, 0, 0, 2, 0]
[0, 0, 0, 0, 2]
[3, 3, 0, 1, 1]
[0, 0, 3, 0, 0]

Nested List. The frequency matrix can also be represented as a nested
list M such that M[i][j] is the frequency of base i in position j in the
set of DNA strings. Here i is an integer, where 0 corresponds to A, 1
to T, 2 to G, and 3 to C. The frequency is the number of times base i

appears in position j in a set of DNA strings. Sometimes this number is
divided by the number of DNA strings in the set so that the frequency
is between 0 and 1. Note that all the DNA strings must have the same
length.

The simplest way to make a nested list is to insert the A, C, G, and T

lists into another list:

>>> frequency_matrix = [A, C, G, T]
>>> frequency_matrix[2][3]
2
>>> G[3] # same element
2

Alternatively, we can illustrate how to compute this type of nested
list directly:

def freq_list_of_lists_v1(dna_list):
Create empty frequency_matrix[i][j] = 0
i=0,1,2,3 corresponds to A,T,G,C
j=0,...,length of dna_list[0]
frequency_matrix = [[0 for v in dna_list[0]] for x in ’ACGT’]

for dna in dna_list:
for index, base in enumerate(dna):

if base == ’A’:
frequency_matrix[0][index] +=1

elif base == ’C’:
frequency_matrix[1][index] +=1

elif base == ’G’:
frequency_matrix[2][index] +=1

elif base == ’T’:
frequency_matrix[3][index] +=1

return frequency_matrix

As in the case with individual lists we need to initialize all elements
in the nested list to zero.

308 6 Files, Strings, and Dictionaries

A call and printout,

dna_list = [’GGTAG’, ’GGTAC’, ’GGTGC’]
frequency_matrix = freq_list_of_lists_v1(dna_list)
print frequency_matrix

results in

[[0, 0, 0, 2, 0], [0, 0, 0, 0, 2], [3, 3, 0, 1, 1], [0, 0, 3, 0, 0]]

Dictionary for More Convenient Indexing. The if tests in the
freq_list_of_lists_v1 are somewhat cumbersome, especially if we
want to extend the code to other bioinformatics problems where the
alphabet is larger. What we want is a mapping from base, which is a
character, to the corresponding index 0, 1, 2, or 3. A Python dictionary
may represent such mappings:

>>> base2index = {’A’: 0, ’C’: 1, ’G’: 2, ’T’: 3}
>>> base2index[’G’]
2

With the base2index dictionary we do not need the series of if tests
and the alphabet ’ATGC’ could be much larger without affecting the
length of the code:

def freq_list_of_lists_v2(dna_list):
frequency_matrix = [[0 for v in dna_list[0]] for x in ’ACGT’]
base2index = {’A’: 0, ’C’: 1, ’G’: 2, ’T’: 3}
for dna in dna_list:

for index, base in enumerate(dna):
frequency_matrix[base2index[base]][index] += 1

return frequency_matrix

Numerical Python Array. As long as each sublist in a list of lists
has the same length, a list of lists can be replaced by a Numeri-
cal Python (numpy) array. Processing of such arrays is often much
more efficient than processing of the nested list data structure. To
initialize a two-dimensional numpy array we need to know its size,
here 4 times len(dna_list[0]). Only the first line in the function
freq_list_of_lists_v2 needs to be changed in order to utilize a numpy

array:

import numpy as np

def freq_numpy(dna_list):
frequency_matrix = np.zeros((4, len(dna_list[0])), dtype=np.int)
base2index = {’A’: 0, ’C’: 1, ’G’: 2, ’T’: 3}
for dna in dna_list:

for index, base in enumerate(dna):
frequency_matrix[base2index[base]][index] += 1

return frequency_matrix

6.6 Examples from Analyzing DNA 309

The resulting frequency_matrix object can be indexed as [b][i]

or [b,i], with integers b and i. Typically, b will be something line
base2index[’C’].

Dictionary of Lists. Instead of going from a character to an inte-
ger index via base2index, we may prefer to index frequency_matrix

by the base name and the position index directly, like in [’C’][14].
This is the most natural syntax for a user of the frequency matrix.
The relevant Python data structure is then a dictionary of lists. That
is, frequency_matrix is a dictionary with keys ’A’, ’C’, ’G’, and ’T’.
The value for each key is a list. Let us now also extend the flexibility
such that dna_list can have DNA strings of different lengths. The lists
in frequency_list will have lengths equal to the longest DNA string.
A relevant function is

def freq_dict_of_lists_v1(dna_list):
n = max([len(dna) for dna in dna_list])
frequency_matrix = {

’A’: [0]*n,
’C’: [0]*n,
’G’: [0]*n,
’T’: [0]*n,
}

for dna in dna_list:
for index, base in enumerate(dna):

frequency_matrix[base][index] += 1

return frequency_matrix

Running the test code

frequency_matrix = freq_dict_of_lists_v1(dna_list)
import pprint # for nice printout of nested data structures
pprint.pprint(frequency_matrix)

results in the output

{’A’: [0, 0, 0, 2, 0],
’C’: [0, 0, 0, 0, 2],
’G’: [3, 3, 0, 1, 1],
’T’: [0, 0, 3, 0, 0]}

The initialization of frequency_matrix in the above code can be made
more compact by using a dictionary comprehension:

dict = {key: value for key in some_sequence}

In our example we set

frequency_matrix = {base: [0]*n for base in ’ACGT’}

Adopting this construction in the freq_dict_of_lists_v1 function
leads to a slightly more compact version:

310 6 Files, Strings, and Dictionaries

def freq_dict_of_lists_v2(dna_list):
n = max([len(dna) for dna in dna_list])
frequency_matrix = {base: [0]*n for base in ’ACGT’}
for dna in dna_list:

for index, base in enumerate(dna):
frequency_matrix[base][index] += 1

return frequency_matrix

Dictionary of Dictionaries. The dictionary of lists data structure can
alternatively be replaced by a dictionary of dictionaries object, often
just called a dict of dicts object. That is, frequency_matrix[base] is
a dictionary with key i and value equal to the added number of oc-
currences of base in dna[i] for all dna strings in the list dna_list. The
indexing frequency_matrix[’C’][i] and the values are exactly as in the
last example; the only difference is whether frequency_matrix[’C’] is
a list or dictionary.

Our function working with frequency_matrix as a dict of dicts is
written as

def freq_dict_of_dicts_v1(dna_list):
n = max([len(dna) for dna in dna_list])
frequency_matrix = {base: {index: 0 for index in range(n)}

for base in ’ACGT’}
for dna in dna_list:

for index, base in enumerate(dna):
frequency_matrix[base][index] += 1

return frequency_matrix

Using Dictionaries with Default Values. The manual initialization of
each subdictionary to zero,

frequency_matrix = {base: {index: 0 for index in range(n)}
for base in ’ACGT’}

can be simplified by using a dictionary with default values for any key.
The construction defaultdict(lambda: obj) makes a dictionary with
obj as default value. This construction simplifies the previous function
a bit:

from collections import defaultdict

def freq_dict_of_dicts_v2(dna_list):
n = max([len(dna) for dna in dna_list])
frequency_matrix = {base: defaultdict(lambda: 0)

for base in ’ACGT’}
for dna in dna_list:

for index, base in enumerate(dna):
frequency_matrix[base][index] += 1

return frequency_matrix

Remark. Dictionary comprehensions were new in Python 2.7 and 3.1,
but can be simulated in earlier versions by making (key, value) tuples
via list comprehensions. A dictionary comprehension

6.6 Examples from Analyzing DNA 311

d = {key: value for key in sequence}

is then constructed as

d = dict([(key, value) for key in sequence])

Using Arrays and Vectorization. The dict of lists data structure for
frequency_matrix can easily be changed to a dict of numpy arrays: just
replace the initialization [0]*n by np.zeros(n, dtype=np.int). The in-
dexing remains the same:

def freq_dict_of_arrays_v1(dna_list):
n = max([len(dna) for dna in dna_list])
frequency_matrix = {base: np.zeros(n, dtype=np.int)

for base in ’ACGT’}
for dna in dna_list:

for index, base in enumerate(dna):
frequency_matrix[base][index] += 1

return frequency_matrix

Having frequency_matrix[base] as a numpy array instead of a
list does not give any immediate advantage, as the storage and
CPU time is about the same. The loop over the dna string and
the associated indexing is what consumes all the CPU time. How-
ever, the numpy arrays provide a potential for increasing efficiency
through vectorization, i.e., replacing the element-wise operations on
dna and frequency_matrix[base] by operations on the entire arrays at
once.

Let us use the interactive Python shell to explore the possibilities of
vectorization. We first convert the string to a numpy array of charac-
ters:

>>> dna = ’ACAT’
>>> dna = np.array(dna, dtype=’c’)
>>> dna
array([’A’, ’C’, ’A’, ’T’],

dtype=’|S1’)

For a given base, say A, we can in one vectorized operation find which
locations in dna that contain A:

>>> b = dna == ’A’
>>> b
array([True, False, True, False], dtype=bool)

By converting b to an integer array i we can update the frequency
counts for all indices by adding i to frequency_matrix[’A’]:

>>> i = np.asarray(b, dtype=np.int)
>>> i
array([1, 0, 1, 0])
>>> frequency_matrix[’A’] = frequency_matrix[’A’] + i

312 6 Files, Strings, and Dictionaries

This recipe can be repeated for all bases:

for dna in dna_list:
dna = np.array(dna, dtype=’c’)
for base in ’ACGT’:

b = dna == base
i = np.asarray(b, dtype=np.int)
frequency_matrix[base] = frequency_matrix[base] + i

It turns out that we do not need to convert the boolean array b

to an integer array i, because doing arithmetics with b directly is
possible: False is interpreted as 0 and True as 1 in arithmetic op-
erations. We can also use the += operator to update all elements of
frequency_matrix[base] directly, without first computing the sum of
two arrays frequency_matrix[base] + i and then assigning this result
to frequency_matrix[base]. Collecting all these ideas in one function
yields the code

def freq_dict_of_arrays_v2(dna_list):
n = max([len(dna) for dna in dna_list])
frequency_matrix = {base: np.zeros(n, dtype=np.int)

for base in ’ACGT’}
for dna in dna_list:

dna = np.array(dna, dtype=’c’)
for base in ’ACCT’:

frequency_matrix[base] += dna == base

return frequency_matrix

This vectorized function runs almost 10 times as fast as the (scalar)
counterpart freq_list_of_arrays_v1!

6.6.2 Analyzing the Frequency Matrix

Having built a frequency matrix out of a collection of DNA strings,
it is time to use it for analysis. The short DNA strings that a fre-
quency matrix is built out of, is typically a set of substrings of a larger
DNA sequence, which shares some common purpose. An example of
this is to have a set of substrings that serves as a kind of anchors/mag-
nets at which given molecules attach to DNA and perform biological
functions (like turning genes on or off). With the frequency matrix
constructed from a limited set of known anchor locations (substrings),
we can now scan for other similar substrings that have the potential
to perform the same function. The simplest way to do this is to first
determine the most typical substring according to the frequency ma-
trix, i.e., the substring having the most frequent nucleotide at each
position. This is referred to as the consensus string of the frequency
matrix. We can then look for occurrences of the consensus substring
in a larger DNA sequence, and consider these occurrences as likely
candidates for serving the same function (e.g., as anchor locations for
molecules).

6.6 Examples from Analyzing DNA 313

For instance, given three substrings ACT, CCA and AGA, the fre-
quency matrix would be (list of lists, with rows corresponding to A, C,
G, and T):

[[2, 0, 2]
[1, 2, 0]
[0, 1, 0]
[0, 0, 1]]

We see that for position 0, which corresponds to the left-most column
in the table, the symbol A has the highest frequency (2). The maximum
frequencies for the other positions are seen to be C for position 1, and
A for position 2. The consensus string is therefore ACA. Note that the
consensus string does not need to be equal to any of the substrings
that formed the basis of the frequency matrix (this is indeed the case
for the above example).

List of Lists Frequency Matrix. Let frequency_matrix be a list of lists.
For each position i we run through the rows in the frequency matrix
and keep track of the maximum frequency value and the corresponding
letter. If two or more letters have the same frequency value we use a
dash to indicate that this position in the consensus string is undeter-
mined.

The following function computes the consensus string:

def find_consensus_v1(frequency_matrix):
base2index = {’A’: 0, ’C’: 1, ’G’: 2, ’T’: 3}
consensus = ’’
dna_length = len(frequency_matrix[0])

for i in range(dna_length): # loop over positions in string
max_freq = -1 # holds the max freq. for this i
max_freq_base = None # holds the corresponding base

for base in ’ATGC’:
if frequency_matrix[base2index[base]][i] > max_freq:

max_freq = frequency_matrix[base2index[base]][i]
max_freq_base = base

elif frequency_matrix[base2index[base]][i] == max_freq:
max_freq_base = ’-’ # more than one base as max

consensus += max_freq_base # add new base with max freq
return consensus

Since this code requires frequency_matrix to be a list of lists we
should insert a test and raise an exception if the type is wrong:

def find_consensus_v1(frequency_matrix):
if isinstance(frequency_matrix, list) and \

isinstance(frequency_matrix[0], list):
pass # right type

else:
raise TypeError(’frequency_matrix must be list of lists’)

...

Dict of Dicts Frequency Matrix. How must the find_consensus_v1

function be altered if frequency_matrix is a dict of dicts?

314 6 Files, Strings, and Dictionaries

1. The base2index dict is no longer needed.
2. Access of sublist, frequency_matrix[0], to test for type and length

of the strings, must be replaced by frequency_matrix[’A’].

The updated function becomes

def find_consensus_v3(frequency_matrix):
if isinstance(frequency_matrix, dict) and \

isinstance(frequency_matrix[’A’], dict):
pass # right type

else:
raise TypeError(’frequency_matrix must be dict of dicts’)

consensus = ’’
dna_length = len(frequency_matrix[’A’])

for i in range(dna_length): # loop over positions in string
max_freq = -1 # holds the max freq. for this i
max_freq_base = None # holds the corresponding base

for base in ’ACGT’:
if frequency_matrix[base][i] > max_freq:

max_freq = frequency_matrix[base][i]
max_freq_base = base

elif frequency_matrix[base][i] == max_freq:
max_freq_base = ’-’ # more than one base as max

consensus += max_freq_base # add new base with max freq
return consensus

Here is a test:

frequency_matrix = freq_dict_of_dicts_v1(dna_list)
pprint.pprint(frequency_matrix)
print find_consensus_v3(frequency_matrix)

with output

{’A’: {0: 0, 1: 0, 2: 0, 3: 2, 4: 0},
’C’: {0: 0, 1: 0, 2: 0, 3: 0, 4: 2},
’G’: {0: 3, 1: 3, 2: 0, 3: 1, 4: 1},
’T’: {0: 0, 1: 0, 2: 3, 3: 0, 4: 0}}
Consensus string: GGTAC

Let us try find_consensus_v3 with the dict of defaultdicts as input
(freq_dicts_of_dicts_v2). The code runs fine, but the output string is
just G! The reason is that dna_length is 1, and therefore that the length
of the A dict in frequency_matrix is 1. Printing out frequency_matrix

yields

{’A’: defaultdict(X, {3: 2}),
’C’: defaultdict(X, {4: 2}),
’G’: defaultdict(X, {0: 3, 1: 3, 3: 1, 4: 1}),
’T’: defaultdict(X, {2: 3})}

where our X is a short form for text like

‘<function <lambda> at 0xfaede8>‘

We see that the length of a defaultdict will only count the nonzero
entries. Hence, to use a defaultdict our function must get the length of
the DNA string to build as an extra argument:

6.6 Examples from Analyzing DNA 315

def find_consensus_v4(frequency_matrix, dna_length):
...

Exercise 6.30 suggests to make a unified find_consensus func-
tion which works with all of the different representations of
frequency_matrix that we have used.

The functions making and using the frequency matrix are found in
the file freq.py.

6.6.3 Finding Base Frequencies

DNA consists of four molecules called nucleotides, or bases, and can be
represented as a string of the letters A, C, G, and T. But this does not
mean that all four nucleotides need to be similarly frequent. Are some
nucleotides more frequent than others, say in yeast, as represented by
the first chromosome of yeast? Also, DNA is really not a single thread,
but two threads wound together. This wounding is based on an A from
one thread binding to a T of the other thread, and C binding to G
(that is, A will only bind with T, not with C or G). Could this fact
force groups of the four symbol frequencies to be equal? The answer
is that the A-T and G-C binding does not in principle force certain
frequencies to be equal, but in practice they usually become so because
of evolutionary factors related to this pairing.

Our first programming task now is to compute the frequencies of the
bases A, C, G, and T. That is, the number of times each base occurs
in the DNA string, divided by the length of the string. For example, if
the DNA string is ACGGAAA, the length is 7, A appears 4 times with
frequency 4/7, C appears once with frequency 1/7, G appears twice
with frequency 2/7, and T does not appear so the frequency is 0.

From a coding perspective we may create a function for counting
how many times A, C, G, and T appears in the string and then an-
other function for computing the frequencies. In both cases we want
dictionaries such that we can index with the character and get the
count or the frequency out. Counting is done by

def get_base_counts(dna):
counts = {’A’: 0, ’T’: 0, ’G’: 0, ’C’: 0}
for base in dna:

counts[base] += 1
return counts

This function can then be used to compute the base frequencies:

def get_base_frequencies_v1(dna):
counts = get_base_counts(dna)
return {base: count*1.0/len(dna)

for base, count in counts.items()}

Since we learned at the end of Chapter 3.3.2 that dna.count(base)

was much faster than the various manual implementations of counting,

316 6 Files, Strings, and Dictionaries

we can write a faster and simpler function for computing all the base
frequencies:

def get_base_frequencies_v2(dna):
return {base: dna.count(base)/float(len(dna))

for base in ’ATGC’}

A little test,

dna = ’ACCAGAGT’
frequencies = get_base_frequencies_v2(dna)

def format_frequencies(frequencies):
return ’, ’.join([’%s: %.2f’ % (base, frequencies[base])

for base in frequencies])

print "Base frequencies of sequence ’%s’:\n%s" % \
(dna, format_frequencies(frequencies))

gives the result

Base frequencies of sequence ’ACCAGAGT’:
A: 0.38, C: 0.25, T: 0.12, G: 0.25

The format_frequencies function was made for nice printout of the fre-
quencies with 2 decimals. The one-line code is an effective combination
of a dictionary, list comprehension, and the join functionality. The lat-
ter is used to get a comma correctly inserted between the items in the
result. Lazy programmers would probably just do a print frequencies

and live with the curly braces in the output and (in general) 16 dis-
turbing decimals.

We can try the frequency computation on real data. The file

http://hplgit.github.com/bioinf-py/data/yeast chr1.txt

contains the DNA for yeast. We can download this file from the Internet
by

urllib.urlretrieve(url, filename=name_of_local_file)

where url is the Internet address of the file and name_of_local_file is
a string containing the name of the file on the computer where the file
is downloaded. To avoid repeated downloads when the program is run
multiple times, we insert a test on whether the local file exists or not.
The call os.path.isfile(f) returns True if a file with name f exists in
the current working folder.

The appropriate download code then becomes

import urllib, os
urlbase = ’http://hplgit.github.com/bioinf-py/data/’
yeast_file = ’yeast_chr1.txt’
if not os.path.isfile(yeast_file):

url = urlbase + yeast_file
urllib.urlretrieve(url, filename=yeast_file)

http://hplgit.github.com/bioinf-py/data/yeast_chr1.txt

6.6 Examples from Analyzing DNA 317

A copy of the file on the Internet is now in the current working folder
under the name yeast_chr1.txt. (See Chapter 6.4.2 for more informa-
tion about urllib and downloading files from the Internet.)

The yeast_chr1.txt files contains the DNA string split over many
lines. We therefore need to read the lines in this file, strip each line to
remove the trailing newline, and join all the stripped lines to recover
the DNA string:

def read_dnafile_v1(filename):
lines = open(filename, ’r’).readlines()
Remove newlines in each line (line.strip()) and join
dna = ’’.join([line.strip() for line in lines])
return dna

As usual, an alternative programming solution can be devised:

def read_dnafile_v2(filename):
dna = ’’
for line in open(filename, ’r’):

dna += line.strip()
return dna

dna = read_dnafile_v2(yeast_file)
yeast_freq = get_base_frequencies_v2(dna)
print "Base frequencies of yeast DNA (length %d):\n%s" % \

(len(dna), format_frequencies(yeast_freq))

The output becomes

Base frequencies of yeast DNA (length 230208):
A: 0.30, C: 0.19, T: 0.30, G: 0.20

The varying frequency of different nucleotides in DNA is referred to
as nucleotide bias. The nucleotide bias varies between organisms, and
have a range of biological implications. For many organisms the nu-
cleotide bias has been highly optimized through evolution and reflects
characteristics of the organisms and their environments, for instance
the typical temperature the organism is adapted to.

The functions computing base frequencies are available in the file
basefreq.py.

6.6.4 Translating Genes into Proteins

An important usage of DNA is for cells to store information on their
arsenal of proteins. Briefly, a gene is, in essence, a region of the DNA,
consisting of several coding parts (called exons), interspersed by non-
coding parts (called introns). The coding parts are concatenated to
form a string called mRNA, where also occurrences of the letter T
in the coding parts are substituted by a U. A triplet of mRNA letters
code for a specific amino acid, which are the building blocks of proteins.
Consecutive triplets of letters in mRNA define a specific sequence of
amino acids, which amounts to a certain protein.

318 6 Files, Strings, and Dictionaries

Here is an example of using the mapping from DNA to proteins to
create the Lactase protein (LPH), using the DNA sequence of the Lac-
tase gene (LCT) as underlying code. An important functional property
of LPH is in digesting Lactose, which is found most notably in milk.
Lack of the functionality of LPH leads to digestive problems referred
to as lactose intolerance. Most mammals and humans lose their expres-
sion of LCT and therefore their ability to digest milk when they stop
receiving breast milk.

The file

http://hplgit.github.com/bioinf-py/doc/src/data/genetic code.tsv

contains a mapping of genetic codes to amino acids. The file format
looks like

UUU F Phe Phenylalanine
UUC F Phe Phenylalanine
UUA L Leu Leucine
UUG L Leu Leucine
CUU L Leu Leucine
CUC L Leu Leucine
CUA L Leu Leucine
CUG L Leu Leucine
AUU I Ile Isoleucine
AUC I Ile Isoleucine
AUA I Ile Isoleucine
AUG M Met Methionine (Start)

The first column is the genetic code (triplet in mRNA), while the other
columns represent various ways of expressing the corresponding amino
acid: a 1-letter symbol, a 3-letter name, and the full name.

Downloading the genetic_code.tsv file can be done by this robust
function:

def download(urlbase, filename):
if not os.path.isfile(filename):

url = urlbase + filename
try:

urllib.urlretrieve(url, filename=filename)
except IOError, e:

raise IOError(’No Internet connection’)
Check if downloaded file is an HTML file, which
is what github.com returns if the URL is not existing
f = open(filename, ’r’)
if ’DOCTYPE html’ in f.readline():

raise IOError(’URL %s does not exist’ % url)

We want to make a dictionary of this file that maps the code (first
column) on to the 1-letter name (second column):

def read_genetic_code_v1(filename):
infile = open(filename, ’r’)
genetic_code = {}
for line in infile:

columns = line.split()
genetic_code[columns[0]] = columns[1]

return genetic_code

Downloading the file, reading it, and making the dictionary are done
by

http://hplgit.github.com/bioinf-py/doc/src/data/genetic_code.tsv

6.6 Examples from Analyzing DNA 319

urlbase = ’http://hplgit.github.com/bioinf-py/data/’
genetic_code_file = ’genetic_code.tsv’
download(urlbase, genetic_code_file)
code = read_genetic_code_v1(genetic_code_file)

Not surprisingly, the read_genetic_code_v1 can be made much
shorter by collecting the first two columns as list of 2-lists and then
converting the 2-lists to key-value pairs in a dictionary:

def read_genetic_code_v2(filename):
return dict([line.split()[0:2] for line in open(filename, ’r’)])

Creating a mapping of the code onto all the three variants of the
amino acid name is also of interest. For example, we would like to make
look ups like [’CUU’][’3-letter’] or [’CUU’][’amino acid’]. This re-
quires a dictionary of dictionaries:

def read_genetic_code_v3(filename):
genetic_code = {}
for line in open(filename, ’r’):

columns = line.split()
genetic_code[columns[0]] = {}
genetic_code[columns[0]][’1-letter’] = columns[1]
genetic_code[columns[0]][’3-letter’] = columns[2]
genetic_code[columns[0]][’amino acid’] = columns[3]

return genetic_code

An alternative way of writing the last function is

def read_genetic_code_v4(filename):
genetic_code = {}
for line in open(filename, ’r’):

c = line.split()
genetic_code[c[0]] = {

’1-letter’: c[1], ’3-letter’: c[2], ’amino acid’: c[3]}
return genetic_code

To form mRNA, we need to grab the exon regions (the coding parts)
of the lactase gene. These regions are substrings of the lactase gene
DNA string, corresponding to the start and end positions of the exon
regions. Then we must replace T by U, and combine all the substrings
to build the mRNA string.

Two straightforward subtasks are to load the lactase gene and its
exon positions into variables. The file lactase_gene.txt, at the same
Internet location as the other files, stores the lactase gene. The file has
the same format as yeast_chr1.txt. Using the download function and
the previously shown read_dnafile_v1, we can easily load the data in
the file into the string lactase_gene.

The exon regions are described in a file lactase_exon.tsv, also found
at the same Internet site as the other files. The file is easily transferred
to your computer by calling download. The file format is very simple in
that each line holds the start and end positions of an exon region:

320 6 Files, Strings, and Dictionaries

0 651
3990 4070
7504 7588
13177 13280
15082 15161

We want to have this information available in a list of (start, end)
tuples. The following function does the job:

def read_exon_regions_v1(filename):
positions = []
infile = open(filename, ’r’)
for line in infile:

start, end = line.split()
start, end = int(start), int(end)
positions.append((start, end))

infile.close()
return positions

Readers favoring compact code will appreciate this alternative version
of the function:

def read_exon_regions_v2(filename):
return [tuple(int(x) for x in line.split())

for line in open(filename, ’r’)]

lactase_exon_regions = read_exon_regions_v2(lactase_exon_file)

For simplicity’s sake, we shall consider mRNA as the concatenation
of exons, although in reality, additional base pairs are added to each
end. Having the lactase gene as a string and the exon regions as a list
of (start, end) tuples, it is straightforward to extract the regions as
substrings, replace T by U, and add all the substrings together:

def create_mRNA(gene, exon_regions):
mrna = ’’
for start, end in exon_regions:

mrna += gene[start:end].replace(’T’,’U’)
return mrna

mrna = create_mRNA(lactase_gene, lactase_exon_regions)

We would like to store the mRNA string in a file, using the same for-
mat as lactase_gene.txt and yeast_chr1.txt, i.e., the string is split on
multiple lines with, e.g., 70 characters per line. An appropriate function
doing this is

def tofile_with_line_sep_v1(text, filename, chars_per_line=70):
outfile = open(filename, ’w’)
for i in xrange(0, len(text), chars_per_line):

start = i
end = start + chars_per_line
outfile.write(text[start:end] + ’\n’)

outfile.close()

It might be convenient to have a separate folder for files that we
create. Python has good support for testing if a folder exists, and if
not, make a folder:

6.6 Examples from Analyzing DNA 321

output_folder = ’output’
if not os.path.isdir(output_folder):

os.mkdir(output_folder)
filename = os.path.join(output_folder, ’lactase_mrna.txt’)
tofile_with_line_sep_v1(mrna, filename)

Python’s term for folder is directory, which explains why isdir is the
function name for testing on a folder existence. Observe especially that
the combination of a folder and a filename is done via os.path.join

rather than just inserting a forward slash, or backward slash on Win-
dows: os.path.join will insert the right slash, forward or backward,
depending on the current operating system.

Occasionally, the output folder is nested, say

output_folder = os.path.join(’output’, ’lactase’)

In that case, os.mkdir(output_folder) may fail because the interme-
diate folder output is missing. Making a folder and also all missing
intermediate folders is done by os.makedirs. We can write a more gen-
eral file writing function which takes a folder name and file name as
input and writes the file. Let us also add some flexibility in the file for-
mat: one can either write a fixed number of characters per line, or have
the string on just one long line. The latter version is specified through
chars_per_line=’inf’ (for infinite number of characters per line). The
flexible file writing function then becomes

def tofile_with_line_sep_v2(text, foldername, filename,
chars_per_line=70):

if not os.path.isdir(foldername):
os.makedirs(foldername)

filename = os.path.join(foldername, filename)
outfile = open(filename, ’w’)

if chars_per_line == ’inf’:
outfile.write(text)

else:
for i in xrange(0, len(text), chars_per_line):

start = i
end = start + chars_per_line
outfile.write(text[start:end] + ’\n’)

outfile.close()

To create the protein, we replace the triplets of the mRNA strings by
the corresponding 1-letter name as specified in the genetic_code.tsv

file.

def create_protein(mrna, genetic_code):
protein = ’’
for i in xrange(len(mrna)/3):

start = i * 3
end = start + 3
protein += genetic_code[mrna[start:end]]

return protein

genetic_code = read_genetic_code_v1(’genetic_code.tsv’)
protein = create_protein(mrna, genetic_code)

322 6 Files, Strings, and Dictionaries

Unfortunately, this first try to simulate the translation process is
incorrect. The problem is that the translation always begins with the
amino acid Methionine, code AUG, and ends when one of the stop
codons is met. We must thus check for the correct start and stop cri-
teria. A fix is

def create_protein_fixed(mrna, genetic_code):
protein_fixed = ’’
trans_start_pos = mrna.find(’AUG’)
for i in range(len(mrna[trans_start_pos:])/3):

start = trans_start_pos + i*3
end = start + 3
amino = genetic_code[mrna[start:end]]
if amino == ’X’:

break
protein_fixed += amino

return protein_fixed

protein = create_protein_fixed(mrna, genetic_code)
tofile_with_line_sep_v2(protein, ’output’,

’lactase_protein_fixed.txt’, 70)

print ’10 last amino acids of the correct lactase protein: ’, \
protein[-10:]

print ’Lenght of the correct protein: ’, len(protein)

The output, needed below for comparison, becomes
10 last amino acids of the correct lactase protein: QQELSPVSSF
Lenght of the correct protein: 1927

6.6.5 Some Humans Can Drink Milk, While Others Cannot

One type of lactose intolerance is called Congenital lactase deficiency.
This is a rare genetic disorder that causes lactose intolerance from
birth, and is particularly common in Finland. The disease is caused
by a mutation of the base in position 30049 (0-based) of the lactase
gene, a mutation from T to A. Our goal is to check what happens to
the protein if this base is mutated. This is a simple task using the
previously developed tools:

def congential_lactase_deficiency(
lactase_gene,
genetic_code,
lactase_exon_regions,
output_folder=os.curdir,
mrna_file=None,
protein_file=None):

pos = 30049
mutated_gene = lactase_gene[:pos] + ’A’ + lactase_gene[pos+1:]
mutated_mrna = create_mRNA(mutated_gene, lactase_exon_regions)

if mrna_file is not None:
tofile_with_line_sep_v2(

mutated_mrna, output_folder, mrna_file)

mutated_protein = create_protein_fixed(
mutated_mrna, genetic_code)

6.7 Summary 323

if protein_file:
tofile_with_line_sep_v2(

mutated_protein, output_folder, protein_file)
return mutated_protein

mutated_protein = congential_lactase_deficiency(
lactase_gene, genetic_code, lactase_exon_regions,
output_folder=’output’,
mrna_file=’mutated_lactase_mrna.txt’,
protein_file=’mutated_lactase_protein.txt’)

print ’10 last amino acids of the mutated lactase protein:’, \
mutated_protein[-10:]

print ’Lenght of the mutated lactase protein:’, \
len(mutated_protein)

The output, to be compared with the non-mutated gene above, is
now

10 last amino acids of the mutated lactase protein: GFIWSAASAA
Lenght of the mutated lactase protein: 1389

As we can see, the translation stops prematurely, creating a much
smaller protein, which will not have the required characteristics of the
lactase protein.

A couple of mutations in a region for LCT located in front of LCT
(actually in the introns of another gene) is the reason for the common
lactose intolerance. That is, the one that sets in for adults only. These
mutations control the expression of the LCT gene, i.e., whether that
the gene is turned on or off. Interestingly, different mutations have
evolved in different regions of the world, e.g., Africa and Northern
Europe. This is an example of convergent evolution: the acquisition
of the same biological trait in unrelated lineages. The prevalence of
lactose intolerance varies widely, from around 5% in northern Europe,
to close to 100% in south-east Asia.

The functions analyzing the lactase gene are found in the file
genes2proteins.py.

6.7 Summary

6.7.1 Chapter Topics

File Operations. This chapter has been concerned with file reading and
file writing. First a file must be opened, either for reading, writing, or
appending:

infile = open(filename, ’r’) # read
outfile = open(filename, ’w’) # write
outfile = open(filename, ’a’) # append

There are four basic reading commands:

324 6 Files, Strings, and Dictionaries

line = infile.readline() # read the next line
filestr = infile.read() # read rest of file into string
lines = infile.readlines() # read rest of file into list
for line in infile: # read rest of file line by line

File writing is usually about repeatedly using the command

outfile.write(s)

where s is a string. Contrary to print s, no newline is added to s in
outfile.write(s).

When the reading and writing is finished,

somefile.close()

should be called, where somefile is the file object.

Downloading Internet Files. Internet files can be downloaded if we
know their URL:

import urllib
url = ’http://www.some.where.net/path/thing.html’
urllib.urlretrieve(url, filename=’thing.html’)

The downloaded information is put in the local file thing.html in the
current working folder. Alternatively, we can open the URL as a file
object:

webpage = urllib.urlopen(url)

HTML files are often messy to interpret by string operations.

Dictionaries. Array or list-like objects with text or other (fixed-valued)
Python objects as indices are called dictionaries. They are very useful
for storing general collections of objects in a single data structure.
Table 6.1 displays some of the most important dictionary operations.

Table 6.1 Summary of important functionality for dictionary objects.

a = {} initialize an empty dictionary
a = {’point’: [0,0.1], ’value’: 7} initialize a dictionary

a = dict(point=[2,7], value=3) initialize a dictionary w/string keys
a.update(b) add/update key-value pairs from b in a

a.update(key=value1, key2=value2) add/update key-value pairs in a

a[’hide’] = True add new key-value pair to a

a[’point’] get value corresponding to key point

’value’ in a True if value is a key in a

del a[’point’] delete a key-value pair from a

a.keys() list of keys
a.values() list of values

len(a) number of key-value pairs in a

for key in a: loop over keys in unknown order

for key in sorted(a): loop over keys in alphabetic order
isinstance(a, dict) is True if a is a dictionary

6.7 Summary 325

Strings. Some of the most useful functionalities in a string object s are
listed below.

• Split the string into substrings separated by delimiter:

words = s.split(delimiter)

• Join elements in a list of strings:

string = delimiter.join(words[i:j])

• Extract substring:

substring = s[2:n-4]

• Substitute a substring by new a string:

modified_string = s.replace(sub, new)

• Search for the start (first index) of some text:

index = s.find(text)
if index == -1:

print ’Could not find "%s" in "%s" (text, s)
else:

substring = s[index:] # strip off chars before text

• Check if a string contains whitespace only:

if s.isspace():
...

6.7.2 Example: A File Database

Problem. We have a file containing information about the courses that
students have taken. The file format consists of blocks with student
data, where each block starts with the student’s name (Name:), followed
by the courses that the student has taken. Each course line starts with
the name of the course, then comes the semester when the exam was
taken, then the size of the course in terms of credit points, and finally
the grade is listed (letters A to F). Here is an example of a file with
three student entries:

Name: John Doe
Astronomy 2003 fall 10 A
Introductory Physics 2003 fall 10 C
Calculus I 2003 fall 10 A
Calculus II 2004 spring 10 B
Linear Algebra 2004 spring 10 C
Quantum Mechanics I 2004 fall 10 A
Quantum Mechanics II 2005 spring 10 A
Numerical Linear Algebra 2004 fall 5 E
Numerical Methods 2004 spring 20 C

Name: Jan Modaal
Calculus I 2005 fall 10 A
Calculus II 2006 spring 10 A
Introductory C++ Programming 2005 fall 15 D

326 6 Files, Strings, and Dictionaries

Introductory Python Programming 2006 spring 5 A
Astronomy 2005 fall 10 A
Basic Philosophy 2005 fall 10 F

Name: Kari Nordmann
Introductory Python Programming 2006 spring 5 A
Astronomy 2005 fall 10 D

Our problem consists of reading this file into a dictionary data with
the student name as key and a list of courses as value. Each element in
the list of courses is a dictionary holding the course name, the semester,
the credit points, and the grade. A value in the data dictionary may
look as

’Kari Nordmann’: [{’credit’: 5,
’grade’: ’A’,
’semester’: ’2006 spring’,
’title’: ’Introductory Python Programming’},
{’credit’: 10,
’grade’: ’D’,
’semester’: ’2005 fall’,
’title’: ’Astronomy’}],

Having the data dictionary, the next task is to print out the average
grade of each student.

Solution. We divide the problem into two major tasks: loading the file
data into the data dictionary, and computing the average grades. These
two tasks are naturally placed in two functions.

We need to have a strategy for reading the file and interpreting the
contents. It will be natural to read the file line by line, and for each
line check if this is a line containing a new student’s name, a course
information line, or a blank line. In the latter case we jump to the next
pass in the loop. When a new student name is encountered, we initialize
a new entry in the data dictionary to an empty list. In the case of a
line about a course, we must interpret the contents on that line, which
we postpone a bit.

We can now sketch the algorithm described above in terms of some
unfinished Python code, just to get the overview:

def load(studentfile):
infile = open(studentfile, ’r’)
data = {}
for line in infile:

i = line.find(’Name:’)
if i != -1:

line contains ’Name:’, extract the name.
...

elif line.isspace(): # Blank line?
continue # Yes, go to next loop iteration.

else:
This must be a course line, interpret the line.
...

infile.close()
return data

6.7 Summary 327

If we find ’Name:’ as a substring in line, we must extract the name.
This can be done by the substring line[i+5:]. Alternatively, we can
split the line with respect to colon and strip off the first word:

words = line.split(’:’)
name = ’ ’.join(words[1:])

We have chosen the former strategy of extracting the name as a sub-
string in the final program.

Each course line is naturally split into words for extracting informa-
tion:

words = line.split()

The name of the course consists of a number of words, but we do not
know how many. Nevertheless, we know that the final words contain
the semester, the credit points, and the grade. We can hence count
from the right and extract information, and when we are finished with
the semester information, the rest of the words list holds the words in
the name of the course. The code goes as follows:

grade = words[-1]
credit = int(words[-2])
semester = ’ ’.join(words[-4:-2])
course_name = ’ ’.join(words[:-4])
data[name].append({’title’: course_name,

’semester’: semester,
’credit’: credit,
’grade’: grade})

This code is a good example of the usefulness of split and join opera-
tions when extracting information from a text.

Now to the second task of computing the average grade. Since the
grades are letters we cannot compute with them. A natural way to pro-
ceed is to convert the letters to numbers, compute the average number,
and then convert that number back to a letter. Conversion between
letters and numbers is easily represented by a dictionary:

grade2number = {’A’: 5, ’B’: 4, ’C’: 3, ’D’: 2, ’E’: 1, ’F’: 0}

To convert from numbers to grades, we construct the “inverse” dictio-
nary:

number2grade = {}
for grade in grade2number:

number2grade[grade2number[grade]] = grade

In the computation of the average grade we should use a weighted sum
such that larger courses count more than smaller courses. The weighted
mean value of a set of numbers ri with weights wi, i = 0, . . . , n− 1, is

328 6 Files, Strings, and Dictionaries

given by ∑n−1
i=0 wiri∑n−1
i=0 wi

.

This weighted mean value must then be rounded to the nearest integer,
which can be used as key in number2grade to find the corresponding
grade expressed as a letter. The weight wi is naturally taken as the
number of credit points in the course with grade ri. The whole process
is performed by the following function:

def average_grade(data, name):
sum = 0; weights = 0
for course in data[name]:

weight = course[’credit’]
grade = course[’grade’]
sum += grade2number[grade]*weight
weights += weight

avg = sum/float(weights)
return number2grade[round(avg)]

The complete code is found in the file students.py. Running this pro-
gram gives the following output of the average grades:

John Doe: B
Kari Nordmann: C
Jan Modaal: C

One feature of the students.py code is that the output of the names
are sorted after the last name. How can we accomplish that? A straight
for name in data loop will visit the keys in an unknown (random)
order. To visit the keys in alphabetic order, we must use

for name in sorted(data):

This default sort will sort with respect to the first character in the
name strings. We want a sort according to the last part of the name.
A tailored sort function can then be written (see Exercise 3.32 for an
introduction to tailored sort functions). In this function we extract the
last word in the names and compare them:

def sort_names(name1, name2):
last_name1 = name1.split()[-1]
last_name2 = name2.split()[-2]
if last_name1 < last_name2:

return -1
elif last_name1 > last_name2:

return 1
else:

return 0

We can now pass on sort_names to the sorted function to get a sequence
that is sorted with respect to the last word in the students’ names:

for name in sorted(data, sort_names):
print ’%s: %s’ % (name, average_grade(data, name))

6.8 Exercises 329

6.8 Exercises

Exercise 6.1. Read a two-column data file.
The file src/files/xy.dat contains two columns of numbers, corre-

sponding to x and y coordinates on a curve. The start of the file looks
as this:

-1.0000 -0.0000
-0.9933 -0.0087
-0.9867 -0.0179
-0.9800 -0.0274
-0.9733 -0.0374

Make a program that reads the first column into a list x and the second
column into a list y. Then convert the lists to arrays, and plot the curve.
Print out the maximum and minimum y coordinates. (Hint: Read the
file line by line, split each line into words, convert to float, and append
to x and y.) Name of program file: read_2columns.py �

Exercise 6.2. Read a data file.
The files density_water.dat and density_air.dat files in the folder

src/files contain data about the density of water and air (resp.) for
different temperatures. The data files have some comment lines starting
with # and some lines are blank. The rest of the lines contain density
data: the temperature in the first column and the corresponding density
in the second column. The goal of this exercise is to read the data
in such a file and plot the density versus the temperature as distinct
(small) circles for each data point. Let the program take the name of
the data file as command-line argument. Apply the program to both
files. Name of program file: read_density_data.py �

Exercise 6.3. Simplify the implementation of Exer. 6.1.
Look up the documentation of the numpy.loadtxt function and use

it to load the file data in Exercise 6.1 into arrays. Name of program
file: read_2columns_loadtxt.py. �

Exercise 6.4. Fit a polynomial to data.
The purpose of this exercise is to find a simple mathematical formula

for the how the density of water or air depends on the temperature.
First, load the density data from file as explained in Exercises 6.2 or
6.3. Then we want to experiment with NumPy utilities that can find a
polynomial that approximate the density curve.

NumPy has a function polyfit(x, y, deg) for finding a “best fit”
of a polynomial of degree deg to a set of data points given by the array
arguments x and y. The polyfit function returns a list of the coefficients
in the fitted polynomial, where the first element is the coefficient for
the term with the highest degree, and the last element corresponds to
the constant term. For example, given points in x and y, polyfit(x, y,

330 6 Files, Strings, and Dictionaries

1) returns the coefficients a, b in a polynomial a*x + b that fits the
data in the best way17.

NumPy also has a utility poly1d which can take the tuple or list of
coefficients calculated by, e.g., polyfit and return the polynomial as
a Python function that can be evaluated. The following code snippet
demonstrates the use of polyfit and poly1d:

coeff = polyfit(x, y, deg)
p = poly1d(coeff)
print p # prints the polynomial expression
y_fitted = p(x)
plot(x, y, ’r-’, x, y_fitted, ’b-’,

legend=(’data’, ’fitted polynomial of degree %d’ % deg’))

For the density–temperature relationship we want to plot the data
from file and two polynomial approximations, corresponding to a 1st
and 2nd degree polynomial. From a visual inspection of the plot, sug-
gest simple mathematical formulas that relate the density of air to
temperature and the density of water to temperature. Make three sep-
arate plots of the Name of program file: fit_density_data.py �

Exercise 6.5. Read acceleration data and find velocities.
A file src/files/acc.dat contains measurements a0, a1, . . . , an−1 of

the acceleration of an object moving along a straight line. The mea-
surement ak is taken at time point tk = kΔt, where Δt is the time
spacing between the measurements. The purpose of the exercise is to
load the acceleration data into a program and compute the velocity
v(t) of the object at some time t.

In general, the acceleration a(t) is related to the velocity v(t) through
v′(t) = a(t). This means that

v(t) = v(0) +

∫ t

0
a(τ)dτ. (6.1)

If a(t) is only known at some discrete, equally spaced points in time,
a0, . . . , an−1 (which is the case in this exercise), we must compute the
integral (6.1) in numerically, for example by the Trapezoidal rule:

v(tk) ≈ Δt

(
1

2
a0 +

1

2
ak +

k−1∑
i=1

ai

)
, 1 ≤ k ≤ n− 1. (6.2)

We assume v(0) = 0 so that also v0 = 0.
Read the values a0, . . . , an−1 from file into an array, plot the acceler-

ation versus time, and use (6.2) to compute one v(tk) value, where Δt

17 More precisely, a line y = ax+b is a “best fit” to the data points (xi, yi), i = 0, . . . , n−1

if a and b are chosen to make the sum of squared errors R =
∑n−1

j=0 (yj−(axj+b))2 as small
as possible. This approach is known as least squares approximation to data and proves to

be extremely useful throughout science and technology.

6.8 Exercises 331

and k ≥ 1 are specified on the command line. Name of program file:
acc2vel_v1.py. �

Exercise 6.6. Read acceleration data and plot velocities.
The task in this exercise is the same as in Exercise 6.5, except that

we now want to compute v(tk) for all time points tk = kΔt and plot
the velocity versus time. Repeated use of (6.2) for all k values is very
inefficient. A more efficient formula arises if we add the area of a new
trapezoid to the previous integral (see also Appendix A.1.7):

v(tk) = v(tk−1) +

∫ tk

tk−1

a(τ)dτ ≈ v(tk−1) +Δt
1

2
(ak−1 + ak), (6.3)

for k = 1, 2, . . . , n− 1, while v0 = 0. Use this formula to fill an array v

with velocity values. Now only Δt is given on the command line, and
the a0, . . . , an−1 values must be read from file as in Exercise 6.5. Name
of program file: acc2vel.py. �

Exercise 6.7. Find velocity from GPS coordinates.
Imagine that a GPS device measures your position at every s

seconds. The positions are stored as (x, y) coordinates in a file
src/files/pos.dat with the an x and y number on each line, except
for the first line which contains the value of s.

First, load s into a float variable and the x and y numbers into
two arrays and draw a straight line between the points (i.e., plot the y
coordinates versus the x coordinates).

The next task is to compute and plot the velocity of the movements.
If x(t) and y(t) are the coordinates of the positions as a function of
time, we have that the velocity in x direction is vx(t) = dx/dt, and the
velocity in y direction is vy = dy/dt. Since x and y are only known for
some discrete times, tk = ks, k = 0, . . . , n− 1, we must use numerical
differentiation. A simple (forward) formula is

vx(tk) ≈
x(tk+1)− x(tk)

s
, vy(tk) ≈

y(tk+1)− y(tk)

s
,

k = 0, . . . , n− 2.

Compute arrays vx and vy with velocities based on the formulas above
for vx(tk) and vy(tk), k = 0, . . . , n−2. Plot vx versus time and vy versus
time. Name of program file: position2velocity.py. �

Exercise 6.8. Make a dictionary from a table.
The file src/files/constants.txt contains a table of the values and

the dimensions of some fundamental constants from physics. We want
to load this table into a dictionary constants, where the keys are
the names of the constants. For example, constants[’gravitational

constant’] holds the value of the gravitational constant (6.67259 ·
10−11) in Newton’s law of gravitation. Make a function that reads and

332 6 Files, Strings, and Dictionaries

interprets the text in the file, and thereafter returns the dictionary.
Name of program file: fundamental_constants.py. �

Exercise 6.9. Explore syntax differences: lists vs. dictionaries.
Consider this code:

t1 = {}
t1[0] = -5
t1[1] = 10.5

Explain why the lines above work fine while the ones below do not:

t2 = []
t2[0] = -5
t2[1] = 10.5

What must be done in the last code snippet to make it work properly?
Name of program file: list_vs_dict.py. �

Exercise 6.10. Improve the program from Ch. 6.2.5.
Consider the program density.py from Chapter 6.2.5. One problem

we face when implementing this program is that the name of the sub-
stance can contain one or two words, and maybe more words in a more
comprehensive table. The purpose of this exercise is to use string op-
erations to shorten the code and make it more general. Implement the
following two methods in separate functions in the same program, and
control that they give the same result.

1. Let substance consist of all the words but the last, using the join

method in string objects to combine the words.
2. Observe that all the densities start in the same column file and

use substrings to divide line into two parts. (Hint: Remember to
strip the first part such that, e.g., the density of ice is obtained as
densities[’ice’] and not densities[’ice ’].)

Name of program file: density_improved.py. �

Exercise 6.11. Interpret output from a program.
The program src/funcif/lnsum.py produces, among other things,

this output:

epsilon: 1e-04, exact error: 8.18e-04, n=55
epsilon: 1e-06, exact error: 9.02e-06, n=97
epsilon: 1e-08, exact error: 8.70e-08, n=142
epsilon: 1e-10, exact error: 9.20e-10, n=187
epsilon: 1e-12, exact error: 9.31e-12, n=233

Redirect the output to a file (by python lnsum.py > file). Write a
Python program that reads the file and extracts the numbers corre-
sponding to epsilon, exact error, and n. Store the numbers in three
arrays and plot epsilon and the exact error versus n. Use a logarith-
mic scale on the y axis (enabled by the log=’y’ keyword argument to
the plot function). Name of program file: read_error.py. �

6.8 Exercises 333

Exercise 6.12. Make a dictionary.
Based on the stars data in Exercise 3.32, make a dictionary where

the keys contain the names of the stars and the values correspond to
the luminosity. Name of program file: stars_data_dict1.py. �

Exercise 6.13. Make a nested dictionary.
Store the data about stars from Exercise 3.32 in a nested dictionary

such that we can look up the distance, the apparent brightness, and
the luminosity of a star with name N by

stars[N][’distance’]
stars[N][’apparent brightness’]
stars[N][’luminosity’]

Name of program file: stars_data_dict2.py. �

Exercise 6.14. Make a nested dictionary from a file.
The file src/files/human_evolution.txt holds information about

various human species and their hight, weight, and brain volume. Make
a program that reads this file and stores the tabular data in a nested dic-
tionary humans. The keys in humans correspond to the specie name (e.g.,
“homo erectus”), and the values are dictionaries with keys for “height”,
“weight”, “brain volume”, and “when” (the latter for when the specie
lived). For example, humans[’homo neanderthalensis’][’mass’] should
equal ’55-70’. Let the program write out the humans dictionary in a
nice tabular form similar to that in the file. Name of program file:
humans.py. �

Exercise 6.15. Compute the area of a triangle.
The purpose of this exercise is to write an area function as in Exer-

cise 3.9, but now we assume that the vertices of the triangle is stored
in a dictionary and not a list. The keys in the dictionary correspond
to the vertex number (1, 2, or 3) while the values are 2-tuples with
the x and y coordinates of the vertex. For example, in a triangle with
vertices (0, 0), (1, 0), and (0, 2) the vertices argument becomes

{1: (0,0), 2: (1,0), 3: (0,2)}

Name of program file: area_triangle_dict.py. �

Exercise 6.16. Compare data structures for polynomials.
Write a code snippet that uses both a list and a dictionary to repre-

sent the polynomial −1
2 + 2x100. Print the list and the dictionary, and

use them to evaluate the polynomial for x = 1.05 (you can apply the
poly1 and poly2 functions from Chapter 6.2.3). Name of program file:
poly_repr.py. �

Exercise 6.17. Compute the derivative of a polynomial.
A polynomial can be represented by a dictionary as explained in

Chapter 6.2.3. Write a function diff for differentiating such a polyno-
mial. The diff function takes the polynomial as a dictionary argument

334 6 Files, Strings, and Dictionaries

and returns the dictionary representation of the derivative. Recall the
formula for differentiation of polynomials:

d

dx

n∑
j=0

cjx
j =

n∑
j=1

jcjx
j−1. (6.4)

This means that the coefficient of the xj−1 term in the derivative equals
j times the coefficient of xj term of the original polynomial. With p

as the polynomial dictionary and dp as the dictionary representing the
derivative, we then have dp[j-1] = j*p[j] for j running over all keys
in p, except when j equals 0.

Here is an example of the use of the function diff:

>>> p = {0: -3, 3: 2, 5: -1} # -3 + 2*x**3 - x**5
>>> diff(p) # should be 6*x**2 - 5*x**4
{2: 6, 4: -5}

Name of program file: poly_diff.py. �

Exercise 6.18. Generalize the program from Ch. 6.2.7.
The program from Chapter 6.2.7 is specialized for three particular

companies. Suppose you download n files from finance.yahoo.com, all
with monthly stock price data for the same period of time. Also suppose
you name these files company.csv, where company reflects the name of
the company. Modify the program from Chapter 6.2.7 such that it
reads a set of filenames from the command line and creates a plot that
compares the evolution of the corresponding stock prices. Normalize all
prices such that they initially start at a unit value. Name of program
file: stockprices3.py. �

Exercise 6.19. Write function data to file.
We want to dump x and f(x) values to a file, where the x values

appear in the first column and the f(x) values appear in the second.
Choose n equally spaced x values in the interval [a, b]. Provide f , a,
b, n, and the filename as input data on the command line. Use the
StringFunction tool (see Chapters 4.1.4 and 5.5.1) to turn the textual
expression for f into a Python function. (Note that the program from
Exercise 6.1 can be used to read the file generated in the present exercise
into arrays again for visualization of the curve y = f(x).) Name of
program files write_cml_function.py. �

Exercise 6.20. Specify functions on the command line.
Explain what the following two code snippets do and give an example

of how they can be used. Snippet 1:

import sys
from scitools.StringFunction import StringFunction
parameters = {}
for prm in sys.argv[4:]:

6.8 Exercises 335

key, value = prm.split(’=’)
parameters[key] = eval(value)

f = StringFunction(sys.argv[1], independent_variables=sys.argv[2],
**parameters)

var = float(sys.argv[3])
print f(var)

Snippet 2:

import sys
from scitools.StringFunction import StringFunction
f = eval(’StringFunction(sys.argv[1], ’ + \

’independent_variables=sys.argv[2], %s)’ % \
(’, ’.join(sys.argv[4:])))

var = float(sys.argv[3])
print f(var)

Hint: Read about the StringFunction tool in Chapter 4.1.4 and about
a variable number of keyword arguments in Appendix H.5. Name of
program file: cml_functions.py. �

Exercise 6.21. Interpret function specifications.
To specify arbitrary functions f(x1, x2, . . . ; p1, p2, . . .) with indepen-

dent variables x1, x2, . . . and a set of parameters p1, p2, . . . , we allow
the following syntax on the command line or in a file:

<expression> is function of <list1> with parameter <list2>

where <expression> denotes the function formula, <list1> is a comma-
separated list of the independent variables, and <list2> is a comma-
separated list of name = value parameters. The part with parameters

<list2> is omitted if there are no parameters. The names of the in-
dependent variables and the parameters can be chosen freely as long
as the names can be used as Python variables. Here are four differ-
ent examples of what we can specify on the command line using this
syntax:

sin(x) is a function of x
sin(a*y) is a function of y with parameter a=2
sin(a*x-phi) is a function of x with parameter a=3, phi=-pi
exp(-a*x)*cos(w*t) is a function of t with parameter a=1,w=pi,x=2

Create a Python function that takes such function specifications as
input and returns an appropriate StringFunction object. This object
must be created from the function expression and the list of indepen-
dent variables and parameters. For example, the last function specifi-
cation above leads to the following StringFunction creation:

f = StringFunction(’exp(-a*x)*sin(k*x-w*t)’,
independent_variables=[’t’],
a=1, w=pi, x=2)

Hint: Use string operations to extract the various parts of the string.
For example, the expression can be split out by calling split(’is a

function’). Typically, you need to extract <expression>, <list1>, and
<list2>, and create a string like

336 6 Files, Strings, and Dictionaries

StringFunction(<expression>, independent_variables=[<list1>],
<list2>)

and sending it to eval to create the object. Name of program file:
text2func.py. �

Exercise 6.22. Compare average temperatures in cities.
The tarfile src/misc/city_temp.tar.gz contains a set of files with

temperature data for a large number of cities around the world. The
files are in text format with four columns, containing the month num-
ber, the date, the year, and the temperature, respectively. Missing tem-
perature observations are represented by the value −99. The mapping
between the names of the text files and the names of the cities are
defined in an HTML file citylistWorld.htm.

First, write a function that can read the citylistWorld.htm file and
create a dictionary with mapping between city and filenames. Second,
write a function that takes this dictionary and a city name as input,
opens the corresponding text file, and loads the data into an appropri-
ate data structure (dictionary of arrays and city name is a suggestion).
Third, write a function that can take a number of such data structures
and the corresponding city names to create a plot of the temperatures
over a certain time period.

Name of program file: temperature_data.py. �

Exercise 6.23. Try Word or OpenOffice to write a program.
The purpose of this exercise is to tell you how hard it may be to

write Python programs in the standard programs that most people use
for writing text.

Type the following one-line program in either Microsoft Word or
OpenOffice:

print "Hello, World!"

Both Word and OpenOffice are so “smart” that they automatically edit
“print” to “Print” since a sentence should always start with a capital.
This is just an example that word processors are made for writing
documents, not computer programs.

Save the program as a .doc (Word) or .odt (OpenOffice) file. Now
try to run this file as a Python program. You will get a message

SyntaxError: Non-ASCII character

Explain why you get this error.
Then save the program as a .txt file. Run this file as a Python

program. It may work well if you wrote the program text in Microsoft
Word, but with OpenOffice there may still be strange characters in the
file. Use a text editor to view the exact contents of the file. Name of
program file: office.py. �

6.8 Exercises 337

Exercise 6.24. Evaluate objects in a boolean context.
Writing if a: or while a: in a program, where a is some object,

requires evaluation of a in a boolean context. To see the value of an
object a in a boolean context, one can call bool(a). Try the following
program to learn what values of what objects that are True or False in
a boolean context:

objects = [
’""’, # empty string
’"string"’, # non-empty string
’[]’, # empty list
’[0]’, # list with one element
’()’, # empty tuple
’(0,)’, # tuple with one element
’{}’, # empty dict
’{0:0}’, # dict with one element
’0’, # int zero
’0.0’, # float zero
’0j’, # complex zero
’10’, # int 10
’10.’, # float 10
’10j’ # imaginary 10
’zeros(0)’, # empty array
’zeros(1)’, # array with one element (zero)
’zeros(1)+10’, # array with one element (10)
’zeros(2)’, # array with two elements (watch out!)
]

for element in objects:
object = eval(element)
print ’object = %s; if object: is %s’ % \

(element, bool(object))

Write down a rule for the family of Python objects that evaluate to
False in a boolean context. �

Exercise 6.25. Fit a polynomial to experimental data.
Suppose we have measured the oscillation period T of a simple pen-

dulum with a mass m at the end of a massless rod of length L. We have
varied L and recorded the corresponding T value. The measurements
are found in a file src/files/pendulum.dat, containing two columns.
The first column contains L values and the second column has the
corresponding T values.

Load the L and T values into two arrays. Plot L versus T using
circles for the data points. We shall assume that L as a function of T is
a polynomial. Use the NumPy utilities polyfit and poly1d, as explained
in Exercise 6.4, and experiment with fitting polynomials of degree 1, 2,
and 3. Visualize the polynomial curves together with the experimental
data. Which polynomial fits the measured data best? Name of program
file: fit_pendulum_data.py. �

Exercise 6.26. Generate an HTML report with figures.
The goal of this exercise is to let a program write a report in HTML

format containing the solution to Exercise 5.22 on page 249. First,

338 6 Files, Strings, and Dictionaries

include the program from that Exercises, with additional explaining
text if necessary. Program code can be placed inside <pre> and </pre>

tags. Second, insert three plots of the f(x, t) function for three different
t values (find suitable t values that illustrate the displacement of the
wave packet). Third, add an animated GIF file with the movie of f(x, t).
Insert headlines (<h1> tags) wherever appropriate. Name of program
file: wavepacket_report.py. �

Exercise 6.27. Extract information from a weather page.
Find the Yahoo! page with the weather forecast for your favorite

city. Study the HTML source and write a program that downloads
the HTML page, extracts forecast information such as weather type,
temperature, etc. Write out this information in a compact style on the
screen. This exercise is a starter for the more useful Exercise 6.28 for
comparing alternative forecasts in a compact fashion. Name of program
file: Yahoo_weather.py. �

Exercise 6.28. Compare alternative weather forecasts.
For each of a collection of weather forecast sites, say

http://weather.yahoo.com
http://www.weather.com
http://www.weatherchannel.com
http://weather.cnn.com
http://yr.no

find the pages corresponding to your favorite location. Study the
HTML sources and write a function for each HTML page that down-
loads the web page and extracts basic forecast information: date,
weather type (name of symbol), and temperature. Write out a com-
parison of different forecasts on the screen. Name of program file:
weather_forecast_comparison1.py. �

Exercise 6.29. Improve the output in Exercise 6.28.
Pure text on the screen was suggested as output in Exercise 6.28.

A useful alternative is to construct an HTML page with compact
forecast information, where also weather symbols (images) are dis-
played. Extend each of the functions in Exercise 6.28 to also ex-
tract the filename containing the weather symbol(s) and write the
code for presenting the comparison in HTML. Name of program file:
weather_forecast_comparison2.py. �

Exercise 6.30. Allow different types for a function argument.
Consider the family of find_consensus_v* functions from Chap-

ter 6.6.2. The different versions work on different representations of
the frequency matrix. Make a unified find_consensus function which
accepts different data structures for the frequency_matrix. Test on the
type of data structure and perform the necessary actions. Name of
program file: find_consensus.py. �

6.8 Exercises 339

Exercise 6.31. Make a function more robust.
Consider the function get_base_counts(dna) (from Chapter 6.6.3),

which counts how many times A, C, G, and T appears in the string dna:
Unfortunately, this function crashes if other letters appear in dna.

Write an enhanced function get_base_counts2 which solves this prob-
lem. Test it on a string like ’ADLSTTLLD’. Name of program file:
get_base_counts2.py. �

def get_base_counts(dna):
counts = {’A’: 0, ’T’: 0, ’G’: 0, ’C’: 0}
for base in dna:

counts[base] += 1
return counts

Exercise 6.32. Find proportion of bases inside/outside exons.
Consider the lactase gene as described in Chapters 6.6.4 and 6.6.5.

What is the proportion of base A inside and outside exons of the lac-
tase gene? Write a function get_exons, which returns all the substrings
of the exon regions concatenated, and a function get_introns, which
returns all the substrings between the exon regions concatenated. The
function get_base_frequencies from Chapter 6.6.3 can then be used
to analyze the frequencies of bases A, C, G, and T in the two strings.
Name of program file: prop_A_exons.py. �

http://www.springer.com
http://www.springer.com/mycopy

Introduction to Classes 7

A class packs a set of data (variables) together with a set of functions
operating on the data. The goal is to achieve more modular code by
grouping data and functions into manageable (often small) units. Most
of the mathematical computations in this book can easily be coded
without using classes, but in many problems, classes enable either more
elegant solutions or code that is easier to extend at a later stage. In the
non-mathematical world, where there are no mathematical concepts
and associated algorithms to help structure the problem solving, soft-
ware development can be very challenging. Classes may then improve
the understanding of the problem and contribute to simplify the mod-
eling of data and actions in programs. As a consequence, almost all
large software systems being developed in the world today are heavily
based on classes.

Programming with classes is offered by most modern programming
languages, also Python. In fact, Python employs classes to a very large
extent, but one can – as we have seen in previous chapters – use the
language for lots of purposes without knowing what a class is. How-
ever, one will frequently encounter the class concept when searching
books or the World Wide Web for Python programming information.
And more important, classes often provide better solutions to program-
ming problems. This chapter therefore gives an introduction to the class
concept with emphasis on applications to numerical computing. More
advanced use of classes, including inheritance and object orientation,
is the subject of Chapter 9.

The folder src/class contains all the program examples from the
present chapter.

H.P. Langtangen, A Primer on Scientific Programming with Python,
Texts in Computational Science and Engineering 6,

DOI 10.1007/978-3-642-30293-0 7, c© Springer-Verlag Berlin Heidelberg 2012

341

http://dx.doi.org/10.1007/978-3-642-30293-0_7

342 7 Introduction to Classes

7.1 Simple Function Classes

Classes can be used for many things in scientific computations, but one
of the most frequent programming tasks is to represent mathematical
functions which have a set of parameters in addition to one or more
independent variables. Chapter 7.1.1 explains why such mathematical
functions pose difficulties for programmers, and Chapter 7.1.2 shows
how the class idea meets these difficulties. Chapters 7.1.3 presents an-
other example where a class represents a mathematical function. More
advanced material about classes, which for some readers may clarify
the ideas, but which can also be skipped in a first reading, appears in
Chapters 7.1.4 and Chapter 7.1.5.

7.1.1 Problem: Functions with Parameters

To motivate for the class concept, we will look at functions with pa-
rameters. The y(t) = v0t− 1

2gt
2 function on page 1 is such a function.

Conceptually, in physics, y is a function of t, but y also depends on two
other parameters, v0 and g, although it is not natural to view y as a
function of these parameters. We may write y(t; v0, g) to indicate that
t is the independent variable, while v0 and g are parameters. Strictly
speaking, g is a fixed parameter1, so only v0 and t can be arbitrarily
chosen in the formula. It would then be better to write y(t; v0).

In the general case, we may have a function of x that has n param-
eters p1, . . . , pn: f(x; p1, . . . , pn). One example could be

g(x;A, a) = Ae−ax.

How should we implement such functions? One obvious way is to
have the independent variable and the parameters as arguments:

def y(t, v0):
g = 9.81
return v0*t - 0.5*g*t**2

def g(x, a, A):
return A*exp(-a*x)

Problem. There is one major problem with this solution. Many soft-
ware tools we can use for mathematical operations on functions assume
that a function of one variable has only one argument in the computer
representation of the function. For example, we may have a tool for
differentiating a function f(x) at a point x, using the approximation

f ′(x) ≈ f(x+ h)− f(x)

h
(7.1)

1 As long as we are on the surface of the earth, g can be considered fixed, but in general g

depends on the distance to the center of the earth.

7.1 Simple Function Classes 343

coded as

def diff(f, x, h=1E-5):
return (f(x+h) - f(x))/h

The diff function works with any function f that takes one argument:

def h(t):
return t**4 + 4*t

dh = diff(h, 0.1)

from math import sin, pi
x = 2*pi
dsin = diff(sin, x, h=1E-6)

Unfortunately, diff will not work with our y(t, v0) function. Calling
diff(y, t) leads to an error inside the diff function, because it tries to
call our y function with only one argument while the y function requires
two.

Writing an alternative diff function for f functions having two ar-
guments is a bad remedy as it restricts the set of admissible f functions
to the very special case of a function with one independent variable and
one parameter. A fundamental principle in computer programming is
to strive for software that is as general and widely applicable as pos-
sible. In the present case, it means that the diff function should be
applicable to all functions f of one variable, and letting f take one
argument is then the natural decision to make.

The mismatch of function arguments, as outlined above, is a major
problem because a lot of software libraries are available for operations
on mathematical functions of one variable: integration, differentiation,
solving f(x) = 0, finding extrema, etc. (see for instance Chapter 4.6.2
and Appendices A.1.10, B, C, and E). All these libraries will try to call
the mathematical function we provide with only one argument.

A Bad Solution: Global Variables. The requirement is thus to define
Python implementations of mathematical functions of one variable with
one argument, the independent variable. The two examples above must
then be implemented as

def y(t):
g = 9.81
return v0*t - 0.5*g*t**2

def g(t):
return A*exp(-a*x)

These functions work only if v0, A, and a are global variables, initialized
before one attempts to call the functions. Here are two sample calls
where diff differentiates y and g:

344 7 Introduction to Classes

v0 = 3
dy = diff(y, 1)

A = 1; a = 0.1
dg = diff(g, 1.5)

The use of global variables is in general considered bad program-
ming. Why global variables are problematic in the present case can be
illustrated when there is need to work with several versions of a func-
tion. Suppose we want to work with two versions of y(t; v0), one with
v0 = 1 and one with v0 = 5. Every time we call y we must remember
which version of the function we work with, and set v0 accordingly
prior to the call:

v0 = 1; r1 = y(t)
v0 = 5; r2 = y(t)

Another problem is that variables with simple names like v0, a, and
A may easily be used as global variables in other parts of the program.
These parts may change our v0 in a context different from the y func-
tion, but the change affects the correctness of the y function. In such
a case, we say that changing v0 has side effects, i.e., the change affects
other parts of the program in an unintentional way. This is one reason
why a golden rule of programming tells us to limit the use of global
variables as much as possible.

Another solution to the problem of needing two v0 parameters could
be to introduce two y functions, each with a distinct v0 parameter:

def y1(t):
g = 9.81
return v0_1*t - 0.5*g*t**2

def y2(t):
g = 9.81
return v0_2*t - 0.5*g*t**2

Now we need to initialize v0_1 and v0_2 once, and then we can work
with y1 and y2. However, if we need 100 v0 parameters, we need 100
functions. This is tedious to code, error prone, difficult to administer,
and simply a really bad solution to a programming problem.

So, is there a good remedy? The answer is yes: The class concept
solves all the problems described above!

7.1.2 Representing a Function as a Class

A class contains a set of variables (data) and a set of functions, held
together as one unit. The variables are visible in all the functions in the
class. That is, we can view the variables as “global” in these functions.
These characteristics also apply to modules, and modules can be used
to obtain many of the same advantages as classes offer (see comments

7.1 Simple Function Classes 345

in Chapter 7.1.5). However, classes are technically very different from
modules. You can also make many copies of a class, while there can be
only one copy of a module. When you master both modules and classes,
you will clearly see the similarities and differences. Now we continue
with a specific example of a class.

Consider the function y(t; v0) = v0t− 1
2gt

2. We may say that v0 and
g, represented by the variables v0 and g, constitute the data. A Python
function, say value(t), is needed to compute the value of y(t; v0) and
this function must have access to the data v0 and g, while t is an
argument.

A programmer experienced with classes will then suggest to collect
the data v0 and g, and the function value(t), together as a class. In
addition, a class usually has another function, called constructor for
initializing the data. The constructor is always named __init__. Every
class must have a name, often starting with a capital, so we choose Y

as the name since the class represents a mathematical function with
name y. Figure 7.1 sketches the contents of class Y as a so-called UML
diagram, here created with Lumpy (from Appendix H.3) with aid of the
little program class_Y_v1_UML.py. The UML diagram has two “boxes”,
one where the functions are listed, and one where the variables are
listed. Our next step is to implement this class in Python.

Fig. 7.1 UML diagram with function and data in the simple class Y for representing a
mathematical function y(t; v0).

Implementation. The complete code for our class Y looks as follows in
Python:

class Y:
def __init__(self, v0):

self.v0 = v0
self.g = 9.81

def value(self, t):
return self.v0*t - 0.5*self.g*t**2

A puzzlement for newcomers to Python classes is the self parameter,
which may take some efforts and time to fully understand.

346 7 Introduction to Classes

Usage and Dissection. Before we dig into what each in the class im-
plementation means, we start by showing how the class can be used to
compute values of the mathematical function y(t; v0).

A class creates a new data type, here of name Y, so when we use
the class to make objects, those objects are of type Y2. An object of a
user-defined class (like Y) is usually called an instance. We need such
an instance in order to use the data in the class and call the value

function. The following statement constructs an instance bound to the
variable name y:

y = Y(3)

Seemingly, we call the class Y as if it were a function. Actually, Y(3)
is automatically translated by Python to a call to the constructor
__init__ in class Y. The arguments in the call, here only the num-
ber 3, are always passed on as arguments to __init__ after the self

argument. That is, v0 gets the value 3 and self is just dropped in the
call. This may be confusing, but it is a rule that the self argument is
never used in calls to functions in classes.

With the instance y, we can compute the value y(t = 0.1; v0 = 3) by
the statement

v = y.value(0.1)

Here also, the self argument is dropped in the call to value. To access
functions and variables in a class, we must prefix the function and vari-
able names by the name of the instance and a dot: the value function is
reached as y.value, and the variables are reached as y.v0 and y.g. We
can, for example, print the value of v0 in the instance y by writing

print y.v0

The output will in this case be 3.
We have already introduced the term “instance” for the object of

a class. Functions in classes are commonly called methods , and vari-
ables (data) in classes are called attributes . From now on we will use
this terminology. In our sample class Y we have two methods, __init__
and value, and two attributes, v0 and g. The names of methods and
attributes can be chosen freely, just as names of ordinary Python func-
tions and variables. However, the constructor must have the name
__init__, otherwise it is not automatically called when we create new
instances.

You can do whatever you want in whatever method, but it is a
convention to use the constructor for initializing the variables in the
class such that the class is “ready for use”.

2 All familiar Python objects, like lists, tuples, strings, floating-point numbers, integers,

etc., are in fact built-in Python classes, with names list, tuple, str, float, int, etc.

7.1 Simple Function Classes 347

The selfVariable. Now we will provide some more explanation of the
self parameter and how the class methods work. Inside the constructor
__init__, the argument self is a variable holding the new instance to
be constructed. When we write

self.v0 = v0
self.g = 9.81

we define two new attributes in this instance. The self parameter is
invisibly returned to the calling code. We can imagine that Python
translates y = Y(3) to

Y.__init__(y, 3)

so when we do a self.v0 = v0 in the constructor, we actually initialize
y.v0. The prefix with Y. is necessary to reach a class method (just like
prefixing a function in a module with the module name, e.g., math.exp).
If we prefix with Y., we need to explicitly feed in an instance for the self
argument, like y in the code line above, but if we prefix with y. (the
instance name) the self argument is dropped. It is the latter “instance
name prefix” which we shall use when computing with classes.

Let us look at a call to the value method to see a similar use of the
self argument. When we write

value = y.value(0.1)

Python translates this to a call

value = Y.value(y, 0.1)

such that the self argument in the value method becomes the y in-
stance. In the expression inside the value method,

self.v0*t - 0.5*self.g*t**2

self is y so this is the same as

y.v0*t - 0.5*y.g*t**2

The rules regarding “self” are listed below:

• Any class method must have self as first argument3.
• self represents an (arbitrary) instance of the class.
• To access another class method or a class attribute, inside class
methods, we must prefix with self, as in self.name, where name is
the name of the attribute or the other method.

• self is dropped as argument in calls to class methods.

3 The name can be any valid variable name, but the name self is a widely established

convention in Python.

348 7 Introduction to Classes

It takes some time to understand the self variable, but more examples
and hands-on experience with class programming will help, so just be
patient and continue reading.

Extension of the Class. We can have as many attributes and methods
as we like in a class, so let us add a new method to class Y. This
method is called formula and prints a string containing the formula of
the mathematical function y. After this formula, we provide the value
of v0. The string can then be constructed as

’v0*t - 0.5*g*t**2; v0=%g’ % self.v0

where self is an instance of class Y. A call of formula does not need
any arguments:

print y.formula()

should be enough to create, return, and print the string. However, even
if the formulamethod does not need any arguments, it must have a self

argument, which is left out in the call but needed inside the method to
access the attributes. The implementation of the method is therefore

def formula(self):
return ’v0*t - 0.5*g*t**2; v0=%g’ % self.v0

For completeness, the whole class now reads

class Y:
def __init__(self, v0):

self.v0 = v0
self.g = 9.81

def value(self, t):
return self.v0*t - 0.5*self.g*t**2

def formula(self):
return ’v0*t - 0.5*g*t**2; v0=%g’ % self.v0

Example on use may be

y = Y(5)
t = 0.2
v = y.value(t)
print ’y(t=%g; v0=%g) = %g’ % (t, y.v0, v)
print y.formula()

with the output

y(t=0.2; v0=5) = 0.8038
v0*t - 0.5*g*t**2; v0=5

Remark. A common mistake done by newcomers to the class construc-
tion is to place the code that applies the class at the same indentation
as the class methods. This is illegal. Only method definitions and as-
signments to so-called static attributes (Chapter 7.6) can appear in

7.1 Simple Function Classes 349

the indented block under the class headline. Ordinary attribute as-
signment must be done inside methods. The main program using the
class must appear with the same indent as the class headline.

Using Methods as Ordinary Functions. We may create several y func-
tions with different values of v0:

y1 = Y(1)
y2 = Y(1.5)
y3 = Y(-3)

We can treat y1.value, y2.value, and y3.value as ordinary Python
functions of t, and then pass them on to any Python function that ex-
pects a function of one variable. In particular, we can send the functions
to the diff(f, x) function from page 343:

dy1dt = diff(y1.value, 0.1)
dy2dt = diff(y2.value, 0.1)
dy3dt = diff(y3.value, 0.2)

Inside the diff(f, x) function, the argument f now behaves as a func-
tion of one variable that automatically carries with it two variables v0
and g. When f refers to (e.g.) y3.value, Python actually knows that
f(x) means y3.value(x), and inside the y3.value method self is y3,
and we have access to y3.v0 and y3.g.

Doc Strings. A function may have a doc string right after the function
definition, see Chapter 3.1.7. The aim of the doc string is to explain
the purpose of the function and, for instance, what the arguments and
return values are. A class can also have a doc string, it is just the first
string that appears right after the class headline. The convention is to
enclose the doc string in triple double quotes """:

class Y:
"""The vertical motion of a ball."""

def __init__(self, v0):
...

More comprehensive information can include the methods and how the
class is used in an interactive session:

class Y:
"""
Mathematical function for the vertical motion of a ball.

Methods:
constructor(v0): set initial velocity v0.
value(t): compute the height as function of t.
formula(): print out the formula for the height.

Attributes:
v0: the initial velocity of the ball (time 0).
g: acceleration of gravity (fixed).

350 7 Introduction to Classes

Usage:
>>> y = Y(3)
>>> position1 = y.value(0.1)
>>> position2 = y.value(0.3)
>>> print y.formula()
v0*t - 0.5*g*t**2; v0=3
"""

7.1.3 Another Function Class Example

Let us apply the ideas from the Y class to the v(r) function specified
in (5.23) on page 252. We may write this function as v(r;β, μ0, n,R)
to indicate that there is one primary independent variable (r) and four
physical parameters (β, μ0, n, and R). The class typically holds the
physical parameters as variables and provides an value(r) method for
computing the v function:

class VelocityProfile:
def __init__(self, beta, mu0, n, R):

self.beta, self.mu0, self.n, self.R = beta, mu0, n, R

def value(self, r):
beta, mu0, n, R = self.beta, self.mu0, self.n, self.R
n = float(n) # ensure float divisions
v = (beta/(2.0*mu0))**(1/n)*(n/(n+1))*\

(R**(1+1/n) - r**(1+1/n))
return v

There is seemingly one new thing here in that we initialize several
variables on the same line4:

self.beta, self.mu0, self.n, self.R = beta, mu0, n, R

This is perfectly valid Python code and equivalent to the multi-line
code

self.beta = beta
self.mu0 = mu0
self.n = n
self.R = R

In the value method it is convenient to avoid the self. prefix in the
mathematical formulas and instead introduce the local short names
beta, mu0, n, and R. This is in general a good idea, because it makes it
easier to read the implementation of the formula and check its correct-
ness.

Here is one possible application of class VelocityProfile:

4 The comma-separated list of variables on the right-hand side forms a tuple so this as-
signment is just the usual construction where a set of variables on the left-hand side is set

equal to a list or tuple on the right-hand side, element by element. See page 57.

7.1 Simple Function Classes 351

v1 = VelocityProfile(R=1, beta=0.06, mu0=0.02, n=0.1)
Plot v1 versus r
from scitools.std import *
r = linspace(0, 1, 50)
v = v1.value(r)
plot(r, v, label=(’r’, ’v’), title=’Velocity profile’)

Remark. Another solution to the problem of sending functions with
parameters to a general library function such as diff is provided in
Appendix H.5. The remedy there is to transfer the parameters as ar-
guments “through” the diff function. This can be done in a general
way as explained in that appendix.

7.1.4 Alternative Function Class Implementations

To illustrate class programming further, we will now realize class Y from
Chapter 7.1.2 in a different way. You may consider this section as ad-
vanced and skip it, but for some readers the material might improve the
understanding of class Y and give some insight into class programming
in general.

It is a good habit always to have a constructor in a class and to
initialize class attributes here, but this is not a requirement. Let us
drop the constructor and make v0 an optional argument to the value

method. If the user does not provide v0 in the call to value, we use a v0

value that must have been provided in an earlier call and stored as an
attribute self.v0. We can recognize if the user provides v0 as argument
or not by using None as default value for the keyword argument and
then test if v0 is None.

Our alternative implementation of class Y, named Y2, now reads

class Y2:
def value(self, t, v0=None):

if v0 is not None:
self.v0 = v0

g = 9.81
return self.v0*t - 0.5*g*t**2

This time the class has only one method and one attribute as we
skipped the constructor and let g be a local variable in the value

method.
But if there is no constructor, how is an instance created? Python

fortunately creates an empty constructor. This allows us to write

y = Y2()

to make an instance y. Since nothing happens in the automatically gen-
erated empty constructor, y has no attributes at this stage. Writing

352 7 Introduction to Classes

print y.v0

therefore leads to the exception

AttributeError: Y2 instance has no attribute ’v0’

By calling

v = y.value(0.1, 5)

we create an attribute self.v0 inside the value method. In general, we
can create any attribute name in any method by just assigning a value
to self.name. Now trying a

print y.v0

will print 5. In a new call,

v = y.value(0.2)

the previous v0 value (5) is used inside value as self.v0 unless a v0

argument is specified in the call.
The previous implementation is not foolproof if we fail to initialize

v0. For example, the code

y = Y2()
v = y.value(0.1)

will terminate in the value method with the exception

AttributeError: Y2 instance has no attribute ’v0’

As usual, it is better to notify the user with a more informative message.
To check if we have an attribute v0, we can use the Python function
hasattr. Calling hasattr(self, ’v0’) returns True only if the instance
self has an attribute with name ’v0’. An improved value method now
reads

def value(self, t, v0=None):
if v0 is not None:

self.v0 = v0
if not hasattr(self, ’v0’):

print ’You cannot call value(t) without first ’\
’calling value(t,v0) to set v0’

return None
g = 9.81
return self.v0*t - 0.5*g*t**2

Alternatively, we can try to access self.v0 in a try-except block, and
perhaps raise an exception TypeError (which is what Python raises if
there are not enough arguments to a function or method):

7.1 Simple Function Classes 353

def value(self, t, v0=None):
if v0 is not None:

self.v0 = v0
g = 9.81
try:

value = self.v0*t - 0.5*g*t**2
except AttributeError:

msg = ’You cannot call value(t) without first ’
’calling value(t,v0) to set v0’

raise TypeError(msg)
return value

Note that Python detects an AttributeError, but from a user’s point
of view, not enough parameters were supplied in the call so a TypeError

is more appropriate to communicate back to the calling code.
We think class Y is a better implementation than class Y2, because the

former is simpler. As already mentioned, it is a good habit to include a
constructor and set data here rather than “recording data on the fly” as
we try to in class Y2. The whole purpose of class Y2 is just to show that
Python provides great flexibility with respect to defining attributes,
and that there are no requirements to what a class must contain.

7.1.5 Making Classes Without the Class Construct

Newcomers to the class concept often have a hard time understand-
ing what this concept is about. The present section tries to explain
in more detail how we can introduce classes without having the class
construct in the computer language. This information may or may
not increase your understanding of classes. If not, programming with
classes will definitely increase your understanding with time, so there
is no reason to worry. In fact, you may safely jump to Chapter 7.3 as
there are no important concepts in this section that later sections build
upon.

A class contains a collection of variables (data) and a collection of
methods (functions). The collection of variables is unique to each in-
stance of the class. That is, if we make ten instances, each of them
has its own set of variables. These variables can be thought of as a
dictionary with keys equal to the variable names. Each instance then
has its own dictionary, and we may roughly view the instance as this
dictionary5.

On the other hand, the methods are shared among the instances. We
may think of a method in a class as a standard global function that
takes an instance in the form of a dictionary as first argument. The
method has then access to the variables in the instance (dictionary)
provided in the call. For the Y class from Chapter 7.1.2 and an instance

5 The instance can also contain static class attributes (Chapter 7.6), but these are to be

viewed as global variables in the present context.

354 7 Introduction to Classes

y, the methods are ordinary functions with the following names and
arguments:

Y.value(y, t)
Y.formula(y)

The class acts as a namespace, meaning that all functions must be
prefixed by the namespace name, here Y. Two different classes, say
C1 and C2, may have functions with the same name, say value, but
when the value functions belong to different namespaces, their names
C1.value and C2.value become distinct. Modules are also namespaces
for the functions and variables in them (think of math.sin, cmath.sin,
numpy.sin).

The only peculiar thing with the class construct in Python is that it
allows us to use an alternative syntax for method calls:

y.value(t)
y.formula()

This syntax coincides with the traditional syntax of calling class meth-
ods and providing arguments, as found in other computer languages,
such as Java, C#, C++, Simula, and Smalltalk. The dot notation is
also used to access variables in an instance such that we inside a method
can write self.v0 instead of self[’v0’] (self refers to y through the
function call).

We could easily implement a simple version of the class concept
without having a class construction in the language. All we need is
a dictionary type and ordinary functions. The dictionary acts as the
instance, and methods are functions that take this dictionary as the
first argument such that the function has access to all the variables in
the instance. Our Y class could now be implemented as

def value(self, t):
return self[’v0’]*t - 0.5*self[’g’]*t**2

def formula(self):
print ’v0*t - 0.5*g*t**2; v0=%g’ % self[’v0’]

The two functions are placed in a module called Y. The usage goes as
follows:

import Y
y = {’v0’: 4, ’g’: 9.81} # make an "instance"
y1 = Y.value(y, t)

We have no constructor since the initialization of the variables is done
when declaring the dictionary y, but we could well include some ini-
tialization function in the Y module

7.1 Simple Function Classes 355

def init(v0):
return {’v0’: v0, ’g’: 9.81}

The usage is now slightly different:

import Y
y = Y.init(4) # make an "instance"
y1 = Y.value(y, t)

This way of implementing classes with the aid of a dictionary and a
set of ordinary functions actually forms the basis for class implemen-
tations in many languages. Python and Perl even have a syntax that
demonstrates this type of implementation. In fact, every class instance
in Python has a dictionary __dict__ as attribute, which holds all the
variables in the instance. Here is a demo that proves the existence of
this dictionary in class Y:

>>> y = Y(1.2)
>>> print y.__dict__
{’v0’: 1.2, ’g’: 9.8100000000000005}

To summarize: A Python class can be thought of as some variables
collected in a dictionary, and a set of functions where this dictionary
is automatically provided as first argument such that functions always
have full access to the class variables.

First Remark. We have in this section provided a view of classes from
a technical point of view. Others may view a class as a way of modeling
the world in terms of data and operations on data. However, in sciences
that employ the language of mathematics, the modeling of the world
is usually done by mathematics, and the mathematical structures pro-
vide understanding of the problem and structure of programs. When
appropriate, mathematical structures can conveniently be mapped on
to classes in programs to make the software simpler and more flexible.

Second Remark. The view of classes in this section neglects very im-
portant topics such as inheritance and dynamic binding, which we treat
in Chapter 9. For more completeness of the present section, we briefly
describe how our combination of dictionaries and global functions can
deal with inheritance and dynamic binding (but this will not make
sense unless you know what inheritance is).

Data inheritance can be obtained by letting a subclass dictionary do
an update call with the superclass dictionary as argument. In this way
all data in the superclass are also available in the subclass dictionary.
Dynamic binding of methods is more complicated, but one can think of
checking if the method is in the subclass module (using hasattr), and
if not, one proceeds with checking super class modules until a version
of the method is found.

356 7 Introduction to Classes

7.2 More Examples on Classes

The use of classes to solve problems from mathematical and physical
sciences may not be so obvious. On the other hand, in many adminis-
trative programs for managing interactions between objects in the real
world the objects themselves are natural candidates for being modeled
by classes. Below we give some examples on what classes can be used
to model.

7.2.1 Bank Accounts

The concept of a bank account in a program is a good candidate for
a class. The account has some data, typically the name of the account
holder, the account number, and the current balance. Three things we
can do with an account is withdraw money, put money into the account,
and print out the data of the account. These actions are modeled by
methods. With a class we can pack the data and actions together into
a new data type so that one account corresponds to one variable in a
program.

Class Account can be implemented as follows:

class Account:
def __init__(self, name, account_number, initial_amount):

self.name = name
self.no = account_number
self.balance = initial_amount

def deposit(self, amount):
self.balance += amount

def withdraw(self, amount):
self.balance -= amount

def dump(self):
s = ’%s, %s, balance: %s’ % \

(self.name, self.no, self.balance)
print s

Here is a simple test of how class Account can be used:

>>> from classes import Account
>>> a1 = Account(’John Olsson’, ’19371554951’, 20000)
>>> a2 = Account(’Liz Olsson’, ’19371564761’, 20000)
>>> a1.deposit(1000)
>>> a1.withdraw(4000)
>>> a2.withdraw(10500)
>>> a1.withdraw(3500)
>>> print "a1’s balance:", a1.balance
a1’s balance: 13500
>>> a1.dump()
John Olsson, 19371554951, balance: 13500
>>> a2.dump()
Liz Olsson, 19371564761, balance: 9500

The author of this class does not want users of the class to operate
on the attributes directly and thereby change the name, the account

7.2 More Examples on Classes 357

number, or the balance. The intention is that users of the class should
only call the constructor, the deposit, withdraw, and dumpmethods, and
(if desired) inspect the balance attribute, but never change it. Other
languages with class support usually have special keywords that can
restrict access to class attributes and methods, but Python does not.
Either the author of a Python class has to rely on correct usage, or a
special convention can be used: Any name starting with an underscore
represents an attribute that should never be touched or a method that
should never be called. One refers to names starting with an underscore
as protected names. These can be freely used inside methods in the
class, but not outside.

In class Account, it is natural to protect access to the name, no,
and balance attributes by prefixing these names by an underscore.
For reading only of the balance attribute, we provide a new method
get_balance. The user of the class should now only call the methods in
the class and not access any attributes.

The new “protected” version of class Account, called AccountP, reads

class AccountP:
def __init__(self, name, account_number, initial_amount):

self._name = name
self._no = account_number
self._balance = initial_amount

def deposit(self, amount):
self._balance += amount

def withdraw(self, amount):
self._balance -= amount

def get_balance(self):
return self._balance

def dump(self):
s = ’%s, %s, balance: %s’ % \

(self._name, self._no, self._balance)
print s

We can technically access the attributes, but we then break the
convention that names starting with an underscore should never be
touched outside the class. Here is class AccountP in action:

>>> a1 = AccountP(’John Olsson’, ’19371554951’, 20000)
>>> a1.deposit(1000)
>>> a1.withdraw(4000)
>>> a1.withdraw(3500)
>>> a1.dump()
John Olsson, 19371554951, balance: 13500
>>> print a1._balance # it works, but a convention is broken
13500
print a1.get_balance() # correct way of viewing the balance
13500
>>> a1._no = ’19371554955’ # this is a "serious crime"

Python has a special construct, called properties, that can be used to
protect attributes from being changed. This is very useful, but the

358 7 Introduction to Classes

author considers properties a bit too complicated for this introductory
book.

7.2.2 Phone Book

You are probably familiar with the phone book on your mobile phone.
The phone book contains a list of persons. For each person you can
record the name, telephone numbers, email address, and perhaps other
relevant data. A natural way of representing such personal data in a
program is to create a class, say class Person. The attributes of the class
holds data like the name, mobile phone number, office phone number,
private phone number, and email address. The constructor may initial-
ize some of the data about a person. Additional data can be specified
later by calling methods in the class. One method can print the data.
Other methods can register additional telephone numbers and an email
address. In addition we initialize some of the attributes in a construc-
tor method. The attributes that are not initialized when constructing a
Person instance can be added later by calling appropriate methods. For
example, adding an office number is done by calling add_office_number.

Class Person may look as

class Person:
def __init__(self, name,

mobile_phone=None, office_phone=None,
private_phone=None, email=None):

self.name = name
self.mobile = mobile_phone
self.office = office_phone
self.private = private_phone
self.email = email

def add_mobile_phone(self, number):
self.mobile = number

def add_office_phone(self, number):
self.office = number

def add_private_phone(self, number):
self.private = number

def add_email(self, address):
self.email = address

Note the use of None as default value for various attributes: the object
None is commonly used to indicate that a variable or attribute is defined,
but yet not with a sensible value.

A quick demo session of class Person may go as follows:

>>> p1 = Person(’Hans Hanson’,
... office_phone=’767828283’, email=’h@hanshanson.com’)
>>> p2 = Person(’Ole Olsen’, office_phone=’767828292’)
>>> p2.add_email(’olsen@somemail.net’)
>>> phone_book = [p1, p2]

7.2 More Examples on Classes 359

It can be handy to add a method for printing the contents of a Person

instance in a nice fashion:

def dump(self):
s = self.name + ’\n’
if self.mobile is not None:

s += ’mobile phone: %s\n’ % self.mobile
if self.office is not None:

s += ’office phone: %s\n’ % self.office
if self.private is not None:

s += ’private phone: %s\n’ % self.private
if self.email is not None:

s += ’email address: %s\n’ % self.email
print s

With this method we can easily print the phone book:

>>> for person in phone_book:
... person.dump()
...
Hans Hanson
office phone: 767828283
email address: h@hanshanson.com

Ole Olsen
office phone: 767828292
email address: olsen@somemail.net

A phone book can be a list of Person instances, as indicated in
the examples above. However, if we quickly want to look up the phone
numbers or email address for a given name, it would be more convenient
to store the Person instances in a dictionary with the name as key:

>>> phone_book = {’Hanson’: p1, ’Olsen’: p2}
>>> for person in sorted(phone_book): # alphabetic order
... phone_book[person].dump()

The current example of Person objects is extended in Chapter 7.3.5.

7.2.3 A Circle

Geometric figures, such as a circle, are other candidates for classes in a
program. A circle is uniquely defined by its center point (x0, y0) and its
radius R. We can collect these three numbers as attributes in a class.
The values of x0, y0, and R are naturally initialized in the constructor.
Other methods can be area and circumference for calculating the area
πR2 and the circumference 2πR:

class Circle:
def __init__(self, x0, y0, R):

self.x0, self.y0, self.R = x0, y0, R

def area(self):
return pi*self.R**2

def circumference(self):
return 2*pi*self.R

360 7 Introduction to Classes

An example of using class Circle goes as follows:

>>> c = Circle(2, -1, 5)
>>> print ’A circle with radius %g at (%g, %g) has area %g’ % \
... (c.R, c.x0, c.y0, c.area())
A circle with radius 5 at (2, -1) has area 78.5398

The ideas of class Circle can be applied to other geometric objects
as well: rectangles, triangles, ellipses, boxes, spheres, etc. Exercise 7.3
tests if you are able to adapt class Circle to a rectangle and a triangle.

Remark. There are usually many solutions to a programming problem.
Representing a circle is no exception. Instead of using a class, we could
collect x0, y0, and R in a list and create global functions area and
circumference that take such a list as argument:

x0, y0, R = 2, -1, 5
circle = [x0, y0, R]

def area(c):
R = c[2]
return pi*R**2

def circumference(c):
R = c[2]
return 2*pi*R

Alternatively, the circle could be represented by a dictionary with keys
’center’ and ’radius’:

circle = {’center’: (2, -1), ’radius’: 5}

def area(c):
R = c[’radius’]
return pi*R**2

def circumference(c):
R = c[’radius’]
return 2*pi*R

7.3 Special Methods

Some class methods have names starting and ending with a double
underscore. These methods allow a special syntax in the program and
are called special methods. The constructor __init__ is one example.
This method is automatically called when an instance is created (by
calling the class as a function), but we do not need to explicitly write
__init__. Other special methods make it possible to perform arithmetic
operations with instances, to compare instances with >, >=, !=, etc., to
call instances as we call ordinary functions, and to test if an instance
is true or false, to mention some possibilities.

7.3 Special Methods 361

7.3.1 The Call Special Method

Computing the value of the mathematical function represented by class
Y on page 345, with y as the name of the instance, is performed by
writing y.value(t). If we could write just y(t), the y instance would
look as an ordinary function. Such a syntax is indeed possible and
offered by the special method named __call__. Writing y(t) implies a
call

y.__call__(t)

if class Y has the method __call__ defined. We may easily add this
special method:

class Y:
...
def __call__(self, t):

return self.v0*t - 0.5*self.g*t**2

The previous value method is now redundant. A good programming
convention is to include a __call__ method in all classes that represent
a mathematical function. Instances with __call__ methods are said to
be callable objects, just as plain functions are callable objects as well.
The call syntax for callable objects is the same, regardless of whether
the object is a function or a class instance. Given an object a,

if callable(a):

tests whether a behaves as a callable, i.e., if a is a Python function or
an instance with a __call__ method.

In particular, an instance of class Y can be passed as the f argument
to the diff function on page 343:

y = Y(v0=5)
dydt = diff(y, 0.1)

Inside diff, we can test that f is not a function but an instance of
class Y. However, we only use f in calls, like f(x), and for this purpose
an instance with a __call__ method works as a plain function. This
feature is very convenient.

The next section demonstrates a neat application of the call operator
__call__ in a numerical algorithm.

7.3.2 Example: Automagic Differentiation

Problem. Given a Python implementation f(x) of a mathematical func-
tion f(x), we want to create an object that behaves as a Python func-
tion for computing the derivative f ′(x). For example, if this object is
of type Derivative, we should be able to write something like

362 7 Introduction to Classes

>>> def f(x):
return x**3

...
>>> dfdx = Derivative(f)
>>> x = 2
>>> dfdx(x)
12.000000992884452

That is, dfdx behaves as a straight Python function for implementing
the derivative 3x2 of x3 (well, the answer is only approximate, with
an error in the 7th decimal, but the approximation can easily be im-
proved).

Maple, Mathematica, and many other software packages can do ex-
act symbolic mathematics, including differentiation and integration.
A Python package SymPy for symbolic mathematics is free and simple
to use, and could easily be applied to calculate the exact derivative of
a large class of functions f(x). However, functions that are defined in
an algorithmic way (e.g., solution of another mathematical problem),
or functions with branches, random numbers, etc., pose fundamental
problems to symbolic differentiation, and then numerical differentia-
tion is required. Therefore we base the computation of derivatives in
Derivative instances on finite difference formulas. This strategy also
leads to much simpler code compared to exact symbolic differentiation.

Solution. The most basic, but not the best formula for a numerical
derivative is (7.1), which we reuse here for simplicity. The reader can
easily switch from this formula to a better one if desired. The idea
now is that we make a class to hold the function to be differentiated,
call it f, and a step size h to be used in the numerical approximation.
These variables can be set in the constructor. The __call__ operator
computes the derivative with aid of the general formula (7.1). All this
can be coded as

class Derivative:
def __init__(self, f, h=1E-5):

self.f = f
self.h = float(h)

def __call__(self, x):
f, h = self.f, self.h # make short forms
return (f(x+h) - f(x))/h

Note that we turn h into a float to avoid potential integer division.
Below follows an application of the class to differentiate two functions

f(x) = sinx and g(t) = t3:

>>> from math import sin, cos, pi
>>> df = Derivative(sin)
>>> x = pi
>>> df(x)
-1.000000082740371
>>> cos(x) # exact
-1.0

7.3 Special Methods 363

>>> def g(t):
... return t**3
...
>>> dg = Derivative(g)
>>> t = 1
>>> dg(t) # compare with 3 (exact)
3.000000248221113

The expressions df(x) and dg(t) look as ordinary Python functions
that evaluate the derivative of the functions sin(x) and g(t). Class
Derivative works for (almost) any function f(x).

Application: Newton’s Method. In which situations will it be con-
venient to automatically produce a Python function df(x) which is
the derivative of another Python function f(x)? One example arises
when solving nonlinear algebraic equations f(x) = 0 with New-
ton’s method (see Appendix A.1.10) and we, because of laziness,
lack of time, or lack of training do not manage to derive f ′(x)
by hand. Consider the Newton function from page 572 for solving
f(x) = 0: Newton(f, x, dfdx, epsilon=1.0E-7, N=100), which requires
the argument dfdx representing f ′(x). Suppose our target equation
reads

f(x) = 105(x− 0.9)2(x− 1.1)3 = 0.

The function f(x) is plotted in Figure 7.2. The following session
employs the Derivative class to quickly make a derivative so we can
call Newton’s method:

>>> from classes import Derivative
>>> from Newton import Newton
>>> def f(x):
... return 100000*(x - 0.9)**2 * (x - 1.1)**3
...
>>> df = Derivative(f)
>>> Newton(f, 1.01, df, epsilon=1E-5)
(1.0987610068093443, 8, -7.5139644257961411e-06)

The output 3-tuple holds the approximation to a root, the number of
iterations, and the value of f at the approximate root (a measure of
the error in the equation).

The exact root is 1.1, and the convergence toward this value is very
slow6 (for example, an epsilon tolerance of 10−10 requires 18 iterations
with an error of 10−3). Using an exact derivative gives almost the same
result:

>>> def df_exact(x):
... return 100000*(2*(x-0.9)*(x-1.1)**3 + \
... (x-0.9)**2*3*(x-1.1)**2)
...

6 Newton’s method converges very slowly when the derivative of f is zero at the roots of f .
Even slower convergence appears when higher-order derivatives also are zero, like in this

example. Notice that the error in x is much larger than the error in the equation (epsilon).

364 7 Introduction to Classes

Fig. 7.2 Plot of y = 105(x− 0.9)2(x− 1.1)3.

>>> Newton(f, 1.01, df_exact, epsilon=1E-5)
(1.0987610065618421, 8, -7.5139689100699629e-06)

This example indicates that there are hardly any drawbacks in using a
“smart” inexact general differentiation approach as in the Derivative

class. The advantages are many – most notably, Derivative avoids po-
tential errors from possibly incorrect manual coding of possibly lengthy
expressions of possibly wrong hand-calculations. The errors in the in-
volved approximations can be made smaller, usually much smaller than
other errors, like the tolerance in Newton’s method in this example or
the uncertainty in physical parameters in real-life problems.

7.3.3 Example: Automagic Integration

We can apply the ideas from Chapter 7.3.2 to make a class for com-
puting the integral of a function numerically. Given a function f(x),
we want to compute

F (x; a) =

∫ x

a
f(t)dt.

The computational technique consists of using the Trapezoidal rule
with n intervals (n+ 1 points):

∫ x

a
f(t)dt = h

(
1

2
f(a) +

n−1∑
i=1

f(a+ ih) +
1

2
f(x)

)
, (7.2)

where h = (x− a)/n. In an application program, we want to compute
F (x; a) by a simple syntax like

7.3 Special Methods 365

def f(x):
return exp(-x**2)*sin(10*x)

a = 0; n = 200
F = Integral(f, a, n)
print F(x)

Here, f(x) is the Python function to be integrated, and F(x) behaves
as a Python function that calculates values of F (x; a).

A Simple Implementation. Consider a straightforward implementation
of the Trapezoidal rule in a Python function:

def trapezoidal(f, a, x, n):
h = (x-a)/float(n)
I = 0.5*f(a)
for i in iseq(1, n-1):

I += f(a + i*h)
I += 0.5*f(x)
I *= h
return I

The iseq function, offered by scitools.std, is an alternative to range

where the upper limit, here n-1, is included in the set of numbers. We
can alternatively use range(1, n), but the correspondence with the
indices in the mathematical description of the rule is then not one-to-
one.

Class Integral must have some attributes and a __call__ method.
Since the latter method is supposed to take x as argument, the other
parameters a, f, and n must be class attributes. The implementation
then becomes

class Integral:
def __init__(self, f, a, n=100):

self.f, self.a, self.n = f, a, n

def __call__(self, x):
return trapezoidal(self.f, self.a, x, self.n)

Observe that we just reuse the trapezoidal function to perform
the calculation. We could alternatively have copied the body of the
trapezoidal function into the __call__ method. However, if we al-
ready have this algorithm implemented and tested as a function, it is
better to call the function. The class is then known as a wrapper of
the underlying function. A wrapper allows something to be called with
alternative syntax. With the Integral(x) wrapper we can supply the
upper limit of the integral only – the other parameters are supplied
when we create an instance of the Integral class.

An application program computing
∫ 2π
0 sinxdx might look as fol-

lows:

366 7 Introduction to Classes

from math import sin, pi

G = Integral(sin, 0, 200)
value = G(2*pi)

An equivalent calculation is

value = trapezoidal(sin, 0, 2*pi, 200)

Remark. Class Integral is inefficient (but probably more than fast
enough) for plotting F (x; a) as a function x. Exercise 7.28 suggests to
optimize the class for this purpose.

7.3.4 Turning an Instance into a String

Another special method is __str__. It is called when a class instance
needs to be converted to a string. This happens when we say print a,
and a is an instance. Python will then look into the a instance for a
__str__ method, which is supposed to return a string. If such a special
method is found, the returned string is printed, otherwise just the name
of the class is printed. An example will illustrate the point. First we
try to print an y instance of class Y from Chapter 7.1.2 (where there is
no __str__ method):

>>> print y
<__main__.Y instance at 0xb751238c>

This means that y is an Y instance in the __main__ module (the main
program or the interactive session). The output also contains an address
telling where the y instance is stored in the computer’s memory.

If we want print y to print out the y instance, we need to define the
__str__ method in class Y:

class Y:
...
def __str__(self):

return ’v0*t - 0.5*g*t**2; v0=%g’ % self.v0

Typically, __str__ replaces our previous formula method and __call__

replaces our previous value method. Python programmers with the
experience that we now have gained will therefore write class Y with
special methods only:

class Y:
def __init__(self, v0):

self.v0 = v0
self.g = 9.81

def __call__(self, t):
return self.v0*t - 0.5*self.g*t**2

def __str__(self):
return ’v0*t - 0.5*g*t**2; v0=%g’ % self.v0

7.3 Special Methods 367

Let us see the class in action:

>>> y = Y(1.5)
>>> y(0.2)
0.1038
>>> print y
v0*t - 0.5*g*t**2; v0=1.5

What have we gained by using special methods? Well, we can still only
evaluate the formula and write it out, but many users of the class will
claim that the syntax is more attractive since y(t) in code means y(t)
in mathematics, and we can do a print y to view the formula. The
bottom line of using special methods is to achieve a more user-friendly
syntax. The next sections illustrate this point further.

7.3.5 Example: Phone Book with Special Methods

Let us reconsider class Person from Chapter 7.2.2. The dump method
in that class is better implemented as a __str__ special method.
This is easy: We just change the method name and replace print s

by return s.
Storing Person instances in a dictionary to form a phone book is

straightforward. However, we make the dictionary a bit easier to use if
we wrap a class around it. That is, we make a class PhoneBook which
holds the dictionary as an attribute. An add method can be used to
add a new person:

class PhoneBook:
def __init__(self):

self.contacts = {} # dict of Person instances

def add(self, name, mobile=None, office=None,
private=None, email=None):

p = Person(name, mobile, office, private, email)
self.contacts[name] = p

A __str__ can print the phone book in alphabetic order:

def __str__(self):
s = ’’
for p in sorted(self.contacts):

s += str(self.contacts[p]) + ’\n’
return s

To retrieve a Person instance, we use the __call__ with the person’s
name as argument:

def __call__(self, name):
return self.contacts[name]

The only advantage of this method is simpler syntax: For a PhoneBook

b we can get data about NN by calling b(’NN’) rather than accessing
the internal dictionary b.contacts[’NN’].

368 7 Introduction to Classes

We can make a simple test function for a phone book with three
names:

b = PhoneBook()
b.add(’Ole Olsen’, office=’767828292’,

email=’olsen@somemail.net’)
b.add(’Hans Hanson’,

office=’767828283’, mobile=’995320221’)
b.add(’Per Person’, mobile=’906849781’)
print b(’Per Person’)
print b

The output becomes

Per Person
mobile phone: 906849781

Hans Hanson
mobile phone: 995320221
office phone: 767828283

Ole Olsen
office phone: 767828292
email address: olsen@somemail.net

Per Person
mobile phone: 906849781

You are strongly encouraged to work through this last demo program
by hand and simulate what the program does. That is, jump around
in the code and write down on a piece of paper what various variables
contain after each statement. This is an important and good exercise!
You enjoy the happiness of mastering classes if you get the same output
as above. The complete program with classes Person and PhoneBook

and the test above is found in the file PhoneBook.py. You can run this
program, statement by statement, in a debugger (see Appendix F.1) to
control that your understanding of the program flow is correct.

Remark. Note that the names are sorted with respect to the first names.
The reason is that strings are sorted after the first character, then
the second character, and so on. We can supply our own tailored sort
function, as explained in Exercise 3.32. One possibility is to split the
name into words and use the last word for sorting:

def last_name_sort(name1, name2):
lastname1 = name1.split()[-1]
lastname2 = name2.split()[-1]
if lastname1 < lastname2:

return -1
elif lastname1 > lastname2:

return 1
else: # equality

return 0

for p in sorted(self.contacts, last_name_sort):
...

7.3 Special Methods 369

7.3.6 Adding Objects

Let a and b be instances of some class C. Does it make sense to write
a + b? Yes, this makes sense if class C has defined a special method
__add__:

class C:
...
__add__(self, other):

...

The __add__ method should add the instances self and other and
return the result as an instance. So when Python encounters a + b, it
will check if class C has an __add__ method and interpret a + b as the
call a.__add__(b). The next example will hopefully clarify what this
idea can be used for.

7.3.7 Example: Class for Polynomials

Let us create a class Polynomial for polynomials. The coefficients in the
polynomial can be given to the constructor as a list. Index number i
in this list represents the coefficients of the xi term in the polynomial.
That is, writing Polynomial([1,0,-1,2]) defines a polynomial

1 + 0 · x− 1 · x2 + 2 · x3 = 1− x2 + 2x3.

Polynomials can be added (by just adding the coefficients) so our class
may have an __add__ method. A __call__ method is natural for evalu-
ating the polynomial, given a value of x. The class is listed below and
explained afterwards.

class Polynomial:
def __init__(self, coefficients):

self.coeff = coefficients

def __call__(self, x):
s = 0
for i in range(len(self.coeff)):

s += self.coeff[i]*x**i
return s

def __add__(self, other):
Start with the longest list and add in the other
if len(self.coeff) > len(other.coeff):

result_coeff = self.coeff[:] # copy!
for i in range(len(other.coeff)):

result_coeff[i] += other.coeff[i]
else:

result_coeff = other.coeff[:] # copy!
for i in range(len(self.coeff)):

result_coeff[i] += self.coeff[i]
return Polynomial(result_coeff)

370 7 Introduction to Classes

Implementation. Class Polynomial has one attribute: the list of coef-
ficients. To evaluate the polynomial, we just sum up coefficient no. i
times xi for i = 0 to the number of coefficients in the list.

The __add__ method looks more advanced. The idea is to add the
two lists of coefficients. However, it may happen that the lists are of
unequal length. We therefore start with the longest list and add in the
other list, element by element. Observe that result_coeff starts out
as a copy of self.coeff: If not, changes in result_coeff as we com-
pute the sum will be reflected in self.coeff. This means that self

would be the sum of itself and the other instance, or in other words,
adding two instances, p1+p2, changes p1 – this is not what we want!
An alternative implementation of class Polynomial is found in Exer-
cise 7.30.

A subtraction method __sub__ can be implemented along the lines
of __add__, but is slightly more complicated and left to the reader
through Exercise 7.31. A somewhat more complicated operation, from
a mathematical point of view, is the multiplication of two polynomials.
Let p(x) =

∑M
i=0 cix

i and q(x) =
∑N

j=0 djx
j be the two polynomials.

The product becomes

(
M∑
i=0

cix
i

)(
N∑
j=0

djx
j

)
=

M∑
i=0

N∑
j=0

cidjx
i+j .

The double sum must be implemented as a double loop, but first the
list for the resulting polynomial must be created with length M+N+1
(the highest exponent is M + N and then we need a constant term).
The implementation of the multiplication operator becomes

def __mul__(self, other):
c = self.coeff
d = other.coeff
M = len(c) - 1
N = len(d) - 1
result_coeff = numpy.zeros(M+N+1)
for i in range(0, M+1):

for j in range(0, N+1):
result_coeff[i+j] += c[i]*d[j]

return Polynomial(result_coeff)

We could also include a method for differentiating the polynomial
according to the formula

d

dx

n∑
i=0

cix
i =

n∑
i=1

icix
i−1.

If ci is stored as a list c, the list representation of the derivative, say its
name is dc, fulfills dc[i-1] = i*c[i] for i running from 1 to the largest
index in c. Note that dc has one element less than c.

7.3 Special Methods 371

There are two different ways of implementing the differentiation
functionality, either by changing the polynomial coefficients, or by re-
turning a new Polynomial instance from the method such that the
original polynomial instance is intact. We let p.differentiate() be an
implementation of the first approach, i.e., this method does not return
anything, but the coefficients in the Polynomial instance p are altered.
The other approach is implemented by p.derivative(), which returns a
new Polynomial object with coefficients corresponding to the derivative
of p.

The complete implementation of the two methods is given below:

def differentiate(self):
"""Differentiate this polynomial in-place."""
for i in range(1, len(self.coeff)):

self.coeff[i-1] = i*self.coeff[i]
del self.coeff[-1]

def derivative(self):
"""Copy this polynomial and return its derivative."""
dpdx = Polynomial(self.coeff[:]) # make a copy
dpdx.differentiate()
return dpdx

The Polynomial class with a differentiate method and not a
derivative method would be mutable (see Chapter 6.2.3) and allow in-
place changes of the data, while the Polynomial class with derivative

and not differentiate would yield an immutable object where the
polynomial initialized in the constructor is never altered7. A good
rule is to offer only one of these two functions such that a Polynomial

object is either mutable or immutable (if we leave out differentiate,
its function body must of course be copied into derivative since
derivative now relies on that code). However, since the main purpose
of this class is to illustrate various types of programming techniques,
we keep both versions.

Usage. As a demonstration of the functionality of class Polynomial, we
introduce the two polynomials

p1(x) = 1− x, p2(x) = x− 6x4 − x5.

>>> p1 = Polynomial([1, -1])
>>> p2 = Polynomial([0, 1, 0, 0, -6, -1])
>>> p3 = p1 + p2
>>> print p3.coeff
[1, 0, 0, 0, -6, -1]
>>> p4 = p1*p2
>>> print p4.coeff
[0, 1, -1, 0, -6, 5, 1]

7 Technically, it is possible to grab the coeff variable in a class instance and alter this list.

By starting coeff with an underscore, a Python programming convention tells programmers
that this variable is for internal use in the class only, and not to be altered by users of the

instance, see Chapters 7.2.1 and 7.5.2.

372 7 Introduction to Classes

>>> p5 = p2.derivative()
>>> print p5.coeff
[1, 0, 0, -24, -5]

One verification of the implementation may be to compare p3 at (e.g.)
x = 1/2 with p1(x) + p2(x):

>>> x = 0.5
>>> p1_plus_p2_value = p1(x) + p2(x)
>>> p3_value = p3(x)
>>> print p1_plus_p2_value - p3_value
0.0

Note that p1 + p2 is very different from p1(x) + p2(x). In the former
case, we add two instances of class Polynomial, while in the latter case
we add two instances of class float (since p1(x) and p2(x) imply calling
__call__ and that method returns a float object).

Pretty Print of Polynomials. The Polynomial class can also be equipped
with a __str__ method for printing the polynomial to the screen.
A first, rough implementation could simply add up strings of the form
+ self.coeff[i]*x^i:

class Polynomial:
...
def __str__(self):

s = ’’
for i in range(len(self.coeff)):

s += ’ + %g*x^%d’ % (self.coeff[i], i)
return s

However, this implementation leads to ugly output from a math-
ematical viewpoint. For instance, a polynomial with coefficients
[1,0,0,-1,-6] gets printed as

+ 1*x^0 + 0*x^1 + 0*x^2 + -1*x^3 + -6*x^4

A more desired output would be

1 - x^3 - 6*x^4

That is, terms with a zero coefficient should be dropped; a part ’+ -’ of
the output string should be replaced by ’- ’; unit coefficients should
be dropped, i.e., ’ 1*’ should be replaced by space ’ ’; unit power
should be dropped by replacing ’x^1 ’ by ’x ’; zero power should be
dropped and replaced by 1, initial spaces should be fixed, etc. These
adjustments can be implemented using the replace method in string
objects and by composing slices of the strings. The new version of the
__str__ method below contains the necessary adjustments. If you find
this type of string manipulation tricky and difficult to understand, you
may safely skip further inspection of the improved __str__ code since
the details are not essential for your present learning about the class
concept and special methods.

7.3 Special Methods 373

class Polynomial:
...
def __str__(self):

s = ’’
for i in range(0, len(self.coeff)):

if self.coeff[i] != 0:
s += ’ + %g*x^%d’ % (self.coeff[i], i)

Fix layout
s = s.replace(’+ -’, ’- ’)
s = s.replace(’x^0’, ’1’)
s = s.replace(’ 1*’, ’ ’)
s = s.replace(’x^1 ’, ’x ’)
if s[0:3] == ’ + ’: # remove initial +

s = s[3:]
if s[0:3] == ’ - ’: # fix spaces for initial -

s = ’-’ + s[3:]
return s

Programming sometimes turns into coding (what one think is) a gen-
eral solution followed by a series of special cases to fix caveats in the
“general” solution, just as we experienced with the __str__ method
above. This situation often calls for additional future fixes and is often
a sign of a suboptimal solution to the programming problem.

Pretty print of Polynomial instances can be demonstrated in an in-
teractive session:

>>> p1 = Polynomial([1, -1])
>>> print p1
1 - x^1
>>> p2 = Polynomial([0, 1, 0, 0, -6, -1])
>>> p2.differentiate()
>>> print p2
1 - 24*x^3 - 5*x^4

7.3.8 Arithmetic Operations and Other Special Methods

Given two instances a and b, the standard binary arithmetic operations
with a and b are defined by the following special methods:

• a + b : a.__add__(b)
• a - b : a.__sub__(b)
• a*b : a.__mul__(b)
• a/b : a.__div__(b)
• a**b : a.__pow__(b)

Some other special methods are also often useful:

• the length of a, len(a): a.__len__()
• the absolute value of a, abs(a): a.__abs__()
• a == b : a.__eq__(b)
• a > b : a.__gt__(b)
• a >= b : a.__ge__(b)
• a < b : a.__lt__(b)
• a <= b : a.__le__(b)

374 7 Introduction to Classes

• a != b : a.__ne__(b)
• -a : a.__neg__()
• evaluating a as a boolean expression (as in the test if a:) implies
calling the special method a.__bool__(), which must return True

or False – if __bool__ is not defined, __len__ is called to see if the
length is zero (False) or not (True)

We can implement such methods in class Polynomial, see Exercise 7.31.
Chapter 7.4 contains many examples on using the special methods
listed above.

7.3.9 Special Methods for String Conversion

Look at this class with a __str__ method:

>>> class MyClass:
... def __init__(self):
... self.data = 2
... def __str__(self):
... return ’In __str__: %s’ % str(self.data)
...
>>> a = MyClass()
>>> print a
In __str__: 2

Hopefully, you understand well why we get this output (if not, go back
to Chapter 7.3.4).

But what will happen if we write just a at the command prompt in
an interactive shell?

>>> a
<__main__.MyClass instance at 0xb75125ac>

When writing just a in an interactive session, Python looks for a special
method __repr__ in a. This method is similar to __str__ in that it
turns the instance into a string, but there is a convention that __str__
is a pretty print of the instance contents while __repr__ is a complete
representation of the contents of the instance. For a lot of Python
classes, including int, float, complex, list, tuple, and dict, __repr__
and __str__ give identical output. In our class MyClass the __repr__ is
missing, and we need to add it if we want

>>> a

to write the contents like print a does.
Given an instance a, str(a) implies calling a.__str__() and repr(a)

implies calling a.__repr__(). This means that

>>> a

is actually a repr(a) call and

7.4 Example: Class for Vectors in the Plane 375

>>> print a

is actually a print str(a) statement.
A simple remedy in class MyClass is to define

def __repr__(self):
return self.__str__() # or return str(self)

However, as we explain below, the __repr__ is best defined differently.

Recreating Objects from Strings. The Python function eval(e) eval-
uates a valid Python expression contained in the string e, see Chap-
ter 4.1.2. It is a convention that __repr__ returns a string such that
eval applied to the string recreates the instance. For example, in case
of the Y class from page 345, __repr__ should return ’Y(10)’ if the v0

variable has the value 10. Then eval(’Y(10)’) will be the same as if
we had coded Y(10) directly in the program or an interactive session.

Below we show examples of __repr__methods in classes Y (page 345),
Polynomial (page 369), and MyClass (above):

class Y:
...
def __repr__(self):

return ’Y(v0=%s)’ % self.v0

class Polynomial:
...
def __repr__(self):

return ’Polynomial(coefficients=%s)’ % self.coeff

class MyClass:
...
def __repr__(self):

return ’MyClass()’

With these definitions, eval(repr(x)) recreates the object x if it is of
one of the three types above. In particular, we can write x to file and
later recreate the x from the file information:

somefile is some file object
somefile.write(repr(x))
somefile.close()
...
data = somefile.readline()
x2 = eval(data) # recreate object

Now, x2 will be equal to x (x2 == x evaluates to true).

7.4 Example: Class for Vectors in the Plane

This section explains how to implement two-dimensional vectors in
Python such that these vectors act as objects we can add, subtract,

376 7 Introduction to Classes

form inner products with, and do other mathematical operations on.
To understand the forthcoming material, it is necessary to have digested
Chapter 7.3, in particular Chapters 7.3.6 and 7.3.8.

7.4.1 Some Mathematical Operations on Vectors

Vectors in the plane are described by a pair of real numbers, (a, b).
In Chapter 5.1.2 we presented mathematical rules for adding and sub-
tracting vectors, multiplying two vectors (the inner or dot or scalar
product), the length of a vector, and multiplication by a scalar:

(a, b) + (c, d) = (a+ c, b+ d), (7.3)

(a, b)− (c, d) = (a− c, b− d), (7.4)

(a, b) · (c, d) = ac+ bd, (7.5)∥∥(a, b)∥∥ =
√

(a, b) · (a, b). (7.6)

Moreover, two vectors (a, b) and (c, d) are equal if a = c and b = d.

7.4.2 Implementation

We may create a class for plane vectors where the above mathematical
operations are implemented by special methods. The class must contain
two attributes, one for each component of the vector, called x and y

below. We include special methods for addition, subtraction, the scalar
product (multiplication), the absolute value (length), comparison of
two vectors (== and !=), as well as a method for printing out a vector.

class Vec2D:
def __init__(self, x, y):

self.x = x
self.y = y

def __add__(self, other):
return Vec2D(self.x + other.x, self.y + other.y)

def __sub__(self, other):
return Vec2D(self.x - other.x, self.y - other.y)

def __mul__(self, other):
return self.x*other.x + self.y*other.y

def __abs__(self):
return math.sqrt(self.x**2 + self.y**2)

def __eq__(self, other):
return self.x == other.x and self.y == other.y

def __str__(self):
return ’(%g, %g)’ % (self.x, self.y)

def __ne__(self, other):
return not self.__eq__(other) # reuse __eq__

7.4 Example: Class for Vectors in the Plane 377

The __add__, __sub__, __mul__, __abs__, and __eq__ methods should be
quite straightforward to understand from the previous mathematical
definitions of these operations. The last method deserves a comment:
Here we simply reuse the equality operator __eq__, but precede it with
a not. We could also have implemented this method as

def __ne__(self, other):
return self.x != other.x or self.y != other.y

Nevertheless, this implementation requires us to write more, and it
has the danger of introducing an error in the logics of the boolean
expressions. A more reliable approach, when we know that the __eq__

method works, is to reuse this method and observe that “not ==” gives
us the effect of “!=”.

A word of warning is in place regarding our implementation of the
equality operator (== via __eq__). We test for equality of each com-
ponent, which is correct from a mathematical point of view. However,
each vector component is a floating-point number that may be subject
to round-off errors both in the representation on the computer and
from previous (inexact) floating-point calculations. Two mathemati-
cally equal components may be different in their inexact representa-
tions on the computer. The remedy for this problem is to avoid testing
for equality, but instead check that the difference between the compo-
nents is sufficiently small. The function float_eq found in the module
scitools.numpytutils (if you do not already have float_eq from a from

scitools.std import *), see also Exercise 2.24, is an easy-to-use tool
for comparing float objects. With this function we replace

if a == b:

by

if float_eq(a, b):

A more reliable equality operator can now be implemented:

class Vec2D:
...
def __eq__(self, other):

return float_eq(self.x, other.x) and \
float_eq(self.y, other.y)

As a rule of thumb, you should never apply the == test to two float

objects.
The special method __len__ could be introduced as a synonym for

__abs__, i.e., for a Vec2D instance named v, len(v) is the same as abs(v),
because the absolute value of a vector is mathematically the same as
the length of the vector. However, if we implement

378 7 Introduction to Classes

def __len__(self):
Reuse implementation of __abs__
return abs(self) # equiv. to self.__abs__()

we will run into trouble when we compute len(v) and the answer is
(as usual) a float. Python will then complain and tell us that len(v)

must return an int. Therefore, __len__ cannot be used as a synonym
for the length of the vector in our application. On the other hand, we
could let len(v) mean the number of components in the vector:

def __len__(self):
return 2

This is not a very useful function, though, as we already know that all
our Vec2D vectors have just two components. For generalizations of the
class to vectors with n components, the __len__ method is of course
useful.

7.4.3 Usage

Let us play with some Vec2D objects:

>>> u = Vec2D(0,1)
>>> v = Vec2D(1,0)
>>> w = Vec2D(1,1)
>>> a = u + v
>>> print a
(1, 1)
>>> a == w
True
>>> a = u - v
>>> print a
(-1, 1)
>>> a = u*v
>>> print a
0
>>> print abs(u)
1.0
>>> u == v
False
>>> u != v
True

When you read through this interactive session, you should check that
the calculation is mathematically correct, that the resulting object type
of a calculation is correct, and how each calculation is performed in
the program. The latter topic is investigated by following the program
flow through the class methods. As an example, let us consider the
expression u != v. This is a boolean expression that is true since u and
v are different vectors. The resulting object type should be bool, with
values True or False. This is confirmed by the output in the interactive
session above. The Python calculation of u != v leads to a call to

7.5 Example: Class for Complex Numbers 379

u.__ne__(v)

which leads to a call to

u.__eq__(v)

The result of this last call is False, because the special method will
evaluate the boolean expression

0 == 1 and 1 == 0

which is obviously False. When going back to the __ne__ method, we
end up with a return of not False, which evaluates to True. You need
this type of thorough understanding to find and correct bugs (and
remember that the first versions of your programs will normally contain
bugs!).

Comment. For real computations with vectors in the plane, you would
probably just use a Numerical Python array of length 2. However, one
thing such objects cannot do is evaluating u*v as a scalar product. The
multiplication operator for Numerical Python arrays is not defined as a
scalar product (it is rather defined as (a, b) · (c, d) = (ac, bd)). Another
difference between our Vec2D class and Numerical Python arrays is the
abs function, which computes the length of the vector in class Vec2D,
while it does something completely different with Numerical Python
arrays.

7.5 Example: Class for Complex Numbers

Imagine that Python did not already have complex numbers. We could
then make a class for such numbers and support the standard mathe-
matical operations. This exercise turns out to be a very good pedagog-
ical example of programming with classes and special methods.

The class must contain two attributes: the real and imaginary part
of the complex number. In addition, we would like to add, subtract,
multiply, and divide complex numbers. We would also like to write out
a complex number in some suitable format. A session involving our own
complex numbers may take the form

>>> u = Complex(2,-1)
>>> v = Complex(1) # zero imaginary part
>>> w = u + v
>>> print w
(3, -1)
>>> w != u
True
>>> u*v
Complex(2, -1)
>>> u < v

380 7 Introduction to Classes

illegal operation "<" for complex numbers
>>> print w + 4
(7, -1)
>>> print 4 - w
(1, 1)

We do not manage to use exactly the same syntax with j as imaginary
unit as in Python’s built-in complex numbers so to specify a complex
number we must create a Complex instance.

7.5.1 Implementation

Here is the complete implementation of our class for complex num-
bers:

class Complex:
def __init__(self, real, imag=0.0):

self.real = real
self.imag = imag

def __add__(self, other):
return Complex(self.real + other.real,

self.imag + other.imag)

def __sub__(self, other):
return Complex(self.real - other.real,

self.imag - other.imag)

def __mul__(self, other):
return Complex(self.real*other.real - self.imag*other.imag,

self.imag*other.real + self.real*other.imag)

def __div__(self, other):
sr, si, or, oi = self.real, self.imag, \

other.real, other.imag # short forms
r = float(or**2 + oi**2)
return Complex((sr*or+si*oi)/r, (si*or-sr*oi)/r)

def __abs__(self):
return sqrt(self.real**2 + self.imag**2)

def __neg__(self): # defines -c (c is Complex)
return Complex(-self.real, -self.imag)

def __eq__(self, other):
return self.real == other.real and self.imag == other.imag

def __ne__(self, other):
return not self.__eq__(other)

def __str__(self):
return ’(%g, %g)’ % (self.real, self.imag)

def __repr__(self):
return ’Complex’ + str(self)

def __pow__(self, power):
raise NotImplementedError\

(’self**power is not yet impl. for Complex’)

The special methods for addition, subtraction, multiplication, division,
and the absolute value follow easily from the mathematical definitions

7.5 Example: Class for Complex Numbers 381

of these operations for complex numbers (see Chapter 1.6). What -c

means when c is of type Complex, is also easy to define and implement.
The __eq__ method needs a word of caution: The method is mathe-
matically correct, but as we stated on page 377, comparison of real
numbers on a computer should always employ a tolerance. The version
of __eq__ shown above is more about compact code and equivalence to
the mathematics than real-world numerical computations.

The final __pow__ method exemplifies a way to introduce a method
in a class, while we postpone its implementation. The simplest way to
do this is by inserting an empty function body using the pass (“do
nothing”) statement:

def __pow__(self, power):
Postpone implementation of self**power
pass

However, the preferred method is to raise a NotImplementedError ex-
ception so that users writing power expressions are notified that this
operation is not available. The simple pass will just silently bypass this
serious fact!

7.5.2 Illegal Operations

Some mathematical operations, like the comparison operators >, >=,
etc., do not have a meaning for complex numbers. By default, Python
allows us to use these comparison operators for our Complex instances,
but the boolean result will be mathematical nonsense. Therefore, we
should implement the corresponding special methods and give a sen-
sible error message that the operations are not available for complex
numbers. Since the messages are quite similar, we make a separate
method to gather common operations:

def _illegal(self, op):
print ’illegal operation "%s" for complex numbers’ % op

Note the underscore prefix: This is a Python convention telling that
the _illegal method is local to the class in the sense that it is not
supposed to be used outside the class, just by other class methods. In
computer science terms, we say that names starting with an under-
score are not part of the application programming interface, known as
the API. Other programming languages, such as Java, C++, and C#,
have special keywords, like private and protected that can be used to
technically hide both data and methods from users of the class. Python
will never restrict anybody who tries to access data or methods that
are considered private to the class, but the leading underscore in the
name reminds any user of the class that she now touches parts of the
class that are not meant to be used “from the outside”.

382 7 Introduction to Classes

Various special methods for comparison operators can now call up
_illegal to issue the error message:

def __gt__(self, other): self._illegal(’>’)
def __ge__(self, other): self._illegal(’>=’)
def __lt__(self, other): self._illegal(’<’)
def __le__(self, other): self._illegal(’<=’)

7.5.3 Mixing Complex and Real Numbers

The implementation of class Complex is far from perfect. Suppose we
add a complex number and a real number, which is a mathematically
perfectly valid operation:

w = u + 4.5

This statement leads to an exception,

AttributeError: ’float’ object has no attribute ’real’

In this case, Python sees u + 4.5 and tries to use u.__add__(4.5), which
causes trouble because the other argument in the __add__ method is
4.5, i.e., a float object, and float objects do not contain an attribute
with the name real (other.real is used in our __add__ method, and
accessing other.real is what causes the error).

One idea for a remedy could be to set

other = Complex(other)

since this construction turns a real number other into a Complex object.
However, when we add two Complex instances, other is of type Complex,
and the constructor simply stores this Complex instance as self.real

(look at the method __init__). This is not what we want!
A better idea is to test for the type of other and perform the right

conversion to Complex:

def __add__(self, other):
if isinstance(other, (float,int)):

other = Complex(other)
return Complex(self.real + other.real,

self.imag + other.imag)

We could alternatively drop the conversion of other and instead im-
plement two addition rules, depending on the type of other:

def __add__(self, other):
if isinstance(other, (float,int)):

return Complex(self.real + other, self.imag)
else:

return Complex(self.real + other.real,
self.imag + other.imag)

7.5 Example: Class for Complex Numbers 383

A third way is to look for what we require from the other object, and
check that this demand is fulfilled. Mathematically, we require other to
be a complex or real number, but from a programming point of view,
all we demand (in the original __add__ implementation) is that other

has real and imag attributes. To check if an object a has an attribute
with name stored in the string attr, one can use the function

hasattr(a, attr)

In our context, we need to perform the test

if hasattr(other, ’real’) and hasattr(other, ’imag’):

Our third implementation of the __add__ method therefore becomes

def __add__(self, other):
if isinstance(other, (float,int)):

other = Complex(other)
elif not (hasattr(other, ’real’) and \

hasattr(other, ’imag’)):
raise TypeError(’other must have real and imag attr.’)

return Complex(self.real + other.real,
self.imag + other.imag)

The advantage with this third alternative is that we may add instances
of class Complex and Python’s own complex class (complex), since all
we need is an object with real and imag attributes.

Computer Science Discussion. The presentations of alternative im-
plementations of the __add__ actually touch some very important com-
puter science topics. In Python, function arguments can refer to objects
of any type, and the type of an argument can change during program
execution. This feature is known as dynamic typing and supported by
languages such as Python, Perl, Ruby, and Tcl. Many other languages,
C, C++, Java, and C# for instance, restrict a function argument to be
of one type, which must be known when we write the program. Any at-
tempt to call the function with an argument of another type is flagged
as an error. One says that the language employs static typing, since the
type cannot change as in languages having dynamic typing. The code
snippet

a = 6 # a is integer
a = ’b’ # a is string

is valid in a language with dynamic typing, but not in a language with
static typing.

Our next point is easiest illustrated through an example. Consider
the code

384 7 Introduction to Classes

a = 6
b = ’9’
c = a + b

The expression a + b adds an integer and a string, which is illegal in
Python. However, since b is the string ’9’, it is natural to interpret
a + b as 6 + 9. That is, if the string b is converted to an integer, we
may calculate a + b. Languages performing this conversion automati-
cally are said to employ weak typing, while languages that require the
programmer to explicit perform the conversion, as in

c = a + float(b)

are known to have strong typing. Python, Java, C, and C# are examples
of languages with strong typing, while Perl and C++ allow weak typing.
However, in our third implementation of the __add__ method, certain
types – int and float – are automatically converted to the right type
Complex. The programmer has therefore imposed a kind of weak typing
in the behavior of the addition operation for complex numbers.

There is also something called duck typing where the language only
imposes a requirement of some data or methods in the object. The
explanation of the term duck typing is the principle: “if it walks like
a duck, and quacks like a duck, it’s a duck”. An operation a + b may
be valid if a and b have certain properties that make it possible to
add the objects, regardless of the type of a or b. To enable a + b it
is in our third implementation of the __add__ method sufficient that b
has real and imag attributes. That is, objects with real and imag look
like Complex objects. Whether they really are of type Complex is not
considered important in this context.

There is a continuously ongoing debate in computer science which
kind of typing that is preferable: dynamic versus static, and weak ver-
sus strong. Static and strong typing, as found in Java and C#, sup-
port coding safety and reliability at the expense of long and sometimes
repetitive code, while dynamic and weak typing support programming
flexibility and short code. Many will argue that short code is more
reliable than long code, so there is no simple conclusion.

7.5.4 Special Methods for “Right” Operands

What happens if we add a float and a Complex in that order?

w = 4.5 + u

This statement causes the exception

TypeError: unsupported operand type(s) for +: ’float’ and ’instance’

7.5 Example: Class for Complex Numbers 385

This time Python cannot find any definition of what the plus operation
means with a float on the left-hand side and a Complex object on the
right-hand side of the plus sign. The float class was created many
years ago without any knowledge of our Complex objects, and we are
not allowed to extend the __add__ method in the float class to handle
Complex instances. Nevertheless, Python has a special method __radd__

for the case where the class instance (self) is on the right-hand side of
the operator and the other object is on the left-hand side. That is, we
may implement a possible float or int plus a Complex by

def __radd__(self, other): # defines other + self
return self.__add__(other) # other + self = self + other

Similar special methods exist for subtraction, multiplication, and di-
vision. For the subtraction operator we need to be a little careful be-
cause other - self, which is the operation assumed to implemented in
__rsub__, is not the same as self.__sub__(other) (i.e., self - other).
A possible implementation is

def __sub__(self, other):
print ’in sub, self=%s, other=%s’ % (self, other)
if isinstance(other, (float,int)):

other = Complex(other)
return Complex(self.real - other.real,

self.imag - other.imag)

def __rsub__(self, other):
print ’in rsub, self=%s, other=%s’ % (self, other)
if isinstance(other, (float,int)):

other = Complex(other)
return other.__sub__(self)

The print statements are inserted to better understand how these
methods are visited. A quick test demonstrates what happens:

>>> w = u - 4.5
in sub, self=(2, -1), other=4.5
>>> print w
(-2.5, -1)
>>> w = 4.5 - u
in rsub, self=(2, -1), other=4.5
in sub, self=(4.5, 0), other=(2, -1)
>>> print w
(2.5, 1)

Remark. As you probably realize, there is quite some code to be imple-
mented and lots of considerations to be resolved before we have a class
Complex for professional use in the real world. Fortunately, Python pro-
vides its complex class, which offers everything we need for computing
with complex numbers. This fact reminds us that it is important to
know what others already have implemented, so that we avoid “rein-
venting the wheel”. In a learning process, however, it is a probably a
very good idea to look into the details of a class Complex as we did
above.

386 7 Introduction to Classes

7.5.5 Inspecting Instances

The purpose of this section is to explain how we can easily look at the
contents of a class instance, i.e., the data attributes and the methods.
As usual, we look at an example – this time involving a very simple
class:

class A:
"""A class for demo purposes."""
def __init__(self, value):

self.v = value

def dump(self):
print self.__dict__

The self.__dict__ attribute is briefly mentioned in Chapter 7.1.5. Ev-
ery instance is automatically equipped with this attribute, which is a
dictionary that stores all the ordinary attributes of the instance (the
variable names are keys, and the object references are values). In class
A there is only one attribute, so the self.__dict__ dictionary contains
one key, ’v’:

>>> a = A([1,2])
>>> a.dump()
{’v’: [1, 2]}

Another way of inspecting what an instance a contains is to call
dir(a). This Python function writes out the names of all methods and
variables (and more) of an object:

>>> dir(a)
’__doc__’, ’__init__’, ’__module__’, ’dump’, ’v’]

The __doc__ variable is a docstring, similar to docstrings in functions
(Chapter 3.1.7), i.e., a description of the class appearing as a first string
right after the class headline:

>>> a.__doc__
’A class for demo purposes.’

The __module__ variable holds the name of the module in which the
class is defined. If the class is defined in the program itself and not in
an imported module, __module__ equals ’__main__’.

The rest of the entries in the list returned from dir(a) correspond to
method and attribute names defined by the programmer of the class,
in this example the methods __init__ and dump, and the attribute v.

Now, let us try to add new variables to an existing instance8:

8 This may sound scary and highly illegal to C, C++, Java, and C# programmers, but it

is natural and legal in many other languages – and sometimes even useful.

7.6 Static Methods and Attributes 387

>>> a.myvar = 10
>>> a.dump()
{’myvar’: 10, ’v’: [1, 2]}
>>> dir(a)
[’__doc__’, ’__init__’, ’__module__’, ’dump’, ’myvar’, ’v’]

The output of a.dump() and dir(a) show that we were successful in
adding a new variable to this instance on the fly. If we make a new
instance, it contains only the variables and methods that we find in
the definition of class A:

>>> b = A(-1)
>>> b.dump()
{’v’: -1}
>>> dir(b)
[’__doc__’, ’__init__’, ’__module__’, ’dump’, ’v’]

We may also add new methods to an instance, but this will not be
shown here. The primary message of this subsection is two-fold: (i) a
class instance is dynamic and allows attributes to be added or removed
while the program is running, and (ii) the contents of an instance can
be inspected by the dir function, and the data attributes are available
through the __dict__ dictionary.

7.6 Static Methods and Attributes

Up to now, each instance has its own copy of attributes. Sometimes it
can be natural to have attributes that are shared among all instances.
For example, we may have an attribute that counts how many instances
that have been made so far. We can exemplify how to do this in a little
class for points (x, y, z) in space:

>>> class SpacePoint:
... counter = 0
... def __init__(self, x, y, z):
... self.p = (x, y, z)
... SpacePoint.counter += 1

The counter attribute is initialized at the same indentation level as the
methods in the class, and the attribute is not prefixed by self. Such
attributes declared outside methods are shared among all instances and
called static attributes . To access the counter attribute, we must prefix
by the classname SpacePoint instead of self: SpacePoint.counter. In
the constructor we increase this common counter by 1, i.e., every time
a new instance is made the counter is updated to keep track of how
many objects we have created so far:

>>> p1 = SpacePoint(0,0,0)
>>> SpacePoint.counter
1

388 7 Introduction to Classes

>>> for i in range(400):
... p = SpacePoint(i*0.5, i, i+1)
...
>>> SpacePoint.counter
401

The methods we have seen so far must be called through an in-
stance, which is fed in as the self variable in the method. We can also
make class methods that can be called without having an instance.
The method is then similar to a plain Python function, except that
it is contained inside a class and the method name must be prefixed
by the classname. Such methods are known as static methods . Let us
illustrate the syntax by making a very simple class with just one static
method write:

>>> class A:
... @staticmethod
... def write(message):
... print message
...
>>> A.write(’Hello!’)
Hello!

As demonstrated, we can call write without having any instance of
class A, we just prefix with the class name. Also note that write does
not take a self argument. Since this argument is missing inside the
method, we can never access non-static attributes since these always
must be prefixed by an instance (i.e., self). However, we can access
static attributes, prefixed by the classname.

If desired, we can make an instance and call write through that
instance too:

>>> a = A()
>>> a.write(’Hello again’)
Hello again

Static methods are used when you want a global function, but find it
natural to let the function belong to a class and be prefixed with the
classname.

7.7 Summary

7.7.1 Chapter Topics

Classes. A class contains attributes (variables) and methods. A first
rough overview of a class can be to just list the attributes and methods
in a UML diagram as we have done in Figure 7.3 on page 390 for some
of the key classes in the present chapter.

Below is a sample class with three attributes (m, M, and G) and three
methods (a constructor, force, and visualize). The class represents

7.7 Summary 389

the gravity force between two masses. This force is computed by the
force method, while the visualize method plots the force as a function
of the distance between the masses.

class Gravity:
"""Gravity force between two physical objects."""

def __init__(self, m, M):
self.m = m # mass of object 1
self.M = M # mass of object 2
self.G = 6.67428E-11 # gravity constant, m**3/kg/s**2

def force(self, r):
G, m, M = self.G, self.m, self.M
return G*m*M/r**2

def visualize(self, r_start, r_stop, n=100):
from scitools.std import plot, linspace
r = linspace(r_start, r_stop, n)
g = self.force(r)
title=’Gravity force: m=%g, M=%g’ % (self.m, self.M)
plot(r, g, title=title)

Note that to access attributes inside the force method, and to call
the force method inside the visualize method, we must prefix with
self. Also recall that all methods must take self, “this” instance, as
first argument, but the argument is left out in calls. The assignment of
attributes to a local variable (e.g., G = self.G) inside methods is not
necessary, but here it makes the mathematical formula easier to read
and compare with standard mathematical notation.

This class (found in file Gravity.py) can be used to find the gravity
force between the Moon and the Earth:

mass_moon = 7.35E+22; mass_earth = 5.97E+24
gravity = Gravity(mass_moon, mass_earth)
r = 3.85E+8 # Earth-Moon distance in meters
Fg = gravity.force(r)
print ’force:’, Fg

Special Methods. A collection of special methods, with two leading
and trailing underscores in the method names, offers special syntax in
Python programs. Table 7.1 on page 390 provides an overview of the
most important special methods.

7.7.2 Example: Interval Arithmetics

Input data to mathematical formulas are often subject to uncertainty,
usually because physical measurements of many quantities involve mea-
surement errors, or because it is difficult to measure a parameter and
one is forced to make a qualified guess of the value instead. In such cases
it could be more natural to specify an input parameter by an interval
[a, b], which is guaranteed to contain the true value of the parameter.
The size of the interval expresses the uncertainty in this parameter.

390 7 Introduction to Classes

Table 7.1 Summary of some important special methods in classes. a and b are instances
of the class whose name we set to A.

a. init (self, args) constructor: a = A(args)

a. call (self, args) call as function: a(args)
a. str (self) pretty print: print a, str(a)

a. repr (self) representation: a = eval(repr(a))

a. add (self, b) a + b

a. sub (self, b) a - b

a. mul (self, b) a*b

a. div (self, b) a/b

a. radd (self, b) b + a

a. rsub (self, b) b - a

a. rmul (self, b) b*a

a. rdiv (self, b) b/a

a. pow (self, p) a**p

a. lt (self, b) a < b

a. gt (self, b) a > b

a. le (self, b) a <= b

a. ge (self, b) a => b

a. eq (self, b) a == b

a. ne (self, b) a != b

a. bool (self) boolean expression, as in if a:

a. len (self) length of a (int): len(a)

a. abs (self) abs(a)

Fig. 7.3 UML diagrams of some classes described in this chapter.

Suppose all input parameters are specified as intervals, what will be
the interval, i.e., the uncertainty, of the output data from the formula?
This section develops a tool for computing this output uncertainty in
the cases where the overall computation consists of the standard arith-
metic operations.

To be specific, consider measuring the acceleration of gravity by
dropping a ball and recording the time it takes to reach the ground.
Let the ground correspond to y = 0 and let the ball be dropped from

7.7 Summary 391

y = y0. The position of the ball, y(t), is then9

y(t) = y0 −
1

2
gt2.

If T is the time it takes to reach the ground, we have that y(T) = 0,
which gives the equation 1

2gT
2 = y0, with solution

g = 2y0T
−2.

In such experiments we always introduce some measurement error in
the start position y0 and in the time taking (T). Suppose y0 is known to
lie in [0.99, 1.01] m and T in [0.43, 0.47] s, reflecting a 2% measurement
error in position and a 10% error from using a stop watch. What is the
error in g? With the tool to be developed below, we can find that there
is a 22% error in g.

Problem. Assume that two numbers p and q are guaranteed to lie inside
intervals,

p = [a, b], q = [c, d].

The sum p + q is then guaranteed to lie inside an interval [s, t] where
s = a+ c and t = b+ d. Below we list the rules of interval arithmetics ,
i.e., the rules for addition, subtraction, multiplication, and division of
two intervals:

1. p+ q = [a+ c, b+ d]
2. p− q = [a− d, b− c]
3. pq = [min(ac, ad, bc, bd),max(ac, ad, bc, bd)]
4. p/q = [min(a/c, a/d, b/c, b/d),max(a/c, a/d, b/c, b/d)] provided that

[c, d] does not contain zero

For doing these calculations in a program, it would be natural to have
a new type for quantities specified by intervals. This new type should
support the operators +, -, *, and / according to the rules above. The
task is hence to implement a class for interval arithmetics with special
methods for the listed operators. Using the class, we should be able to
estimate the uncertainty of two formulas:

1. The acceleration of gravity, g = 2y0T
−2, given a 2% uncertainty in

y0: y0 = [0.99, 1.01], and a 10% uncertainty in T : T = [Tm ·0.95, Tm ·
1.05], with Tm = 0.45.

2. The volume of a sphere, V = 4
3πR

3, given a 20% uncertainty in R:
R = [Rm · 0.9, Rm · 1.1], with Rm = 6.

Solution. The new type is naturally realized as a class IntervalMath

whose data consist of the lower and upper bound of the interval. Special
methods are used to implement arithmetic operations and printing of

9 The formula arises from the solution of Exercise 1.13 when v0 = 0.

392 7 Introduction to Classes

the object. Having understood class Vec2D from Chapter 7.4, it should
be straightforward to understand the class below:

class IntervalMath:
def __init__(self, lower, upper):

self.lo = float(lower)
self.up = float(upper)

def __add__(self, other):
a, b, c, d = self.lo, self.up, other.lo, other.up
return IntervalMath(a + c, b + d)

def __sub__(self, other):
a, b, c, d = self.lo, self.up, other.lo, other.up
return IntervalMath(a - d, b - c)

def __mul__(self, other):
a, b, c, d = self.lo, self.up, other.lo, other.up
return IntervalMath(min(a*c, a*d, b*c, b*d),

max(a*c, a*d, b*c, b*d))

def __div__(self, other):
a, b, c, d = self.lo, self.up, other.lo, other.up
[c,d] cannot contain zero:
if c*d <= 0:

raise ValueError\
(’Interval %s cannot be denominator because ’\
’it contains zero’)

return IntervalMath(min(a/c, a/d, b/c, b/d),
max(a/c, a/d, b/c, b/d))

def __str__(self):
return ’[%g, %g]’ % (self.lo, self.up)

The code of this class is found in the file IntervalMath.py. A quick
demo of the class can go as

I = IntervalMath
a = I(-3,-2)
b = I(4,5)
expr = ’a+b’, ’a-b’, ’a*b’, ’a/b’
for e in expr:

print ’%s =’ % e, eval(e)

The output becomes

a+b = [1, 3]
a-b = [-8, -6]
a*b = [-15, -8]
a/b = [-0.75, -0.4]

This gives the impression that with very short code we can provide
a new type that enables computations with interval arithmetics and
thereby with uncertain quantities. However, the class above has severe
limitations as shown next.

Consider computing the uncertainty of aq if a is expressed as an
interval [4, 5] and q is a number (float):

a = I(4,5)
q = 2
b = a*q

7.7 Summary 393

This does not work so well:
File "IntervalMath.py", line 15, in __mul__
a, b, c, d = self.lo, self.up, other.lo, other.up

AttributeError: ’float’ object has no attribute ’lo’

The problem is that a*q is a multiplication between an IntervalMath ob-
ject a and a float object q. The __mul__ method in class IntervalMath
is invoked, but the code there tries to extract the lo attribute of q,
which does not exist since q is a float.

We can extend the __mul__ method and the other methods for arith-
metic operations to allow for a number as operand – we just convert
the number to an interval with the same lower and upper bounds:

def __mul__(self, other):
if isinstance(other, (int, float)):

other = IntervalMath(other, other)
a, b, c, d = self.lo, self.up, other.lo, other.up
return IntervalMath(min(a*c, a*d, b*c, b*d),

max(a*c, a*d, b*c, b*d))

Looking at the formula g = 2y0T
−2, we run into a related prob-

lem: now we want to multiply 2 (int) with y0, and if y0 is an interval,
this multiplication is not defined among int objects. To handle this
case, we need to implement an __rmul__(self, other) method for do-
ing other*self, as explained in Chapter 7.5.4:

def __rmul__(self, other):
if isinstance(other, (int, float)):

other = IntervalMath(other, other)
return other*self

Similar methods for addition, subtraction, and division must also be
included in the class.

Returning to g = 2y0T
−2, we also have a problem with T−2 when T is

an interval. The expression T**(-2) invokes the power operator (at least
if we do not rewrite the expression as 1/(T*T)), which requires a __pow__

method in class IntervalMath. We limit the possibility to have integer
powers, since this is easy to compute by repeated multiplications:

def __pow__(self, exponent):
if isinstance(exponent, int):

p = 1
if exponent > 0:

for i in range(exponent):
p = p*self

elif exponent < 0:
for i in range(-exponent):

p = p*self
p = 1/p

else: # exponent == 0
p = IntervalMath(1, 1)

return p
else:

raise TypeError(’exponent must int’)

Another natural extension of the class is the possibility to convert an
interval to a number by choosing the midpoint of the interval:

394 7 Introduction to Classes

>>> a = IntervalMath(5,7)
>>> float(a)
6

float(a) calls a.__float__(), which we implement as

def __float__(self):
return 0.5*(self.lo + self.up)

A __repr__method returning the right syntax for recreating the present
instance is also natural to include in any class:

def __repr__(self):
return ’%s(%g, %g)’ % \

(self.__class__.__name__, self.lo, self.up)

We are now in a position to test out the extended class
IntervalMath.

>>> g = 9.81
>>> y_0 = I(0.99, 1.01) # 2% uncertainty
>>> Tm = 0.45 # mean T
>>> T = I(Tm*0.95, Tm*1.05) # 10% uncertainty
>>> print T
[0.4275, 0.4725]
>>> g = 2*y_0*T**(-2)
>>> g
IntervalMath(8.86873, 11.053)
>>> # Compute with mean values
>>> T = float(T)
>>> y = 1
>>> g = 2*y_0*T**(-2)
>>> print ’%.2f’ % g
9.88

Another formula, the volume V = 4
3πR

3 of a sphere, shows great
sensitivity to uncertainties in R:

>>> Rm = 6
>>> R = I(Rm*0.9, Rm*1.1) # 20 % error
>>> V = (4./3)*pi*R**3
>>> V
IntervalMath(659.584, 1204.26)
>>> print V
[659.584, 1204.26]
>>> print float(V)
931.922044761
>>> # Compute with mean values
>>> R = float(R)
>>> V = (4./3)*pi*R**3
>>> print V
904.778684234

Here, a 20% uncertainty in R gives almost 60% uncertainty in V , and
the mean of the V interval is significantly different from computing the
volume with the mean of R.

The complete code of class IntervalMath is found in
IntervalMath.py. Compared to the implementations shown above,

7.8 Exercises 395

the real implementation in the file employs some ingenious construc-
tions and help methods to save typing and repeating code in the
special methods for arithmetic operations.

7.8 Exercises

Exercise 7.1. Make a function class.
Make a class F that implements the function

f(x; a,w) = e−ax sin(wx).

A value(x) method computes values of f , while a and w are class
attributes. Test the class with the following main program:

from math import *
f = F(a=1.0, w=0.1)
print f.value(x=pi)
f.a = 2
print f.value(pi)

Name of program file: F.py. �

Exercise 7.2. Extend the class from Ch. 7.2.1.
Add an attribute transactions to the Account class from Chap-

ter 7.2.1. The new attribute counts the number of transactions done in
the deposit and withdraw methods. The total number of transactions
should be printed in the dump method. Write a simple test program to
demonstrate that transaction gets the right value after some calls to
deposit and withdraw. Name of program file: Account2.py. �

Exercise 7.3. Make classes for a rectangle and a triangle.
The purpose of this exercise is to create classes like class Circle

from Chapter 7.2.3 for representing other geometric figures: a rectangle
with width W , height H, and lower left corner (x0, y0); and a general
triangle specified by its three vertices (x0, y0), (x1, y1), and (x2, y2) as
explained in Exercise 3.9. Provide three methods: __init__ (to initialize
the geometric data), area, and circumference. Name of program file:
geometric_shapes.py. �

Exercise 7.4. Make a class for straight lines.
Make a class Line whose constructor takes two points p1 and p2 (2-

tuples or 2-lists) as input. The line goes through these two points (see
function line in Chapter 3.1.7 for the relevant formula of the line).
A value(x) method computes a value on the line at the point x. Here
is a demo in an interactive session:

396 7 Introduction to Classes

>>> from Line import Line
>>> line = Line((0,-1), (2,4))
>>> print line.value(0.5), line.value(0), line.value(1)
0.25 -1.0 1.5

Name of program file: Line.py. �

Exercise 7.5. Improve the constructor in Exer. 7.4.
The constructor in class Line in Exercise 7.4 takes two points as

arguments. Now we want to have more flexibility in the way we specify
a straight line: we can give two points, a point and a slope, or a slope
and the line’s interception with the y axis. Hint: Let the constructor
take two arguments p1 and p2 as before, and test with isinstance

whether the arguments are float or tuple/list to determine what
kind of data the user supplies:

if isinstance(p1, (tuple,list)) and isinstance(p2, (float,int)):
p1 is a point and p2 is slope
self.a = p2
self.b = p1[1] - p2*p1[0]

elif ...

Name of program file: Line2.py. �

Exercise 7.6. Make a class for quadratic functions.
Consider a quadratic function f(x; a, b, c) = ax2 + bx + c. Make a

class Quadratic for representing f , where a, b, and c are attributes, and
the methods are

1. value for computing a value of f at a point x,
2. table for writing out a table of x and f values for n x values in the

interval [L,R],
3. roots for computing the two roots.

Name of program file: Quadratic.py. �

Exercise 7.7. Make a class for linear springs.
To elongate a spring a distance x, one needs to pull the spring with

a force kx. The parameter k is known as the spring constant. The
corresponding potential energy in the spring is 1

2kx
2.

Make a class for springs. Let the constructor store k as a class at-
tribute, and implement the methods force(x) and energy(x) for eval-
uating the force and the potential energy, respectively.

The following function prints a table of function values for an arbi-
trary mathematical function f(x). Demonstrate that you can send the
force and energy methods as the f argument to table.

def table(f, a, b, n, heading=’’):
"""Write out f(x) for x in [a,b] with steps h=(b-a)/n."""
print heading
h = (b-a)/float(n)
for i in range(n+1):

x = a + i*h
print ’function value = %10.4f at x = %g’ % (f(x), x)

7.8 Exercises 397

Name of program file: Spring.py. �

Exercise 7.8. Wrap functions in a class.
The purpose of this exercise is to offer the code from Exercises 5.14–

5.16 as a class. We want to construct a class Lagrange which works like
this:

import numpy as np
Compute some interpolation points along y=sin(x)
xp = np.linspace(0, pi, 5)
yp = np.sin(xp)

Lagrange’s interpolation polynomial
p_L = LagrangeInterpolation(xp, yp)
x = 1.2
print ’p_L(%g)=g’ (x, p_L(x)),
print ’sin(%g)=g’ (x, sin(x))
p_L.plot()

The plot method visualizes pL(x) for x between the first and last in-
terpolation point (xp[0] and xp[-1]). The class LagrangeInterpolation
is easy to make if you import the Lagrange_poly2 module from Exer-
cise 5.15 and make appropriate calls to the p_L and graph functions in
this module. Also include a verify function outside the class and call it
as described in Exercise 5.14, but now using the class instead of the p_L
function directly. Use the class to repeat the investigations that show
how the interpolating polynomial may oscillate as the number of in-
terpolation points increases. Name of program file: Lagrange_poly3.py.
�

Exercise 7.9. Extend the constructor in Exer. 7.8.
Instead of manually computing the interpolation points, we now

want the possibility to pass on some Python function f(x) to the con-
structor in the class from Exercise 7.9. Typically, we would like to write
this code:

from numpy import exp, sin, pi

def myfunction(x):
return exp(-x/2.0)*sin(x)

p_L = LagrangeInterpolation(myfunction, x=[0, pi], n=11)

In this particular example, n = 11 uniformly distributed x points
between 0 and π are computed, and the corresponding y values
are obtained by calling myfunction. The previous types of calls,
LangrangeInterpolation(xp, yp), must still be valid.

The constructor in class LagrangeInterpolation must now accept
two different set of arguments (xp, yp vs. f, x, n). You can use
the isinstance(a, t) function to test if object a is of type t. De-
clare the constructor with three arguments arg1, arg2, and arg3=None.
Test if arg1 and arg2 are arrays (isinstance(arg1, numpy.ndarray)),

398 7 Introduction to Classes

and in that case, set xp=arg1 and yp=arg2. On the other hand, if
arg1 is a function (callable(arg1) is True), arg2 is a list or tuple
(isinstance(arg2, (list,tuple))), and arg3 is an integer, set f=arg1,
x=arg2, and n=arg3. Name of program file: Lagrange_poly4.py. �

Exercise 7.10. Deduce a class implementation.
Write a class Hello that behaves as illustrated in the following ses-

sion:

>>> a = Hello()
>>> print a(’students’)
Hello, students!
>>> print a
Hello, World!

Name of program file: Hello.py. �

Exercise 7.11. Use special methods in Exer. 7.1.
Modify the class from Exercise 7.1 such that the following code

works:

f = F2(1.0, 0.1)
print f(pi)
f.a = 2
print f(pi)
print f

Name of program file: F2.py. �

Exercise 7.12. Extend the class from Ch. 7.2.1.
As alternatives to the deposit and withdrawmethods in class Account

class from Chapter 7.2.1, we could use += for deposit and -= for
withdraw. The special methods __iadd__ and __isub__ implement the
+= and -= operators, respectively. For instance, a -= p implies a call
to a.__isub__(p). One important feature of __iadd__ and __isub__ is
that they must return self to work properly, cf. the documentation of
these methods in the Python Language Reference (not to be confused
with the Python Library Reference).

Implement the += and -= operators, a __str__ method, and prefer-
ably a __repr__ method. Provide, as always, some code to test that the
new methods work as intended. Name of program file: Account3.py. �

Exercise 7.13. Implement a class for numerical differentiation.
A widely used formula for numerical differentiation of a function

f(x) takes the form

f ′(x) ≈ f(x+ h)− f(x− h)

2h
. (7.7)

This formula usually gives more accurate derivatives than (7.1) because
it applies a centered, rather than a one-sided, difference.

7.8 Exercises 399

The goal of this exercise is to use the formula (7.7) to automatically
differentiate a mathematical function f(x) implemented as a Python
function f(x). More precisely, the following code should work:

def f(x):
return 0.25*x**4

df = Central(f) # make function-like object df
df(x) computes the derivative of f(x) approximately:
for x in (1, 5, 10):

df_value = df(x) # approx value of derivative of f at point x
exact = x**3 # exact value of derivative
print "f’(%d)=%g (error=%.2E)" % (x, df_value, exact-df_value)

Implement class Central and test that the code above works. In-
clude an optional argument h to the constructor in class Central so
that one can specify the value of h in the approximation (7.7). Ap-
ply class Central to produce a table of the derivatives and the as-
sociated approximation errors for f(x) = lnx, x = 10, and h =
0.5, 0.1, 10−3, 10−5, 10−7, 10−9, 10−11. Collect class Central and the two
applications of the class in the same file, but organize the file as a
module so that class Central can be imported in other files. Name of
program file: Central.py. �

Exercise 7.14. Verify a program.
Consider this program file for computing a backward difference ap-

proximation to the derivative of a function f(x):

from math import *

class Backward:
def __init__(self, f, h=e-9):

self.f, self.h = f, h
def __call__(self, x):

h, f = self.h, self.f
return (f(x) - f(x-h))/h # finite difference

dsin = Backward(sin)
e = dsin(0) - cos(0); print ’error:’, e
dexp = Backward(exp, h=e-7)
e = dexp(0) - exp(0); print ’error:’, e

The output becomes

error: -1.00023355634
error: 371.570909212

Is the approximation that bad, or are there bugs in the program? �

Exercise 7.15. Test methods for numerical differentiation.
Make a function table(f, x, hlist, dfdx=None) for writing out a

nicely formatted table of the errors in the numerical derivative of a
function f(x) at point x using the two formulas (7.1) and (7.7) and
their implementations in classes Derivative (from Chapter 7.3.2), and
Central (from Exercise 7.13). The first column in the table shows a

400 7 Introduction to Classes

list of h values (hlist), while the two next columns contain the corre-
sponding errors arising from the two numerical approximations of the
first derivative. The dfdx argument may hold a Python function that
returns the exact derivative. Write out an additional column with the
exact derivative if dfdx is given (i.e., not None).

Call table for each of the functions x2, sin6(πx), and tanh(10x),
and the x values 0 and 0.25. Can you see from the errors in the tables
which of the three approximations that seems to have the overall best
performance in these examples? Plot the three functions on [−1, 1] and
try to understand the behavior of the various approximations from the
plots. Name of program file: Derivative_comparisons.py. �

Exercise 7.16. Modify a class for numerical differentiation.
Make the two attributes h and f of class Derivative from Chap-

ter 7.3.2 protected as explained in Chapter 7.2.1. That is, prefix h

and f with an underscore to tell users that these attributes should
not be accessed directly. Add two methods get_precision() and
set_precision(h) for reading and changing h. Apply the modified
class to make a table of the approximation error of the derivative of
f(x) = lnx for x = 1 and h = 2−k, k = 1, 5, 9, 13, . . . , 45. Name of
program file: Derivative_protected.py. �

Exercise 7.17. Make a class for summation of series.
Our task in this exercise is to calculate a sum S(x) =

∑N
k=M fk(x),

where fk(x) is a term in a sequence which is assumed to decrease in
absolute value. In class Sum, for computing S(x), the constructor re-
quires the following three arguments: fk(x) as a function f(k, x), M
as an int object M, and N as an int object N. A __call__ method com-
putes and returns S(x). The next term in the series, fN+1(x), should
be computed and stored as an attribute first_neglected_term. Here is
an example where we compute S(x) =

∑N
k=0(−x)k:

def term(k, x): return (-x)**k

S = Sum(term, M=0, N=100)
x = 0.5
print S(x)
Print the value of the first neglected term from last S(x) comp.
print S.first_neglected_term

Calculate by hand what the output of this test becomes, and use it to
verify your implementation of class Sum.

Apply class Sum to compute the Taylor polynomial approximation
for sinx at x = π, 30π and N = 5, 10, 20. Compute the error and com-
pare with the first neglected term fN+1(x). Present the result in nicely
formatted tables. Repeat such calculations for the Taylor polynomial
for e−x at x = 1, 3, 5 and N = 5, 10, 20. Also demonstrate how class Sum
can be used to calculate the sum (3.1) on page 94 (choose x = 2, 5, 10

7.8 Exercises 401

and N = 5, 10, 20). Formulas for the Taylor polynomials can be looked
up in Exercise 5.28. Name of program file: Sum.py. �

Exercise 7.18. Apply the differentiation class from Ch. 7.3.2.
Use class Derivative from page 362 to calculate the derivative of

the function v on page 252 with respect to the parameter n, i.e., dv
dn .

Choose β/μ0 = 50 and r/R = 0.5, and compare the result with the
exact derivative. Hint: Make a class similar to VelocityProfile on
page 350, but provide r as a parameter to the constructor, instead
of n, and let __call__ take n as parameter. Name of program file:
VelocityProfile_deriv.py. �

Exercise 7.19. Make a class for the Heaviside function.
Use a class to implement the discontinuous Heaviside function (3.25)

from Exercise 3.24 and the smoothed continuous version (3.26) from
Exercise 3.25 such that the following code works:

H = Heaviside() # original discontinous Heaviside function
print H(0.1)
H = Heaviside(eps=0.8) # smoothed continuous Heaviside function
print H(0.1)

Name of program file: Heaviside_class1.py. �

Exercise 7.20. Add vectorization to the class in Exer. 7.19.
Ideally, class Heaviside from Exercise 7.19 should allow array argu-

ments:

H = Heaviside() # original discontinous Heaviside function
x = numpy.linspace(-1, 1, 11)
print H(x)
H = Heaviside(eps=0.8) # smoothed Heaviside function
print H(x)

Use ideas from Chapter 5.5.2 to extend class Heaviside such that the
code segment above works. Name of program file: Heaviside_class2.py.
�

Exercise 7.21. Equip the class in Exer. 7.19 with plotting.
Another desired feature in class Heaviside from Exercises 7.19 and

7.20 is support for plotting the function in a given interval between
xmin and xmax:

H = Heaviside()
x, y = H.plot(xmin=-4, xmax=4) # H(x-3)
from matplotlib.pyplot import plot
plot(x, y)

H = Heaviside(eps=1)
x, y = H.plot(xmin=-4, xmax=4)
plot(x, y)

Techniques from Chapter 5.4.1 must in the first case be used to return
arrays x and y such that the discontinuity is exactly reproduced. In

402 7 Introduction to Classes

the continuous (smoothed) case, one needs to compute a sufficiently
fine resolution (x) based on the eps parameter, e.g., 201/ε points in the
interval [−ε, ε], with a coarser set of coordinates outside this interval
where the smoothed Heaviside function is almost constant, 0 or 1. Ex-
tend class Heaviside with such a plot method. Name of program file:
Heaviside_class3.py. �

Exercise 7.22. Make a class for the indicator function.
Consider the indicator function from Exercise 3.26. Make a class

implementation of this function, using the definition (3.28) in terms
of Heaviside functions. Allow for an ε parameter in the calls to the
Heaviside function, as in Exercise 7.19, such that we can easily choose
between a discontinuous and a smoothed, continuous version of the
indicator function:

I = Indicator(a, b) # indicator function on [a,b]
print I(b+0.1), I((a+b)/2.0)
I = Indicator(0, 2, eps=1) # smoothed indicator function on [0,2]
print I(0), I(1), I(1.9)

Note that if you build on the version of class Heaviside in Exercise 7.20,
any Indicator instance will accept array arguments too. Name of pro-
gram file: Indicator.py. �

Exercise 7.23. Make a class for piecewise constant functions.
The purpose of this exercise is to implement a piecewise constant

function, as explained in Exercise 3.27, in a Python class. The following
code demonstrates the minimum functionality of the class:

f = PiecewiseConstant([(0.4, 1), (0.2, 1.5), (0.1, 3)], xmax=4)
print f(1.5), f(1.75), f(4)

x = np.linspace(0, 4, 21)
print f(x)

Name of program file: PiecewiseConstant1.py. �

Exercise 7.24. Extend the class in Exer. 7.23 with plot functionality.
Add a plot method to class PiecewiseConstant from Exercise 7.23

such that we can easily plot the graph of the piecewise constant func-
tion. The plot method should return coordinate arrays x and y as
explained in Exercise 7.21:

f = PiecewiseConstant([(0.4, 1), (0.2, 1.5), (0.1, 3)], xmax=4)
x, y = f.plot()
from matplotlib.pyplot import plot
plot(x, y)

Name of program file: PiecewiseConstant2.py. �

Exercise 7.25. Make a module for piecewise constant functions.
The purpose of this exercise is to pack the extended class

PiecewiseConstant from Exercise 7.24 in a module, together with

7.8 Exercises 403

the most advanced versions of the classes Heaviside and Indicator

from Exercises 7.19–7.22. Make a function _test() in the module
which checks that all the functionality of the classes works as intended.
Call _test() from the module’s test block. Name of program file:
PiecewiseConstant.py. �

Exercise 7.26. Use classes for computing inverse functions.
Appendix A.1.11 describes a method and implementation for com-

puting the inverse function of a given function. The purpose of the
present exercise is to improve the implementation in Appendix A.1.11
by introducing classes. This results in software that is more flexible
with respect to the way we can specify the function to be inverted.

Implement the F and dFdx functions from Appendix A.1.11 as classes
to avoid relying on global variables for h, xi, etc. Also introduce a class
InverseFunction to run the complete algorithm and store the g array
(from Appendix A.1.11) as an array attribute values. Here is a typical
use of class InverseFunction:

>>> from InverseFunction import InverseFunction as I
>>> from scitools.std import *
>>> def f(x):
... return log(x)
...
>>> x = linspace(1, 5, 101)
>>> f_inv = I(f, x)
>>> plot(x, f(x), x, f_inv.values)

Check, in the constructor, that f is monotonically increasing or de-
creasing over the set of coordinates (x). Errors may occur in the com-
putations because Newton’s method might divide by zero or diverge.
Make sure sensible error messages are reported in those cases.

A __call__ method in class InverseFunction should evaluate the
inverse function at an arbitrary point x. This is somewhat challenging
since we only have the inverse function at discrete points along its curve.
With aid of a function wrap2callable from scitools.std one can turn
(x, y) points on a curve, stored in arrays x and y, into a (piecewise)
continuous Python function q(x) by:

q = wrap2callable((x, y))

In a sense, the wrap2callable call draws lines between the discrete
points to form the resulting continuous function. Use wrap2callable

to make the __call__ method evaluate the inverse function at any
point in the interval from x[0] to x[-1]. Name of program file:
InverseFunction.py. �

Exercise 7.27. Vectorize a class for numerical integration.
Implement a vectorized version of the Trapezoidal rule in class

Integral from Chapter 7.3.3. Use sum to compute the sum in the for-
mula, and allow for either Python’s built-in sum function or for the

404 7 Introduction to Classes

sum function from numpy. Apply the time module (see Appendix H.6.1)
to measure the relative efficiency of the scalar version versus the two
vectorized versions. Name of program file: Integral_vec.py. �

Exercise 7.28. Speed up repeated integral calculations.
The observant reader may have noticed that our Integral class from

Chapter 7.3.3 is very inefficient if we want to tabulate or plot a function
F (x) =

∫ x
a f(x) for several consecutive values of x, say x0 < x1 < · · · <

xn. Requesting F (xk) will recompute the integral computed as part of
F (xk−1), and this is of course waste of computer work. Use the ideas
from Appendix A.1.7 to modify the __call__ method such that if x is
an array, assumed to contain coordinates of increasing value: x0 < x1 <
· · · < xn, the method returns an array with F (x0), F (x1), . . . , F (xn).
Name of program file: Integral_eff.py. �

Exercise 7.29. Apply a polynomial class.
The Taylor polynomial of degree N for the exponential function ex

is given by

p(x) =
N∑
k=0

xk

k!
.

Make a program that (i) imports class Polynomial from page 369,
(ii) reads x and a series of N values from the command line, (iii) cre-
ates a Polynomial instance representing the Taylor polynomial, and
(iv) prints the values of p(x) for the given N values as well as the
exact value ex. Try the program out with x = 0.5, 3, 10 and N =
2, 5, 10, 15, 25. Name of program file: Polynomial_exp.py. �

Exercise 7.30. Find a bug in a class for polynomials.
Go through this alternative implementation of class Polynomial from

page 369 and explain each line in detail:

class Polynomial:
def __init__(self, coefficients):

self.coeff = coefficients

def __call__(self, x):
return sum([c*x**i for i, c in enumerate(self.coeff)])

def __add__(self, other):
maxlength = max(len(self), len(other))
Extend both lists with zeros to this maxlength
self.coeff += [0]*(maxlength - len(self.coeff))
other.coeff += [0]*(maxlength - len(other.coeff))
result_coeff = self.coeff
for i in range(maxlength):

result_coeff[i] += other.coeff[i]
return Polynomial(result_coeff)

The enumerate function, used in the __call__ method, enables us to
iterate over a list somelist with both list indices and list elements: for
index, element in enumerate(somelist). Write the code above in a

7.8 Exercises 405

file, and demonstrate that adding two polynomials does not work. Find
the bug and correct it. Name of program file: Polynomial_error.py. �

Exercise 7.31. Implement subtraction of polynomials.
Implement the special method __sub__ in class Polynomial from

page 369. Name of program file: Polynomial_sub.py. �

Exercise 7.32. Represent a polynomial by a NumPy array.
Introduce a Numerical Python array for self.coeff in class

Polynomial from page 369. Go through the class code and run the
statements in the _test method in the Polynomial.py file to locate
which statements that need to be modified because self.coeff is an
array and not a list. Name of program file: Polynomial_array1.py. �

Exercise 7.33. Vectorize a class for polynomials.
Introducing an array instead of a list in class Polynomial, as sug-

gested in Exercise 7.32, does not enhance the implementation. A real
enhancement arise when the code is vectorized, i.e., when loops are
replaced by operations on whole arrays.

First, vectorize the __add__ method by adding the common parts
of the coefficients arrays and then appending the rest of the longest
array to the result (appending an array a to an array b is done by
concatenate(a, b)).

Second, vectorize the __call__ method by observing that evaluation
of a polynomial,

∑n−1
i=0 cix

i, can be computed as the inner product of
two arrays: (c0, . . . , cn−1) and (x0, x1, . . . , xn−1). The latter array can
be computed by x**p, where p is an array with powers 0, 1, . . . , n− 1.

Third, the differentiate method can be vectorized by the state-
ments

n = len(self.coeff)
self.coeff[:-1] = linspace(1, n-1, n-1)*self.coeff[1:]
self.coeff = self.coeff[:-1]

Show by hand calculations in a case where n is 3 that the vector-
ized statements produce the same result as the original differentiate
method.

The __mul__ method is more challenging to vectorize so you may
leave this unaltered. Check that the vectorized versions of __add__,
__call__, and differentiate work by comparing with the scalar code
from Exercise 7.32 or the original, list-based Polynomial class. Name of
program file: Polynomial_array2.py. �

Exercise 7.34. Use a dict to hold polynomial coefficients; add.
Use a dictionary for self.coeff in class Polynomial from page 369.

The advantage with a dictionary is that only the nonzero coefficients
need to be stored. Let self.coeff[k] hold the coefficient of the xk

term. Implement a constructor and the __add__ method. Exemplify

406 7 Introduction to Classes

the implementation by adding x− 3x100 and x20 − x+ 4x100. Name of
program file: Polynomial_dict1.py. �

Exercise 7.35. Use a dict to hold polynomial coefficients; mul.
Extend the class in Exercise 7.34 with a __mul__ method. First,

study the algorithm in Chapter 7.3.7 for the __mul__ method when
the coefficients are stored in lists. Then modify the algorithm to
work with dictionaries. Implement the algorithm and exemplify it by
multiplying x − 3x100 and x20 − x + 4x100. Name of program file:
Polynomial_dict2.py. �

Exercise 7.36. Extend class Vec2D to work with lists/tuples.
The Vec2D class from Chapter 7.4 supports addition and subtraction,

but only addition and subtraction of two Vec2D objects. Sometimes we
would like to add or subtract a point that is represented by a list or a
tuple:

u = Vec2D(-2, 4)
v = u + (1,1.5)
w = [-3, 2] - v

That is, a list or a tuple must be allowed in the right or left operand.
Use ideas from Chapters 7.5.3 and 7.5.4 to implement this extension.
Name of program file: Vec2D_lists.py. �

Exercise 7.37. Extend class Vec2D to 3D vectors.
Extend the implementation of class Vec2D from Chapter 7.4 to a class

Vec3D for vectors in three-dimensional space. Add a method cross for
computing the cross product of two 3D vectors. Name of program file:
Vec3D.py. �

Exercise 7.38. Use NumPy arrays in class Vec2D.
The internal code in class Vec2D from Chapter 7.4 can be valid for

vectors in any space dimension if we represent the vector as a NumPy
array in the class instead of separate variables x and y for the vector
components. Make a new class Vec where you apply NumPy function-
ality in the methods. The constructor should be able to treat all the
following ways of initializing a vector:

a = array([1, -1, 4], float) # numpy array
v = Vec(a)
v = Vec([1, -1, 4]) # list
v = Vec((1, -1, 4)) # tuple
v = Vec(1, -1) # coordinates

We will provide some helpful advice. In the constructor, use variable
number of arguments as described in Appendix H.5. All arguments are
then available as a tuple, and if there is only one element in the tuple, it
should be an array, list, or tuple you can send through asarray to get a
NumPy array. If there are many arguments, these are coordinates, and

7.8 Exercises 407

the tuple of arguments can be transformed by array to a NumPy array.
Assume in all operations that the involved vectors have equal dimension
(typically that other has the same dimension as self). Recall to return
Vec objects from all arithmetic operations, not NumPy arrays, because
the next operation with the vector will then not take place in Vec but
in NumPy. If self.v is the attribute holding the vector as a NumPy
array, the addition operator will typically be implemented as

class Vec:
...
def __add__(self, other):

return Vec(selv.v + other.v)

Name of program file: Vec.py. �

Exercise 7.39. Use classes in the program from Ch. 6.7.2.
Modify the files/students.py program described in Chapter 6.7.2

by making the values of the data dictionary instances of class Student.
This class contains a student’s name and a list of the courses. Each
course is represented by an instance of class Course. This class contains
the course name, the semester, the credit points, and the grade. Make
__str__ and/or __repr__ write out the contents of the objects. Name
of program file: Student_Course.py. �

Exercise 7.40. Use a class in Exer. A.25.
The purpose of this exercise is to make the program from Exer-

cise A.25 on page 591 more flexible by creating a class that runs and
archives all the experiments. Here is a sketch of the class:

class GrowthLogistic:
def __init__(self, show_plot_on_screen=False):

self.experiments = []
self.show_plot_on_screen = show_plot_on_screen
self.remove_plot_files()

def run_one(self, y0, q, N):
"""Run one experiment."""
Compute y[n] in a loop...
plotfile = ’tmp_y0_%g_q_%g_N_%d.png’ % (y0, q, N)
self.experiments.append({’y0’: y0, ’q’: q, ’N’: N,

’mean’: mean(y[20:]),
’y’: y, ’plotfile’: plotfile})

Make plot...

def run_many(self, y0_list, q_list, N):
"""Run many experiments."""
for q in q_list:

for y0 in y0_list:
self.run_one(y0, q, N)

def remove_plot_files(self):
"""Remove plot files with names tmp_y0*.png."""
import os, glob
for plotfile in glob.glob(’tmp_y0*.png’):

os.remove(plotfile)

def report(self, filename=’tmp.html’):

408 7 Introduction to Classes

"""
Generate an HTML report with plots of all
experiments generated so far.
"""
Open file and write HTML header...
for e in self.experiments:

html.write(’<p>\n’ % e[’plotfile’])
Write HTML footer and close file...

Each time the run_one method is called, data about the current exper-
iment is stored in the experiments list. Note that experiments contains
a list of dictionaries. When desired, we can call the report method to
collect all the plots made so far in an HTML report. A typical use of
the class goes as follows:

N = 50
g = GrowthLogistic()
g.run_many(y0_list=[0.01, 0.3],

q_list=[0.1, 1, 1.5, 1.8] + [2, 2.5, 3], N=N)
g.run_one(y0=0.01, q=3, N=1000)
g.report()

Make a complete implementation of class GrowthLogistic and test it
with the small program above. The program file should be constructed
as a module. Name of program file: growth_logistic5.py. �

Exercise 7.41. Apply the class from Exer. 7.40 interactively.
Class GrowthLogistic from Exercise 7.40 is very well suited for inter-

active exploration. Here is a possible sample session for illustration:

>>> from growth_logistic5 import GrowthLogistic
>>> g = GrowthLogistic(show_plot_on_screen=True)
>>> q = 3
>>> g.run_one(0.01, q, 100)
>>> y = g.experiments[-1][’y’]
>>> max(y)
1.3326056469620293
>>> min(y)
0.0029091569028512065

Extend this session with an investigation of the oscillations in the so-
lution yn. For this purpose, make a function for computing the local
maximum values yn and the corresponding indices where these local
maximum values occur. We can say that yi is a local maximum value
if

yi−1 < yi > yi+1.

Plot the sequence of local maximum values in a new plot. If I0, I1, I2, . . .
constitute the set of increasing indices corresponding to the local max-
imum values, we can define the periods of the oscillations as I1 − I0,
I2 − I1, and so forth. Plot the length of the periods in a separate
plot. Repeat this investigation for q = 2.5. Name of program file:
GrowthLogistic_interactive.py. �

7.8 Exercises 409

Exercise 7.42. Find local and global extrema of a function.
Extreme points of a function f(x) are normally found by solving

f ′(x) = 0. A much simpler method is to evaluate f(x) for a set of
discrete points in the interval [a, b] and look for local minima and
maxima among these points. We work with n equally spaced points
a = x0 < x1 < · · · < xn−1 = b, xi = a+ ih, h = (b− a)/(n− 1).

1. First we find all local extreme points in the interior of the domain.
Local minima are recognized by

f(xi−1) > f(xi) < f(xi+1), i = 1, . . . , n− 2.

Similarly, at a local maximum point xi we have

f(xi−1) < f(xi) > f(xi+1), i = 1, . . . , n− 2.

We let Pmin be the set of x values for local minima and Fmin the
set of the corresponding f(x) values at these minimum points. Two
sets Pmax and Fmax are defined correspondingly, containing the max-
imum points and their values.

2. The boundary points x = a and x = b are for algorithmic simplicity
also defined as local extreme points: x = a is a local minimum if
f(a) < f(x1), and a local maximum otherwise. Similarly, x = b is a
local minimum if f(b) < f(xn−2), and a local maximum otherwise.
The end points a and b and the corresponding function values must
be added to the sets Pmin, Pmax, Fmin, Fmax.

3. The global maximum point is defined as the x value corresponding
to the maximum value in Fmax. The global minimum point is the x
value corresponding to the minimum value in Fmin.

Make a class MinMax with the following functionality:

• The constructor takes f(x), a, b, and n as arguments, and calls
a method _find_extrema to compute the local and global extreme
points.

• The method _find_extrema implements the algorithm above
for finding local and global extreme points, and stores the sets
Pmin, Pmax, Fmin, Fmax as list attributes in the (self) instance.

• The method get_global_minimum returns the global minimum point
(x).

• The method get_global_maximum returns the global maximum point
(x).

• The method get_all_minima returns a list or array of all minimum
points.

• The method get_all_maxima returns a list or array of all maximum
points.

• The method __str__ returns a string where all the min/max points
are listed, plus the global extreme points.

410 7 Introduction to Classes

Here is a sample code using class MinMax:

def f(x):
return x**2*exp(-0.2*x)*sin(2*pi*x)

m = MinMax(f, 0, 4, 5001)
print m

The output becomes

All minima: 0.8056, 1.7736, 2.7632, 3.7584, 0
All maxima: 0.3616, 1.284, 2.2672, 3.2608, 4
Global minimum: 3.7584
Global maximum: 3.2608

Make sure that the program also works for functions without local
extrema, e.g., linear functions f(x) = px + q. Name of program file:
minmaxf.py. �

Exercise 7.43. Improve the accuracy in Exer. 7.42.
The algorithm in Exercise 7.42 finds local extreme points xi, but

we know is that the true extreme point is in the interval (xi−1, xi+1).
A more accurate algorithm may take this interval as a starting point
and run a Bisection method (see Chapter 4.6.2) to find the ex-
treme point x̄ such that f ′(x̄) = 0. In class MinMax, add a method
_refine_extrema, which goes through all the interior local minima and
maxima and solves f ′(x̄) = 0. Compute f ′(x) using the Derivative

class (Chapter 7.3.2 with h � xi+1 − xi−1. Name of program file:
minmaxf2.py. �

Exercise 7.44. Find the optimal production for a company.
The company PROD produces two different products, P1 and P2,

based on three different raw materials, M1, M2 and M3. The following
table shows how much of each raw material Mi that is required to
produce a single unit of each product Pj :

P1 P2

M1 2 1

M2 5 3

M3 0 4

For instance, to produce one unit of P2 one needs 1 unit of M1, 3 units
of M2 and 4 units of M3. Furthermore, PROD has available 100, 80
and 150 units of material M1, M2 and M3 respectively (for the time
period considered). The revenue per produced unit of product P1 is 150
NOK, and for one unit of P2 it is 175 NOK. On the other hand the raw
materials M1, M2 and M3 cost 10, 17 and 25 NOK per unit, respectively.
The question is: How much should PROD produce of each product? We
here assume that PROD wants to maximize its net revenue (which is
revenue minus costs).

7.8 Exercises 411

(a) Let x and y be the number of units produced of product P1 and
P2, respectively. Explain why the total revenue f(x, y) is given by

f(x, y) = 150x− (10 · 2 + 17 · 5)x+ 175y − (10 · 1 + 17 · 3 + 25 · 4)y

and simplify this expression. The function f(x, y) is linear in x and
y (check that you know what linearity means).

(b) Explain why PROD’s problem may be stated mathematically as
follows:

maximize f(x, y)
subject to

2x + y ≤ 100
5x + 3y ≤ 80

4y ≤ 150
x ≥ 0, y ≥ 0.

(7.8)

This is an example of a linear optimization problem.
(c) The production (x, y) may be considered as a point in the plane.

Illustrate geometrically the set T of all such points that satisfy the
constraints in model (7.8). Every point in this set is called a feasible
point. (Hint: For every inequality determine first the straight line
obtained by replacing the inequality by equality. Then, find the
points satisfying the inequality (a half-plane), and finally, intersect
these half-planes.)

(d) Make a program optimization1.py for drawing the straight lines
defined by the inequalities. Each line can be written as ax+ by = c.
Let the program read each line from the command line as a list
of the a, b, and c values. In the present case the command-line
arguments will be

’[2,1,100]’ ’[5,3,80]’ ’[0,4,150]’ ’[1,0,0]’ ’[0,1,0]’

(Hint: Perform an eval on the elements of sys.argv[1:] to get a,
b, and c for each line as a list in the program.)

(e) Let α be a positive number and consider the level set of the function
f , defined as the set

Lα =
{
(x, y) ∈ T : f(x, y) = α

}
.

This set consists of all feasible points having the same net revenue α.
Extend the program with two new command-line arguments holding
p and q for a function f(x, y) = px + qy. Use this information to
compute the level set lines y = α/q − px/q, and plot the level set
lines for some different values of α (use the α value in the legend
for each line).

(f) Use what you saw in (e) to solve the problem (7.8) geometrically.
(Hint: How large can you choose α such that Lα is nonempty?) This
solution is called an optimal solution.

Name of program file: optimization1.py. �

412 7 Introduction to Classes

Exercise 7.45. Extend the program from Exer. 7.44.
Assume that we have other values on the revenues and costs than

the actual numbers in Exercise 7.44. Explain why (7.8), with these new
parameter values, still has an optimal solution lying in a corner point
of T . Extend the program from Exercise 7.44 to calculate all the corner
points of a region T in the plane determined by the linear inequalities
like those listed in Exercise 7.44. Moreover, the program shall compute
the maximum of a given linear function f(x, y) = px + qy over T by
calculating the function values in the corner points and finding the
smallest function value. Name of program file: optimization2.py.

The example in Exercises 7.44 and 7.45 is from linear optimization,
also called linear programming. Most universities and business schools
have a good course in this important area of applied mathematics. �

Random Numbers and Simple Games 8

Random numbers have many applications in science and computer pro-
gramming, especially when there are significant uncertainties in a phe-
nomenon of interest. The purpose of this chapter is to look at some
practical problems involving random numbers and learn how to pro-
gram with such numbers. We shall make several games and also look
into how random numbers can be used in physics. You need to be famil-
iar with Chapters 1–5 in order to study the present chapter, but a few
examples and exercises will require familiarity with the class concept
from Chapter 7.

The key idea in computer simulations with random numbers is first
to formulate an algorithmic description of the phenomenon we want
to study. This description frequently maps directly onto a quite simple
and short Python program, where we use random numbers to mimic
the uncertain features of the phenomenon. The program needs to per-
form a large number of repeated calculations, and the final answers
are “only” approximate, but the accuracy can usually be made good
enough for practical purposes. Most programs related to the present
chapter produce their results within a few seconds. In cases where the
execution times become large, we can vectorize the code. Vectorized
computations with random numbers is definitely the most demanding
topic in this chapter, but is not mandatory for seeing the power of
mathematical modeling via random numbers.

All files associated with the examples in this chapter are found in
the folder src/random.

H.P. Langtangen, A Primer on Scientific Programming with Python,
Texts in Computational Science and Engineering 6,

DOI 10.1007/978-3-642-30293-0 8, c© Springer-Verlag Berlin Heidelberg 2012

413

http://dx.doi.org/10.1007/978-3-642-30293-0_8

414 8 Random Numbers and Simple Games

8.1 Drawing Random Numbers

Python has a module random for generating random numbers. The func-
tion call random.random() generates a random number in the half open
interval1 [0, 1). We can try it out:

>>> import random
>>> random.random()
0.81550546885338104
>>> random.random()
0.44913326809029852
>>> random.random()
0.88320653116367454

All computations of random numbers are based on deterministic al-
gorithms (see Exercise 8.20 for an example), so the sequence of numbers
cannot be truly random. However, the sequence of numbers appears to
lack any pattern, and we can therefore view the numbers as random2.

8.1.1 The Seed

Every time we import random, the subsequent sequence of
random.random() calls will yield different numbers. For debugging
purposes it is useful to get the same sequence of random numbers
every time we run the program. This functionality is obtained by
setting a seed before we start generating numbers. With a given value
of the seed, one and only one sequence of numbers is generated. The
seed is an integer and set by the random.seed function:

>>> random.seed(121)

Let us generate two series of random numbers at once, using a list
comprehension and a format with two decimals only:

>>> random.seed(2)
>>> [’%.2f’ % random.random() for i in range(7)]
[’0.96’, ’0.95’, ’0.06’, ’0.08’, ’0.84’, ’0.74’, ’0.67’]
>>> [’%.2f’ % random.random() for i in range(7)]
[’0.31’, ’0.61’, ’0.61’, ’0.58’, ’0.16’, ’0.43’, ’0.39’]

If we set the seed to 2 again, the sequence of numbers is regenerated:

>>> random.seed(2)
>>> [’%.2f’ % random.random() for i in range(7)]
[’0.96’, ’0.95’, ’0.06’, ’0.08’, ’0.84’, ’0.74’, ’0.67’]

If we do not give a seed, the random module sets a seed based on
the current time. That is, the seed will be different each time we run

1 In the half open interval [0, 1) the lower limit is included, but the upper limit is not.
2 What it means to view the numbers as random has fortunately a firm mathematical
foundation, so don’t let the fact that random numbers are deterministic stop you from

using them.

8.1 Drawing Random Numbers 415

the program and consequently the sequence of random numbers will
also be different from run to run. This is what we want in most appli-
cations. However, we recommend to always set a seed during program
development to simplify debugging and verification.

8.1.2 Uniformly Distributed Random Numbers

The numbers generated by random.random() tend to be equally dis-
tributed between 0 and 1, which means that there is no part of the
interval [0, 1) with more random numbers than other parts. We say
that the distribution of random numbers in this case is uniform. The
function random.uniform(a,b) generates uniform random numbers in
the half open interval [a, b), where the user can specify a and b. With
the following program (in file uniform_numbers0.py) we may generate
lots of random numbers in the interval [−1, 1) and visualize how they
are distributed:

import random
random.seed(42)
N = 500 # no of samples
x = range(N)
y = [random.uniform(-1,1) for i in x]

import scitools.std as st
st.plot(x, y, ’+’, axis=[0,N-1,-1.2,1.2])

Figure 8.1 shows the values of these 500 numbers, and as seen, the
numbers appear to be random and uniformly distributed between −1
and 1.

Fig. 8.1 The values of 500 random numbers drawn from the uniform distribution on [−1, 1).

416 8 Random Numbers and Simple Games

8.1.3 Visualizing the Distribution

It is of interest to see how N random numbers in an interval [a, b] are
distributed throughout the interval, especially asN → ∞. For example,
when drawing numbers from the uniform distribution, we expect that
no parts of the interval get more numbers than others. To visualize the
distribution, we can divide the interval into subintervals and display
how many numbers there are in each subinterval.

Let us formulate this method more precisely. We divide the interval
[a, b) into n equally sized subintervals, each of length h = (b − a)/n.
These subintervals are called bins. We can then draw N random
numbers by calling random.random() N times. Let Ĥ(i) be the num-
ber of random numbers that fall in bin no. i, [a + ih, a + (i + 1)h],
i = 0, . . . , n− 1. If N is small, the value of Ĥ(i) can be quite different
for the different bins, but as N grows, we expect that Ĥ(i) varies little
with i.

Ideally, we would be interested in how the random numbers are dis-
tributed as N → ∞ and n → ∞. One major disadvantage is that Ĥ(i)
increases as N increases, and it decreases with n. The quantity Ĥ(i)/N ,
called the frequency count, will reach a finite limit asN → ∞. However,
Ĥ(i)/N will be smaller and smaller as we increase the number of bins.
The quantity H(i) = Ĥ(i)/(Nh) reaches a finite limit as N,n → ∞.
The probability that a random number lies inside subinterval no. i is
then Ĥ(i)/N = H(i)h.

We can visualize H(i) as a bar diagram (see Figure 8.2), called a
normalized histogram. We can also define a piecewise constant function
p(x) fromH(i): p(x) = H(i) for x ∈ [a+ih, a+(i+1)h), i = 0, . . . , n−1.
As n,N → ∞, p(x) approaches the probability density function of
the distribution in question. For example, random.uniform(a,b) draws
numbers from the uniform distribution on [a, b), and the probability
density function is constant, equal to 1/(b − a). As we increase n and
N , we therefore expect p(x) to approach the constant 1/(b− a).

The function compute_histogram from scitools.std returns two ar-
rays x and y such that plot(x,y) plots the piecewise constant function
p(x). The plot is hence the histogram of the set of random samples.
The program below exemplifies the usage:

from scitools.std import plot, compute_histogram
import random
samples = [random.random() for i in range(100000)]
x, y = compute_histogram(samples, nbins=20)
plot(x, y)

Figure 8.2 shows two plots corresponding to N taken as 103 and 106.
For small N , we see that some intervals get more random numbers
than others, but as N grows, the distribution of the random numbers
becomes more and more equal among the intervals. In the limit N →
∞, p(x) → 1, which is illustrated by the plot.

8.1 Drawing Random Numbers 417

Fig. 8.2 The histogram of uniformly distributed random numbers in 20 bins.

8.1.4 Vectorized Drawing of Random Numbers

There is a random module in the Numerical Python package which can
be used to efficiently draw a possibly large array of random numbers:

import numpy as np
r = np.random.random() # one number between 0 and 1
r = np.random.random(size=10000) # array with 10000 numbers
r = np.random.uniform(-1, 10) # one number between -1 and 10
r = np.random.uniform(-1, 10, size=10000) # array

There are thus two random modules to be aware of: one in the standard
Python library and one in numpy. For drawing uniformly distributed
numbers, the two random modules have the same interface, except that
the functions from numpy’s random module has an extra size parameter.
Both modules also have a seed function for fixing the seed.

Vectorized drawing of random numbers using numpy’s random module
is efficient because all the numbers are drawn “at once” in fast C code.
You can measure the efficiency gain with the time.clock() function as
explained on page 450 and in Appendix H.6.1.

Warning. It is easy to do an import random followed by a from

scitools.std import * or a from numpy import * without realizing
that the latter two import statements import a name random that over-
writes the same name that was imported in import random. The re-
sult is that the effective random module becomes the one from numpy.
A possible solution to this problem is to introduce a different name for
Python’s random module, say

import random as random_number

Another solution is to do import numpy as np and work explicitly with
np.random.

418 8 Random Numbers and Simple Games

8.1.5 Computing the Mean and Standard Deviation

You probably know the formula for the mean or average of a set of n
numbers x0, x1, . . . , xn−1:

xm =
1

n

n−1∑
j=0

xj . (8.1)

The amount of spreading of the xi values around the mean xm can be
measured by the variance3,

xv =
1

n

n−1∑
j=0

(xj − xm)2. (8.2)

A variant of this formula reads

xv =
1

n

(
n−1∑
j=0

x2j

)
− x2m. (8.3)

The good thing with this latter formula is that one can, as a statistical
experiment progresses and n increases, record the sums

sm =

q−1∑
j=0

xj , sv =

q−1∑
j=0

x2j (8.4)

and then, when desired, efficiently compute the most recent estimate
on the mean value and the variance after q samples by

xm = sm/q, xv = sv/q − s2m/q2. (8.5)

The standard deviation
xs =

√
xv (8.6)

is often used as an alternative to the variance, because the standard
deviation has the same unit as the measurement itself. A common way
to express an uncertain quantity x, based on a data set x0, . . . , xn−1,
from simulations or physical measurements, is xm ± xs. This means
that x has an uncertainty of one standard deviation xs to either side
of the mean value xm. With probability theory and statistics one can
provide many other, more precise measures of the uncertainty, but that
is the topic of a different course.

Below is an example where we draw numbers from the uniform distri-
bution on [−1, 1) and compute the evolution of the mean and standard
deviation 10 times during the experiment, using the formulas (8.1) and
(8.3)–(8.6):

3 Textbooks in statistics teach you that it is more appropriate to divide by n − 1 instead

of n, but we are not going to worry about that fact in this book.

8.1 Drawing Random Numbers 419

import sys
N = int(sys.argv[1])
import random
from math import sqrt
sm = 0; sv = 0
for q in range(1, N+1):

x = random.uniform(-1, 1)
sm += x
sv += x**2

Write out mean and st.dev. 10 times in this loop
if q % (N/10) == 0:

xm = sm/q
xs = sqrt(sv/q - xm**2)
print ’%10d mean: %12.5e stdev: %12.5e’ % (q, xm, xs)

The if test applies the mod function, see Chapter 3.4.2, for checking
if a number can be divided by another without any remainder. The
particular if test here is true when i equals 0, N/10, 2*N/10, . . . , N, i.e.,
10 times during the execution of the loop. The program is available in
the file mean_stdev_uniform1.py. A run with N = 106 gives the output

100000 mean: 1.86276e-03 stdev: 5.77101e-01
200000 mean: 8.60276e-04 stdev: 5.77779e-01
300000 mean: 7.71621e-04 stdev: 5.77753e-01
400000 mean: 6.38626e-04 stdev: 5.77944e-01
500000 mean: -1.19830e-04 stdev: 5.77752e-01
600000 mean: 4.36091e-05 stdev: 5.77809e-01
700000 mean: -1.45486e-04 stdev: 5.77623e-01
800000 mean: 5.18499e-05 stdev: 5.77633e-01
900000 mean: 3.85897e-05 stdev: 5.77574e-01
1000000 mean: -1.44821e-05 stdev: 5.77616e-01

We see that the mean is getting smaller and approaching zero as ex-
pected since we generate numbers between −1 and 1. The theoretical
value of the standard deviation, as N → ∞, equals

√
1/3 ≈ 0.57735.

We have also made a corresponding vectorized version of the code
above using numpy’s random module and the ready-made functions mean,
var, and std for computing the mean, variance, and standard deviation
(respectively) of an array of numbers:

import sys
N = int(sys.argv[1])
import numpy as np
x = np.random.uniform(-1, 1, size=N)
xm = np.mean(x)
xv = np.var(x)
xs = np.std(x)
print ’%10d mean: %12.5e stdev: %12.5e’ % (N, xm, xs)

This program can be found in the file mean_stdev_uniform2.py.

8.1.6 The Gaussian or Normal Distribution

In some applications we want random numbers to cluster around a
specific value m. This means that it is more probable to generate a
number close to m than far away from m. A widely used distribution

420 8 Random Numbers and Simple Games

with this qualitative property is the Gaussian or normal distribution4.
The normal distribution has two parameters: the mean value m and the
standard deviation s. The latter measures the width of the distribution,
in the sense that a small s makes it less likely to draw a number far
from the mean value, and a large s makes more likely to draw a number
far from the mean value.

Single random numbers from the normal distribution can be gener-
ated by

import random
r = random.normalvariate(m, s)

while efficient generation of an array of length N is enabled by

import numpy as np
r = np.random.normal(m, s, size=N)
r = np.random.randn(N) # mean=0, std.dev.=1

The following program draws N random numbers from the normal
distribution, computes the mean and standard deviation, and plots the
histogram:

import sys
N = int(sys.argv[1])
m = float(sys.argv[2])
s = float(sys.argv[3])

import numpy as np
np.random.seed(12)
samples = np.random.normal(m, s, N)
print np.mean(samples), np.std(samples)

import scitools.std as st
x, y = st.compute_histogram(samples, 20, piecewise_constant=True)
st.plot(x, y, hardcopy=’tmp.eps’,

title =’%d samples of Gaussian/normal numbers on (0,1)’ % N)

The corresponding program file is normal_numbers1.py, which gives a
mean of −0.00253 and a standard deviation of 0.99970 when run with
N as 1 million, m as 0, and s equal to 1. Figure 8.3 shows that the
random numbers cluster around the mean m = 0 in a histogram. This
normalized histogram will, as N goes to infinity, approach a bell-shaped
function, known as the normal distribution probability density func-
tion, given in (1.6) on page 45.

8.2 Drawing Integers

Suppose we want to draw a random integer among the values 1, 2,
3, and 4, and that each of the four values is equally probable. One

4 For example, the blood pressure among adults of one gender has values that follow a

normal distribution.

8.2 Drawing Integers 421

Fig. 8.3 Normalized histogram of 1 million random numbers drawn from the normal dis-

tribution.

possibility is to draw real numbers from the uniform distribution on,
e.g., [0, 1) and divide this interval into four equal subintervals:

import random
r = random.random()
if 0 <= r < 0.25:

r = 1
elif 0.25 <= r < 0.5:

r = 2
elif 0.5 <= r < 0.75:

r = 3
else:

r = 4

Nevertheless, the need for drawing uniformly distributed integers oc-
curs quite frequently, so there are special functions for returning ran-
dom integers in a specified interval [a, b].

8.2.1 Random Integer Functions

Python’s random module has a built-in function randint(a,b) for draw-
ing an integer in [a, b], i.e., the return value is among the numbers a,
a+1, . . . , b-1, b.

import random
r = random.randint(a, b)

The numpy.random.randint(a, b, N) function has a similar function-
ality for vectorized drawing of an array of length N of random integers
in [a, b). The upper limit b is not among the drawn numbers, so if we
want to draw from a, a+1, . . . , b-1, b, we must write

422 8 Random Numbers and Simple Games

import numpy as np
r = np.random.randint(a, b+1, N)

Another function, random_integers(a, b, N), also in numpy.random, in-
cludes the upper limit b in the possible set of random integers:

r = np.random.random_integers(a, b, N)

8.2.2 Example: Throwing a Die

We can make a program that lets the computer throw a die N times
and count how many times we get six eyes:

import random
import sys
N = int(sys.argv[1]) # perform N experiments
M = 0 # no of times we get 6 eyes
for i in xrange(N):

outcome = random.randint(1, 6)
if outcome == 6:

M += 1
print ’Got six %d times out of %d’ % (M, N)

We use xrange instead of range because the former is more efficient
when N is large. The vectorized version of this code can be expressed
as follows:

import numpy as np
import sys
N = int(sys.argv[1])
eyes = np.random.randint(1, 7, N)
success = eyes == 6 # True/False array
M = np.sum(success) # treats True as 1, False as 0
print ’Got six %d times out of %d’ % (M, N)

The eyes == 6 construction results in an array with True or False val-
ues, and sum applied to this array treats True as 1 and False as 0 (the
integer equivalents to the boolean values), so the sum is the number of
elements in eyes that equals 6. A very important point here for com-
putational efficiency is to use np.sum and not the standard sum function
that is available in standard Python. With np.sum function, the vector-
ized version runs about 50 times faster than the scalar version. With
Python’s standard sum function, the vectorized versions is in fact slower
than the scalar version (!).

The two small programs above are found in the files roll_die.py and
roll_die_vec.py, respectively. You can try the programs and see how
much faster the vectorized version is (N probably needs to be of size at
least 106 to see any noticeable differences for practical purposes).

8.2.3 Drawing a Random Element from a List

Given a list a, the statement

8.2 Drawing Integers 423

re = random.choice(a)

picks out an element of a at random, and re refers to this element. The
shown call to random.choice is the same as

re = a[random.randint(0, len(a)-1)]

There is also a function shuffle that performs a random permutation
of the list elements:

random.shuffle(a)

Picking now a[0], for instance, has the same effect as random.choice

on the original, unshuffled list. Note that shuffle changes the list given
as argument.

The numpy.random module has also a shuffle function with the same
functionality.

A small session illustrates the various methods for picking a random
element from a list:

>>> awards = [’car’, ’computer’, ’ball’, ’pen’]
>>> import random
>>> random.choice(awards)
’car’
>>> awards[random.randint(0, len(awards)-1)]
’pen’
>>> random.shuffle(awards)
>>> awards[0]
’computer’

8.2.4 Example: Drawing Cards from a Deck

The following function creates a deck of cards, where each card is rep-
resented as a string, and the deck is a list of such strings:

def make_deck():
ranks = [’A’, ’2’, ’3’, ’4’, ’5’, ’6’, ’7’,

’8’, ’9’, ’10’, ’J’, ’Q’, ’K’]
suits = [’C’, ’D’, ’H’, ’S’]
deck = []
for s in suits:

for r in ranks:
deck.append(s + r)

random.shuffle(deck)
return deck

Here, ’A’ means an ace, ’J’ represents a jack, ’Q’ represents a queen,
’K’ represents a king, ’C’ stands for clubs, ’D’ stands for diamonds,
’H’ means hearts, and ’S’ means spades. The computation of the list
deck can alternatively (and more compactly) be done by a one-line list
comprehension:

424 8 Random Numbers and Simple Games

deck = [s+r for s in suits for r in ranks]

We can draw a card at random by

deck = make_deck()
card = deck[0]
del deck[0]
or better:
card = deck.pop(0) # return and remove element with index 0

Drawing a hand of n cards from a shuffled deck is accomplished by

def deal_hand(n, deck):
hand = [deck[i] for i in range(n)]
del deck[:n]
return hand, deck

Note that we must return deck to the calling code since this list is
changed. Also note that the n first cards of the deck are random cards
if the deck is shuffled (and any deck made by make_deck is shuffled).

The following function deals cards to a set of players:

def deal(cards_per_hand, no_of_players):
deck = make_deck()
hands = []
for i in range(no_of_players):

hand, deck = deal_hand(cards_per_hand, deck)
hands.append(hand)

return hands

players = deal(5, 4)
import pprint; pprint.pprint(players)

The players list may look like

[[’D4’, ’CQ’, ’H10’, ’DK’, ’CK’],
[’D7’, ’D6’, ’SJ’, ’S4’, ’C5’],
[’C3’, ’DQ’, ’S3’, ’C9’, ’DJ’],
[’H6’, ’H9’, ’C6’, ’D5’, ’S6’]]

The next step is to analyze a hand. Of particular interest is the
number of pairs, three of a kind, four of a kind, etc. That is, how many
combinations there are of n_of_a_kind cards of the same rank (e.g.,
n_of_a_kind=2 finds the number of pairs):

def same_rank(hand, n_of_a_kind):
ranks = [card[1:] for card in hand]
counter = 0
already_counted = []
for rank in ranks:

if rank not in already_counted and \
ranks.count(rank) == n_of_a_kind:

counter += 1
already_counted.append(rank)

return counter

Note how convenient the count method in list objects is for counting
how many copies there are of one element in the list.

8.2 Drawing Integers 425

Another analysis of the hand is to count how many cards there are
of each suit. A dictionary with the suit as key and the number of cards
with that suit as value, seems appropriate to return. We pay attention
only to suits that occur more than once:

def same_suit(hand):
suits = [card[0] for card in hand]
counter = {} # counter[suit] = how many cards of suit
for suit in suits:

count = suits.count(suit)
if count > 1:

counter[suit] = count
return counter

For a set of players we can now analyze their hands:

for hand in players:
print """\

The hand %s
has %d pairs, %s 3-of-a-kind and
%s cards of the same suit.""" % \
(’, ’.join(hand), same_rank(hand, 2),
same_rank(hand, 3),
’+’.join([str(s) for s in same_suit(hand).values()]))

The values we feed into the printf string undergo some massage: we join
the card values with comma and put a plus in between the counts of
cards with the same suit. (The join function requires a string argument.
That is why the integer counters of cards with the same suit, returned
from same_suit, must be converted to strings.) The output of the for

loop becomes

The hand D4, CQ, H10, DK, CK
has 1 pairs, 0 3-of-a-kind and
2+2 cards of the same suit.

The hand D7, D6, SJ, S4, C5
has 0 pairs, 0 3-of-a-kind and
2+2 cards of the same suit.

The hand C3, DQ, S3, C9, DJ
has 1 pairs, 0 3-of-a-kind and
2+2 cards of the same suit.

The hand H6, H9, C6, D5, S6
has 0 pairs, 1 3-of-a-kind and
2 cards of the same suit.

The file cards.py contains the functions make_deck, hand, same_rank,
same_suit, and the test snippets above. With the cards.py file one can
start to implement real card games.

8.2.5 Example: Class Implementation of a Deck

To work with a deck of cards with the code from the previous section
one needs to shuffle a global variable deck in and out of functions.
A set of functions that update global variables (like deck) is a primary
candidate for a class: The global variables are stored as attributes and
the functions become class methods. This means that the code from the
previous section is better implemented as a class. We introduce class

426 8 Random Numbers and Simple Games

Deck with a list of cards, deck, as attribute, and methods for dealing
one or several hands and for putting back a card:

class Deck:
def __init__(self):

ranks = [’A’, ’2’, ’3’, ’4’, ’5’, ’6’, ’7’,
’8’, ’9’, ’10’, ’J’, ’Q’, ’K’]

suits = [’C’, ’D’, ’H’, ’S’]
self.deck = [s+r for s in suits for r in ranks]
random.shuffle(self.deck)

def hand(self, n=1):
"""Deal n cards. Return hand as list."""
hand = [self.deck[i] for i in range(n)] # pick cards
del self.deck[:n] # remove cards
return hand

def deal(self, cards_per_hand, no_of_players):
"""Deal no_of_players hands. Return list of lists."""
return [self.hand(cards_per_hand) \

for i in range(no_of_players)]

def putback(self, card):
"""Put back a card under the rest."""
self.deck.append(card)

def __str__(self):
return str(self.deck)

This class is found in the module file Deck.py. Dealing a hand of five
cards to p players is coded as

from Deck import Deck
deck = Deck()
print deck
players = deck.deal(5, 4)

Here, players become a nested list as shown in Chapter 8.2.4.
One can go a step further and make more classes for assisting card

games. For example, a card has so far been represented by a plain
string, but we may well put that string in a class Card:

class Card:
"""Representation of a card as a string (suit+rank)."""
def __init__(self, suit, rank):

self.card = suit + str(rank)

def __str__(self): return self.card
def __repr__(self): return str(self)

Note that str(self) is equivalent to self.__str__().
A Hand contains a set of Card instances and is another natural ab-

straction, and hence a candidate for a class:

class Hand:
"""Representation of a hand as a list of Card objects."""
def __init__(self, list_of_cards):

self.hand = list_of_cards

def __str__(self): return str(self.hand)
def __repr__(self): return str(self)

8.2 Drawing Integers 427

With the aid of classes Card and Hand, class Deck can be reimple-
mented as

class Deck:
"""Representation of a deck as a list of Card objects."""

def __init__(self):
ranks = [’A’, ’2’, ’3’, ’4’, ’5’, ’6’, ’7’,

’8’, ’9’, ’10’, ’J’, ’Q’, ’K’]
suits = [’C’, ’D’, ’H’, ’S’]
self.deck = [Card(s,r) for s in suits for r in ranks]
random.shuffle(self.deck)

def hand(self, n=1):
"""Deal n cards. Return hand as a Hand object."""
hand = Hand([self.deck[i] for i in range(n)])
del self.deck[:n] # remove cards
return hand

def deal(self, cards_per_hand, no_of_players):
"""Deal no_of_players hands. Return list of Hand obj."""
return [self.hand(cards_per_hand) \

for i in range(no_of_players)]

def putback(self, card):
"""Put back a card under the rest."""
self.deck.append(card)

def __str__(self):
return str(self.deck)

def __repr__(self):
return str(self)

def __len__(self):
return len(self.deck)

The module file Deck2.py contains this implementation. The usage of
the two Deck classes is the same,

from Deck2 import Deck
deck = Deck()
players = deck.deal(5, 4)

with the exception that players in the last case holds a list of Hand

instances, and each Hand instance holds a list of Card instances.
We stated in Chapter 7.3.9 that the __repr__ method should return

a string such that one can recreate the object from this string by the
aid of eval. However, we did not follow this rule in the implementation
of classes Card, Hand, and Deck. Why? The reason is that we want to
print a Deck instance. Python’s print or pprint on a list applies repr(e)
to print an element e in the list. Therefore, if we had implemented

class Card:
...
def __repr__(self):

return "Card(’%s’, %s)" % (self.card[0], self.card[1:])

class Hand:
...
def __repr__(self): return ’Hand(%s)’ % repr(self.hand)

428 8 Random Numbers and Simple Games

a plain printing of the deck list of Hand instances would lead to output
like

[Hand([Card(’C’, ’10’), Card(’C’, ’4’), Card(’H’, ’K’), ...]),
...,
Hand([Card(’D’, ’7’), Card(’C’, ’5’), ..., Card(’D’, ’9’)])]

This output is harder to read than

[[C10, C4, HK, DQ, HQ],
[SA, S8, H3, H10, C2],
[HJ, C7, S2, CQ, DK],
[D7, C5, DJ, S3, D9]]

That is why we let __repr__ in classes Card and Hand return the same
“pretty print” string as __str__, obtained by returning str(self).

8.3 Computing Probabilities

With the mathematical rules from probability theory one may compute
the probability that a certain event happens, say the probability that
you get one black ball when drawing three balls from a hat with four
black balls, six white balls, and three green balls. Unfortunately, theo-
retical calculations of probabilities may soon become hard or impossible
if the problem is slightly changed. There is a simple “numerical way” of
computing probabilities that is generally applicable to problems with
uncertainty. The principal ideas of this approximate technique is ex-
plained below, followed by three examples of increasing complexity.

8.3.1 Principles of Monte Carlo Simulation

Assume that we perform N experiments where the outcome of each
experiment is random. Suppose that some event takes place M times
in these N experiments. An estimate of the probability of the event is
then M/N . The estimate becomes more accurate as N is increased, and
the exact probability is assumed to be reached in the limit as N → ∞.
(Note that in this limit, M → ∞ too, so for rare events, where M may
be small in a program, one must increase N such that M is sufficiently
large for M/N to become a good approximation to the probability.)

Programs that run a large number of experiments and record the
outcome of events are often called simulation programs5. The mathe-
matical technique of letting the computer perform lots of experiments
based on drawing random numbers is commonly called Monte Carlo
simulation. This technique has proven to be extremely useful through-
out science and industry in problems where there is uncertain or ran-

5 This term is also applied for programs that solve equations arising in mathematical models
in general, but it is particularly common to use the term when random numbers are used

to estimate probabilities.

8.3 Computing Probabilities 429

dom behavior is involved6. For example, in finance the stock market
has a random variation that must be taken into account when trying
to optimize investments. In offshore engineering, environmental loads
from wind, currents, and waves show random behavior. In nuclear and
particle physics, random behavior is fundamental according to quan-
tum mechanics and statistical physics. Many probabilistic problems
can be calculated exactly by mathematics from probability theory, but
very often Monte Carlo simulation is the only way to solve statistical
problems. Chapters 8.3.2–8.3.5 applies examples to explain the essence
of Monte Carlo simulation in problems with inherent uncertainty. How-
ever, also deterministic problems, such as integration of functions, can
be computed by Monte Carlo simulation (see Chapter 8.5).

It appears that Monte Carlo simulation programmed in pure Python
is a computationally feasible approach, even on small laptops, in all the
forthcoming examples. Significant speed-up can be achieved by vector-
izing the code, which is explained in detail for many of the examples.
However, large-scale Monte Carlo simulations and other heavy com-
putations run slowly in pure Python, and the core of the computa-
tions should be moved to a compiled language such as C. Appendix G
presents a Monte Carlo application that is implemented in pure Python,
in vectorized numpy Python, in the extended (and very closely related)
Cython language, as well as in pure C code. Various ways of combining
Python with C are also illustrated.

8.3.2 Example: Throwing Dice

You throw two dice, one black and one green. What is the probability
that the number of eyes on the black die is larger than the number of
eyes on the green die?

Straightforward Solution. We can simulate N throws of two dice in a
program. For each throw we see if the event is successful, and if so,
increase M by one:

import sys
N = int(sys.argv[1]) # no of experiments

import random
M = 0 # no of successful events
for i in range(N):

black = random.randint(1, 6) # throw black
green = random.randint(1, 6) # throw brown
if black > green: # success?

M += 1
p = float(M)/N
print ’probability:’, p

This program is named black_gt_green.py.

6 “As far as the laws of mathematics refer to reality, they are not certain, as far as they

are certain, they do not refer to reality.” –Albert Einstein, physicist, 1879–1955.

430 8 Random Numbers and Simple Games

Vectorization. Although the black_gt_green.py program runs N =
106 in a few seconds, Monte Carlo simulation programs can quickly
require quite some simulation time so speeding up the algorithm by
vectorization is often desired. Let us vectorize the code shown above.
The idea is to draw all the random numbers (2N) at once. We make an
array of random numbers between 1 and 6 with 2 rows and N columns.
The first column can be taken as the number of eyes on the black die
in all the experiments, while the second column are the corresponding
eyes on the green die:

r = np.random.random_integers(1, 6, size=(2, N))
black = r[0,:] # eyes for all throws with black
green = r[1,:] # eyes for all throws with green

The condition black > green results in an array of length N of boolean
values: True when the element in black is greater than the correspond-
ing element in green, and False if not. The number of True elements
in the boolean array black > green is then M . This number can be
computed by summing up all the boolean values. In arithmetic opera-
tions, True is 1 and False i 0, so the sum equals M . Fast summation
of arrays requires np.sum and not Python’s standard sum function. The
code goes like

success = black > green # success[i] is true if black[i]>green[i]
M = np.sum(success) # sum up all successes
p = float(M)/N
print ’probability:’, p

The code, found in the file black_gt_green_vec.py, runs over 10 times
faster than the corresponding scalar code in black_gt_green.py.

Exact Solution. In this simple example we can quite easily compute
the exact solution. To this end, we set up all the outcomes of the
experiment, i.e., all the possible combinations of eyes on two dice:

combinations = [(black, green)
for black in range(1, 7)
for green in range(1, 7)]

Then we count how many of the (black, green) pairs that have the
property black > green:

success = [black > green for black, green in combinations]
M = sum(success)

It turns out that M is 15, giving a probability 15/36 ≈ 0.41667 since
there are 36 combinations in total. Running the Monte Carlo simula-
tions with N = 106 typically gives probabilities in [0.416, 0.417].

A Game. Suppose a games is constructed such that you have to pay 1
euro to throw the two dice. You win 2 euros if there are more eyes on

8.3 Computing Probabilities 431

the black than on the green die. Should you play this game? We can
easily simulate the game directly (file black_gt_green_game.py):

import sys
N = int(sys.argv[1]) # no of experiments

import random
start_capital = 10
money = start_capital
for i in range(N):

money -= 1 # pay for the game
black = random.randint(1, 6) # throw black
green = random.randint(1, 6) # throw brown
if black > green: # success?

money += 2 # get award

net_profit_total = money - start_capital
net_profit_per_game = net_profit_total/float(N)
print ’Net profit per game in the long run:’, net_profit_per_game

Experimenting with a few N shows that the net profit per game is
always negative. That is, you should not play this game.

A vectorized version is beneficial of efficiency reasons (the corre-
sponding file is black_gt_green_game_vec.py):

import sys
N = int(sys.argv[1]) # no of experiments

import numpy as np
r = np.random.random_integers(1, 6, size=(2, N))

money = 10 - N # capital after N throws
black = r[0,:] # eyes for all throws with black
green = r[1,:] # eyes for all throws with green
success = black > green # success[i] is true if black[i]>green[i]
M = np.sum(success) # sum up all successes
money += 2*M # add all awards for winning
print ’Net profit per game in the long run:’, (money-10)/float(N)

Decide If a Game Is Fair. Suppose the cost of playing a game once is q
and that the award for winning is r. The net income in a winning game
is r−q. Winning M out of N games means that the cost is Nq and the
income is Mr, making a net profit s = Mr−Nq. Now p = M/N is the
probability of winning the game so s = (pr − q)N . A fair game means
that we neither win nor lose in the long run: s = 0, which implies that
r = q/p. That is, given the cost q and the probability p of winning, the
award paid for winning the game must be r = q/p in a fair game.

When somebody comes up with a game you can use Monte Carlo
simulation to estimate p and then conclude that you should not play
the game of r < q/p. The example above has p = 15/36 (exact) and
q = 1, so r = 2.4 makes a fair game.

The reasoning above is based on common sense and an intuitive
interpretation of probability. More precise reasoning from probability
theory will introduce the game as an experiment with two outcomes,
either you win with probability p and or lose with probability 1 − p.

432 8 Random Numbers and Simple Games

The expected payment is then the sum of the probabilities times the
corresponding net income for each event: −q(1 − p) + (r − q)p (recall
that the net income in a winning game is r − q). A fair game has zero
expected payment, which leads to r = q/p.

8.3.3 Example: Drawing Balls from a Hat

Suppose there are 12 balls in a hat: four black, four red, and four blue.
We want to make a program that draws three balls at random from
the hat. It is natural to represent the collection of balls as a list. Each
list element can be an integer 1, 2, or 3, since we have three different
types of balls, but it would be easier to work with the program if the
balls could have a color instead of an integer number. This is easily
accomplished by defining color names:

colors = ’black’, ’red’, ’blue’ # (tuple of strings)
hat = []
for color in colors:

for i in range(4):
hat.append(color)

Drawing a ball at random is performed by

import random
color = random.choice(hat)
print color

Drawing n balls without replacing the drawn balls requires us to remove
an element from the hat when it is drawn. There are three ways to
implement the procedure: (i) we perform a hat.remove(color), (ii) we
draw a random index with randint from the set of legal indices in the
hat list, and then we do a del hat[index] to remove the element, or
(iii) we can compress the code in (ii) to hat.pop(index).

def draw_ball(hat):
color = random.choice(hat)
hat.remove(color)
return color, hat

def draw_ball(hat):
index = random.randint(0, len(hat)-1)
color = hat[index]
del hat[index]
return color, hat

def draw_ball(hat):
index = random.randint(0, len(hat)-1)
color = hat.pop(index)
return color, hat

Draw n balls from the hat
balls = []
for i in range(n):

color, hat = draw_ball(hat)
balls.append(color)

print ’Got the balls’, balls

8.3 Computing Probabilities 433

We can extend the experiment above and ask the question: What
is the probability of drawing two or more black balls from a hat with
12 balls, four black, four red, and four blue? To this end, we perform
N experiments, count how many times M we get two or more black
balls, and estimate the probability as M/N . Each experiment consists
of making the hat list, drawing a number of balls, and counting how
many black balls we got. The latter task is easy with the count method
in list objects: hat.count(’black’) counts how many elements with
value ’black’ we have in the list hat. A complete program for this task
is listed below. The program appears in the file balls_in_hat.py.

import random

def draw_ball(hat):
"""Draw a ball using list index."""
index = random.randint(0, len(hat)-1)
color = hat.pop(index)
return color, hat

def draw_ball(hat):
"""Draw a ball using list index."""
index = random.randint(0, len(hat)-1)
color = hat[index]
del hat[index]
return color, hat

def draw_ball(hat):
"""Draw a ball using list element."""
color = random.choice(hat)
hat.remove(color)
return color, hat

def new_hat():
colors = ’black’, ’red’, ’blue’ # (tuple of strings)
hat = []
for color in colors:

for i in range(4):
hat.append(color)

return hat

n = int(raw_input(’How many balls are to be drawn? ’))
N = int(raw_input(’How many experiments? ’))

Run experiments
M = 0 # no of successes
for e in range(N):

hat = new_hat()
balls = [] # the n balls we draw
for i in range(n):

color, hat = draw_ball(hat)
balls.append(color)

if balls.count(’black’) >= 2: # at least two black balls?
M += 1

print ’Probability:’, float(M)/N

Running the program with n = 5 (drawing 5 balls each time) and
N = 4000 gives a probability of 0.57. Drawing only 2 balls at a time
reduces the probability to about 0.09.

One can with the aid of probability theory derive theoretical expres-
sions for such probabilities, but it is much simpler to let the computer

434 8 Random Numbers and Simple Games

perform a large number of experiments to estimate an approximate
probability.

A class version of the code in this section is better than the code
presented, because we avoid shuffling the hat variable in and out of
functions. Exercise 8.21 asks you to design and implement a class Hat.

8.3.4 Random Mutations of Genes

A Simple Mutation Model. A fundamental principle of biological evolu-
tion is that DNA undergoes mutation. Since DNA can be represented as
a string consisting of the letters A, C, G, and T, as explained in Chap-
ter 3.3, mutation of DNA is easily modeled by replacing the letter in a
randomly chosen position of the DNA by a randomly chosen letter from
the alphabet A, C, G, and T. A function for replacing the letter in a
randomly selected position (index) by a random letter among A, C, G,
and T is most straightforwardly implemented by converting the DNA
string to a list of letters, since changing a character in a Python string
is impossible without constructing a new string. However, an element
in a list can be changed in-place:

import random

def mutate_v1(dna):
dna_list = list(dna)
mutation_site = random.randint(0, len(dna_list) - 1)
dna_list[mutation_site] = random.choice(list(’ATCG’))
return ’’.join(dna_list)

Using the functions get_base_frequencies_v2 and format_

frequencies from Chapter 6.6.3, we can easily mutate a gene a
number of times and see how the frequencies of the bases A, C, G, and
T change:

dna = ’ACGGAGATTTCGGTATGCAT’
print ’Starting DNA:’, dna
print format_frequencies(get_base_frequencies_v2(dna))

nmutations = 10000
for i in range(nmutations):

dna = mutate_v1(dna)

print ’DNA after %d mutations:’ % nmutations, dna
print format_frequencies(get_base_frequencies_v2(dna))

Here is the output from a run:

Starting DNA: ACGGAGATTTCGGTATGCAT
A: 0.25, C: 0.15, T: 0.30, G: 0.30
DNA after 10000 mutations: AACCAATCCGACGAGGAGTG
A: 0.35, C: 0.25, T: 0.10, G: 0.30

Vectorized Version. The efficiency of the mutate_v1 function with its
surrounding loop can be significantly increased up by performing all

8.3 Computing Probabilities 435

the mutations at once using numpy arrays. This speed-up is of interest
for long dna strings and many mutations. The idea is to draw all the
mutation sites at once, and also all the new bases at these sites at
once. The np.random module provides functions for drawing several
random numbers at a time, but only integers and real numbers can be
drawn, not characters from the alphabet A, C, G, and T. We therefore
have to simulate these four characters by the numbers (say) 0, 1, 2,
and 3. Afterwards we can translate the integers to letters by some
clever vectorized indexing.

Drawing N mutation sites is a matter of drawing N random integers
among the legal indices:

import numpy as np
mutation_sites = np.random.random_integers(0, len(dna)-1, size=N)

Drawing N bases, represented as the integers 0–3, is similarly done by

new_bases_i = np.random.random_integers(0, 3, N)

Converting say the integers 1 to the base symbol C is done by picking
out the indices (in a boolean array) where new_bases_i equals 1, and
inserting the character ’C’ in a companion array of characters:

new_bases_c = np.zeros(N, dtype=’c’)
indices = new_bases_i == 1
new_bases_c[indices] = ’C’

We must do this integer-to-letter conversion for all four integers/let-
ters. Thereafter, new_bases_c must be inserted in dna for all the indices
corresponding to the randomly drawn mutation sites,

dna[mutation_sites] = new_bases_c

The final step is to convert the numpy array of characters dna back to
a standard string by first converting dna to a list and then joining the
list elements: ’’.join(dna.tolist()).

The complete vectorized functions can now be expressed as follows:

import numpy as np
Use integers in random numpy arrays and map these
to characters according to
i2c = {0: ’A’, 1: ’C’, 2: ’G’, 3: ’T’}

def mutate_v2(dna, N):
dna = np.array(dna, dtype=’c’) # array of characters
mutation_sites = np.random.random_integers(

0, len(dna) - 1, size=N)
Must draw bases as integers
new_bases_i = np.random.random_integers(0, 3, size=N)
Translate integers to characters
new_bases_c = np.zeros(N, dtype=’c’)
for i in i2c:

new_bases_c[new_bases_i == i] = i2c[i]
dna[mutation_sites] = new_bases_c
return ’’.join(dna.tolist())

436 8 Random Numbers and Simple Games

It is of interest to time mutate_v2 versus mutate_v1. For this purpose
we need a long test string. A straightforward generation of random
letters is

def generate_string_v1(N, alphabet=’ACGT’):
return ’’.join([random.choice(alphabet) for i in xrange(N)])

A vectorized version of this function can also be made, using the
ideas explored above for the mutate_v2 function:

def generate_string_v2(N, alphabet=’ACGT’):
Draw random integers 0,1,2,3 to represent bases
dna_i = np.random.random_integers(0, 3, N)
Translate integers to characters
dna = np.zeros(N, dtype=’c’)
for i in i2c:

dna[dna_i == i] = i2c[i]
return ’’.join(dna.tolist())

The time_mutate function in the file mutate.py performs timing of the
generation of test strings and the mutations. To generate a DNA string
of length 100,000 the vectorized function is about 8 times faster. When
performing 10,000 mutations on this string, the vectorized version is
almost 3000 times faster! These numbers stay approximately the same
also for larger strings and more mutations. Hence, this case study on
vectorization is a striking example on the fact that a straightforward
and convenient function like mutate_v1 might occasionally be very slow
for large-scale computations.

A Markov Chain Mutation Model. The observed rate at which muta-
tions occur at a given position in the genome is not independent of
the type of nucleotide (base) at that position, as was assumed in the
previous simple mutation model. We should therefore take into account
that the rate of transition depends on the base.

There are a number of reasons why the observed mutation rates vary
between different nucleotides. One reason is that there are different
mechanisms generating transitions from one base to another. Another
reason is that there are extensive repair process in living cells, and the
efficiency of this repair mechanism varies for different nucleotides.

Mutation of nucleotides may be modeled using distinct probabilities
for the transitions from each nucleotide to every other nucleotide. For
example, the probability of replacing A by C may be prescribed as
(say) 0.2. In total we need 4× 4 probabilities since each nucleotide can
transform into itself (no change) or three others. The sum of all four
transition probabilities for a given nucleotide must sum up to one. Such
statistical evolution, based on probabilities for transitioning from one
state to another, is known as a Markov process or Markov chain.

First we need to set up the probability matrix, i.e., the 4 × 4 table
of probabilities where each row corresponds to the transition of A, C,

8.3 Computing Probabilities 437

G, or T into A, C, G, or T. Say the probability transition from A to A
is 0.2, from A to C is 0.1, from A to G is 0.3, and from A to T is 0.4.

Rather than just prescribing some arbitrary transition probabilities
for test purposes, we can use random numbers for these probabilities.
To this end, we generate three random numbers to divide the interval
[0, 1] into four intervals corresponding to the four possible transitions.
The lengths of the intervals give the transition probabilities, and their
sum is ensured to be 1. The interval limits, 0, 1, and three random
numbers must be sorted in ascending order to form the intervals. We use
the function random.random() to generate random numbers in [0, 1):

slice_points = sorted(
[0] + [random.random() for i in range(3)] + [1])

transition_probabilities = [slice_points[i+1] - slice_points[i]
for i in range(4)]

The transition probabilities are handy to have available as a dictio-
nary:

markov_chain[’A’] = {’A’: ..., ’C’: ..., ’G’: ..., ’T’: ...}

which can be computed by

markov_chain[’A’] = {base: p for base, p in
zip(’ACGT’, transition_probabilities)}

To select a transition, we need to draw a random letter (A, C, G, or
T) according to the probabilities markov_chain[b] where b is the base
at the current position. Actually, this is a very common operation,
namely drawing a random value from a discrete probability distribution
(markov_chain[b]). The natural approach is therefore write a general
function for drawing from any discrete probability distribution given
as a dictionary:

def draw(discrete_probdist):
"""
Draw random value from discrete probability distribution
represented as a dict: P(x=value) = discrete_probdist[value].
"""
Method:
http://en.wikipedia.org/wiki/Pseudo-random_number_sampling
limit = 0
r = random.random()
for value in discrete_probdist:

limit += discrete_probdist[value]
if r < limit:

return value

Basically, the algorithm divides [0, 1] into intervals of lengths equal
to the probabilities of the various outcomes and checks which interval
is hit by a random variable in [0, 1]. The corresponding value is the
random choice.

A complete function creating all the transition probabilities and stor-
ing them in a dictionary of dictionaries takes the form

438 8 Random Numbers and Simple Games

def create_markov_chain():
markov_chain = {}
for from_base in ’ATGC’:

Generate random transition probabilities by dividing
[0,1] into four intervals of random length

slice_points = sorted(
[0] + [random.random()for i in range(3)] + [1])

transition_probabilities = \
[slice_points[i+1] - slice_points[i] for i in range(4)]

markov_chain[from_base] = {base: p for base, p
in zip(’ATGC’, transition_probabilities)}

return markov_chain

mc = create_markov_chain()
print mc
print mc[’A’][’T’] # probability of transition from A to T

It is natural to develop a function for checking that the generated
probabilities are consistent. The transition from a particular base into
one of the four bases happens with probability 1, which means that the
probabilities in a row must sum up to 1:

def test_transition_probabilities(markov_chain):
for from_base in ’ATGC’:

s = sum(markov_chain[from_base][to_base]
for to_base in ’ATGC’)

if abs(s - 1) > 1E-15:
raise ValueError(’Wrong sum: %s for "%s"’ % \

(s, from_base))

Another test is to check that draw actually draws random values in
accordance with the underlying probabilities. To this end, we draw a
large number of values, N, count the frequencies of the various values,
divide by N and compare the empirical normalized frequencies with the
probabilities:

def test_draw_approx(discrete_probdist, N=1000000):
"""
See if draw results in frequencies approx equal to
the probability distribution.
"""
frequencies = {value: 0 for value in discrete_probdist}
for i in range(N):

value = draw(discrete_probdist)
frequencies[value] += 1

for value in frequencies:
frequencies[value] /= float(N)

print ’, ’.join([’%s: %.4f (exact %.4f)’ % \
(v, frequencies[v], discrete_probdist[v])
for v in frequencies])

This test is only approximate, but does bring evidence to the correct-
ness of the implementation of the draw function.

A vectorized version of draw can also be made. We refer to the source
code file mutate.py for details (the function is relatively complicated).

Now we have all the tools needed to run the Markov chain of tran-
sitions for a randomly selected position in a DNA sequence:

8.3 Computing Probabilities 439

def mutate_via_markov_chain(dna, markov_chain):
dna_list = list(dna)
mutation_site = random.randint(0, len(dna_list) - 1)
from_base = dna[mutation_site]
to_base = draw(markov_chain[from_base])
dna_list[mutation_site] = to_base
return ’’.join(dna_list)

Exercise 8.51 suggests some efficiency enhancements of simulating mu-
tations via these functions.

Here is a simulation of mutations using the method based on Markov
chains:

dna = ’TTACGGAGATTTCGGTATGCAT’
print ’Starting DNA:’, dna
print format_frequencies(get_base_frequencies_v2(dna))

mc = create_markov_chain()
import pprint
print ’Transition probabilities:\n’, pprint.pformat(mc)
nmutations = 10000
for i in range(nmutations):

dna = mutate_via_markov_chain(dna, mc)

print ’DNA after %d mutations (Markov chain):’ % nmutations, dna
print format_frequencies(get_base_frequencies_v2(dna))

The output will differ each time the program is run unless
random.seed(i) is called in the beginning of the program for some
integer i. This call makes the sequence of random numbers the same
every time the program is run and is very useful for debugging. An
example on the output may look like

Starting DNA: TTACGGAGATTTCGGTATGCAT
A: 0.23, C: 0.14, T: 0.36, G: 0.27
Transition probabilities:
{’A’: {’A’: 0.4288890546751146,

’C’: 0.4219086988655296,
’G’: 0.00668870644455688,
’T’: 0.14251354001479888},

’C’: {’A’: 0.24999667668640035,
’C’: 0.04718309085408834,
’G’: 0.6250440975238185,
’T’: 0.0777761349356928},

’G’: {’A’: 0.16022955651881965,
’C’: 0.34652746609882423,
’G’: 0.1328031742612512,
’T’: 0.3604398031211049},

’T’: {’A’: 0.20609823213950174,
’C’: 0.17641112746655452,
’G’: 0.010267621176125452,
’T’: 0.6072230192178183}}

DNA after 10000 mutations (Markov chain): GGTTTAAGTCAGCTATGATTCT
A: 0.23, C: 0.14, T: 0.41, G: 0.23

The various functions performing mutations are located in the file
mutate.py.

8.3.5 Example: Policies for Limiting Population Growth

China has for many years officially allowed only one child per couple.
However, the success of the policy has been somewhat limited. One

440 8 Random Numbers and Simple Games

challenge is the current over-representation of males in the population
(families have favored sons to live up). An alternative policy is to allow
each couple to continue getting children until they get a son. We can
simulate both policies and see how a population will develop under the
“one child” and the “one son” policies. Since we expect to work with
a large population over several generations, we aim at vectorized code
at once.

Suppose we have a collection of n individuals, called parents, consist-
ing of males and females randomly drawn such that a certain portion
(male_portion) constitutes males. The parents array holds integer val-
ues, 1 for male and 2 for females. We can introduce constants, MALE=1
and FEMALE=2, to make the code easier to read. Our task is to see how
the parents array develop from one generation to the next under the
two policies. Let us first show how to draw the random integer array
parents where there is a probability male_portion of getting the value
MALE:

import numpy as np
r = np.random.random(n)
parents = np.zeros(n, int)
MALE = 1; FEMALE = 2
parents[r < male_portion] = MALE
parents[r >= male_portion] = FEMALE

The number of potential couples is the minimum of males and females.
However, only a fraction (fertility) of the couples will actually get a
child. Under the perfect “one child” policy, these couples can have one
child each:

males = len(parents[parents==MALE])
females = len(parents) - males
couples = min(males, females)
n = int(fertility*couples) # couples that get a child

The next generation, one child per couple
r = random.random(n)
children = np.zeros(n, int)
children[r < male_portion] = MALE
children[r >= male_portion] = FEMALE

The code for generating a new population will be needed in every gener-
ation. Therefore, it is natural to collect the last statements in a separate
function such that we can repeat the statements when needed.

def get_children(n, male_portion, fertility):
n = int(fertility*n)
r = random.random(n)
children = zeros(n, int)
children[r < male_portion] = MALE
children[r >= male_portion] = FEMALE
return children

8.3 Computing Probabilities 441

Under the “one son” policy, the families can continue getting a new
child until they get the first son:

First try
children = get_children(couples, male_portion, fertility)

Continue with getting a new child for each daughter
daughters = children[children == FEMALE]
while len(daughters) > 0:

new_children = get_children(len(daughters),
male_portion, fertility)

children = np.concatenate((children, new_children))
daughters = new_children[new_children == FEMALE]

The program birth_policy.py organizes the code segments above for
the two policies into a function advance_generation, which we can call
repeatedly to see the evolution of the population.

def advance_generation(parents, policy=’one child’,
male_portion=0.5, fertility=1.0):

males = len(parents[parents==MALE])
females = len(parents) - males
couples = min(males, females)

if policy == ’one child’:
children = get_children(couples, male_portion, fertility)

elif policy == ’one son’:
First try at getting a child
children = get_children(couples, male_portion, fertility)
Continue with getting a new child for each daughter
daughters = children[children == FEMALE]
while len(daughters) > 0:

new_children = get_children(len(daughters),
male_portion, fertility)

children = np.concatenate((children, new_children))
daughters = new_children[new_children == FEMALE]

return children

The simulation is then a matter of repeated calls to advance_generation:

N = 1000000 # population size
male_portion = 0.51
fertility = 0.92
Start with a "perfect" generation of parents
parents = get_children(N, male_portion=0.5, fertility=1.0)
print ’one son policy, start: %d’ % len(parents)
for i in range(10):

parents = advance_generation(parents, ’one son’,
male_portion, fertility)

print ’%3d: %d’ % (i+1, len(parents))

Under ideal conditions with unit fertility and a male_portion of
0.5, the program predicts that the “one child” policy halves the popula-
tion from one generation to the next, while the “one son” policy, where
we expect each couple to get one daughter and one son on average,
keeps the population constant. Increasing male_portion slightly and
decreasing fertility, which corresponds more to reality, will in both
cases lead to a reduction of the population. You can try the program
out with various values of these input parameters.

442 8 Random Numbers and Simple Games

An obvious extension is to incorporate the effect that a portion of
the population does not follow the policy and get c children on average.
The program birth_policy.py can account for the effect, which is quite
dramatic: If 1% of the population does not follow the “one son” policy
and get 4 children on average, the population grows with 50% over 10
generations (male_portion and fertility kept at the ideal values 0.5
and 1, respectively).

Normally, simple models like the difference equations (A.9) and
(A.12), from Appendices A.1.4 and A.1.5, or the differential equations
(C.11) or (C.23), are used to model population growth. However, these
models track the number of individuals through time with a very simple
growth factor from one generation to the next. The model above tracks
each individual in the population and applies rules involving random
actions to each individual. Such a detailed and much more computer-
time consuming model can be used to see the effect of different policies.
Using the results of this detailed model, we can (sometimes) estimate
growth factors for simpler models so that these mimic the overall effect
on the population size. Exercise 8.28 asks you to investigate if a certain
realization of the “one son” policy leads to simple exponential growth.

8.4 Simple Games

This section presents the implementation of some simple games based
on drawing random numbers. The games can be played by two humans,
but here we consider a human versus the computer.

8.4.1 Guessing a Number

The Game. The computer determines a secret number, and the player
shall guess the number. For each guess, the computer tells if the number
is too high or too low.

The Implementation. We let the computer draw a random integer in
an interval known to the player, let us say [1, 100]. In a while loop the
program prompts the player for a guess, reads the guess, and checks
if the guess is higher or lower than the drawn number. An appropri-
ate message is written to the screen. We think the algorithm can be
expressed directly as executable Python code:

import random
number = random.randint(1, 100)
attempts = 0 # count no of attempts to guess the number
guess = 0
while guess != number:

guess = eval(raw_input(’Guess a number: ’))
attempts += 1

8.4 Simple Games 443

if guess == number:
print ’Correct! You used’, attempts, ’attempts!’
break

elif guess < number:
print ’Go higher!’

else:
print ’Go lower!’

The program is available as the file guessnumber.py. Try it out! Can
you come up with a strategy for reducing the number of attempts? See
Exercise 8.29 for an automatic investigation of two possible strategies.

8.4.2 Rolling Two Dice

The Game. The player is supposed to roll two dice, and beforehand
guess the sum of the eyes. If the guess on the sum is n and it turns
out to be right, the player earns n euros. Otherwise, the player must
pay 1 euro. The machine plays in the same way, but the machine’s
guess of the number of eyes is a uniformly distributed number between
2 and 12. The player determines the number of rounds, r, to play, and
receives r euros as initial capital. The winner is the one that has the
largest amount of euros after r rounds, or the one that avoids to lose
all the money.

The Implementation. There are three actions that we can naturally
implement as functions: (i) roll two dice and compute the sum; (ii) ask
the player to guess the number of eyes; (iii) draw the computer’s guess
of the number of eyes. One soon realizes that it is as easy to imple-
ment this game for an arbitrary number of dice as it is for two dice.
Consequently we can introduce ndice as the number of dice. The three
functions take the following forms:

import random

def roll_dice_and_compute_sum(ndice):
return sum([random.randint(1, 6) \

for i in range(ndice)])

def computer_guess(ndice):
return random.randint(ndice, 6*ndice)

def player_guess(ndice):
return input(’Guess the sum of the no of eyes ’\

’in the next throw: ’)

We can now implement one round in the game for the player or the
computer. The round starts with a capital, a guess is performed by
calling the right function for guessing, and the capital is updated:

def play_one_round(ndice, capital, guess_function):
guess = guess_function(ndice)
throw = roll_dice_and_compute_sum(ndice)
if guess == throw:

444 8 Random Numbers and Simple Games

capital += guess
else:

capital -= 1
return capital, throw, guess

Here, guess_function is either computer_guess or player_guess.
With the play_one_round function we can run a number of rounds

involving both players:

def play(nrounds, ndice=2):
player_capital = computer_capital = nrounds # start capital

for i in range(nrounds):
player_capital, throw, guess = \

play_one_round(ndice, player_capital, player_guess)
print ’YOU guessed %d, got %d’ % (guess, throw)

computer_capital, throw, guess = \
play_one_round(ndice, computer_capital, computer_guess)

print ’Machine guessed %d, got %d’ % (guess, throw)

print ’Status: you have %d euros, machine has %d euros’ % \
(player_capital, computer_capital)

if player_capital == 0 or computer_capital == 0:
break

if computer_capital > player_capital:
winner = ’Machine’

else:
winner = ’You’

print winner, ’won!’

The name of the program is ndice.py.

Example. Here is a session (with a fixed seed of 20):

Guess the sum of the no of eyes in the next throw: 7
YOU guessed 7, got 11
Machine guessed 10, got 8
Status: you have 9 euros, machine has 9 euros

Guess the sum of the no of eyes in the next throw: 9
YOU guessed 9, got 10
Machine guessed 11, got 6
Status: you have 8 euros, machine has 8 euros

Guess the sum of the no of eyes in the next throw: 9
YOU guessed 9, got 9
Machine guessed 3, got 8
Status: you have 17 euros, machine has 7 euros

Exercise 8.11 asks you to perform simulations to determine whether a
certain strategy can make the player win over the computer in the long
run.

A Class Version. We can cast the previous code segment in a class.
Many will argue that a class-based implementation is closer to the
problem being modeled and hence easier to modify or extend.

8.4 Simple Games 445

A natural class is Dice, which can throw n dice:

class Dice:
def __init__(self, n=1):

self.n = n # no of dice

def throw(self):
return [random.randint(1,6) \

for i in range(self.n)]

Another natural class is Player, which can perform the actions of a
player. Functions can then make use of Player to set up a game.
A Player has a name, an initial capital, a set of dice, and a Dice object
to throw the object:

class Player:
def __init__(self, name, capital, guess_function, ndice):

self.name = name
self.capital = capital
self.guess_function = guess_function
self.dice = Dice(ndice)

def play_one_round(self):
self.guess = self.guess_function(self.dice.n)
self.throw = sum(self.dice.throw())
if self.guess == self.throw:

self.capital += self.guess
else:

self.capital -= 1
self.message()
self.broke()

def message(self):
print ’%s guessed %d, got %d’ % \

(self.name, self.guess, self.throw)

def broke(self):
if self.capital == 0:

print ’%s lost!’ % self.name
sys.exit(0) # end the program

The guesses of the computer and the player are specified by functions:

def computer_guess(ndice):
All guesses have the same probability
return random.randint(ndice, 6*ndice)

def player_guess(ndice):
return input(’Guess the sum of the no of eyes ’\

’in the next throw: ’)

The key function to play the whole game, utilizing the Player class for
the computer and the user, can be expressed as

def play(nrounds, ndice=2):
player = Player(’YOU’, nrounds, player_guess, ndice)
computer = Player(’Computer’, nrounds, computer_guess, ndice)

for i in range(nrounds):
player.play_one_round()

446 8 Random Numbers and Simple Games

computer.play_one_round()
print ’Status: user have %d euro, machine has %d euro\n’ % \

(player.capital, computer.capital)

if computer.capital > player.capital:
winner = ’Machine’

else:
winner = ’You’

print winner, ’won!’

The complete code is found in the file ndice2.py. There is no new
functionality compared to the ndice.py implementation, just a new
and better structuring of the code.

8.5 Monte Carlo Integration

One of the earliest applications of random numbers was numerical com-
putation of integrals, that is, a non-random (deterministic) problem.

Here we shall address two related methods for computing
∫ b
a f(x)dx.

8.5.1 Standard Monte Carlo Integration

Let x1, . . . , xn be uniformly distributed random numbers between a
and b. Then

(b− a)
1

n

n∑
i=1

f(xi) (8.7)

is an approximation to the integral
∫ b
a f(x)dx. This method is usually

referred to as Monte Carlo integration. It is easy to interpret (8.7).
A well-known result from calculus is that the integral of a function f
over [a, b] equals the mean value of f over [a, b] multiplied by the length
of the interval, b− a. If we approximate the mean value of f(x) by the
mean of n randomly distributed function evaluations f(xi), we get the
method (8.7).

We can implement (8.7) in a small function:

import random

def MCint(f, a, b, n):
s = 0
for i in range(n):

x = random.uniform(a, b)
s += f(x)

I = (float(b-a)/n)*s
return I

One normally needs a large n to obtain good results with this
method, so a faster vectorized version of the MCint function is handy:

8.5 Monte Carlo Integration 447

import numpy as np

def MCint_vec(f, a, b, n):
x = np.random.uniform(a, b, n)
s = np.sum(f(x))
I = (float(b-a)/n)*s
return I

Let us try the Monte Carlo integration method on a simple linear
function f(x) = 2 + 3x, integrated from 1 to 2. Most other numeri-
cal integration methods will integrate such a linear function exactly,
regardless of the number of function evaluations. This is not the case
with Monte Carlo integration. It would be interesting to see how the
quality of the Monte Carlo approximation increases with n. To plot the
evolution of the integral approximation we must store intermediate I

values. This requires a slightly modified MCint method:

def MCint2(f, a, b, n):
s = 0
Store the intermediate integral approximations in an
array I, where I[k-1] corresponds to k function evals.
I = np.zeros(n)
for k in range(1, n+1):

x = random.uniform(a, b)
s += f(x)
I[k-1] = (float(b-a)/k)*s

return I

Note that we let k go from 1 to n while the indices in I, as usual, go
from 0 to n-1. Since n can be very large, the I array may consume more
memory than what we have on the computer. Therefore, we decide to
store only every N values of the approximation. Determining if a value
is to be stored or not can then be computed by the mod function (see
page 119):

for k in range(1, n+1):
...
if k % N == 0:

store

That is, every time k can be divided by N without any remainder, we
store the value. The complete function takes the following form:

def MCint3(f, a, b, n, N=100):
s = 0
Store every N intermediate integral approximations in an
array I and record the corresponding k value.
I_values = []
k_values = []
for k in range(1, n+1):

x = random.uniform(a, b)
s += f(x)
if k % N == 0:

I = (float(b-a)/k)*s
I_values.append(I)
k_values.append(k)

return k_values, I_values

448 8 Random Numbers and Simple Games

Now we have the tools to plot the error in the Monte Carlo approx-
imation as a function of n:

def f1(x):
return 2 + 3*x

k, I = MCint3(f1, 1, 2, 1000000, N=10000)

from scitools.std import plot
error = 6.5 - np.array(I)
plot(k, error, title=’Monte Carlo integration’,

xlabel=’n’, ylabel=’error’)

Figure 8.4 shows the resulting plot.

Fig. 8.4 The convergence of Monte Carlo integration applied to
∫ 2
1
(2 + 3x)dx.

For functions of one variable, method (8.7) requires many points
and is inefficient compared to other integration rules. Most integra-
tion rules have an error that reduces with increasing n, typically like
n−r for some r > 0. For the Trapezoidal rule, r = 2, while r = 1/2
for Monte Carlo integration, which means that this method converges
quite slowly compared to the Trapezoidal rule. However, for functions
of many variables, Monte Carlo integration in high space dimension
completely outperforms methods like the Trapezoidal rule and Simp-
son’s rule. There are also many ways to improve the performance of
(8.7), basically by being “smart” in drawing the random numbers (this
is called variance reducing techniques).

8.5.2 Area Computing by Throwing Random Points

Think of some geometric region G in the plane and a surrounding
bounding box B with geometry [xL, xH]×[yL, yH]. One way of comput-
ing the area of G is to draw N random points inside B and count how

8.5 Monte Carlo Integration 449

many of them, M , that lie inside G. The area of G is then the fraction
M/N (G’s fraction of B’s area) times the area of B, (xH−xL)(yH−yL).
Phrased differently, this method is a kind of dart game where you record
how many hits there are insideG if every throw hits uniformly withinB.

Let us formulate this method for computing the integral
∫ b
a f(x)dx.

The important observation is that this integral is the area under the
curve y = f(x) and above the x axis, between x = a and x = b. We
introduce a rectangle B,

B =
{
(x, y) | a ≤ x ≤ b, 0 ≤ y ≤ m

}
,

where m ≤ maxx∈[a,b] f(x). The algorithm for computing the area un-
der the curve is to draw N random points inside B and count how
many of them, M , that are above the x axis and below the y = f(x)
curve, see Figure 8.5. The area or integral is then estimated by

M

N
m(b− a).

Fig. 8.5 The “dart” method for computing integrals. When M out of N random points in

the rectangle [0, 2] × [0, 2.4] lie under the curve, the area under the curve is estimated as
the M/N fraction of the area of the rectangle, i.e., (M/N)2 · 2.4.

First we implement the “dart method” by a simple loop over points:

def MCint_area(f, a, b, n, m):
below = 0 # counter for no of points below the curve
for i in range(n):

x = random.uniform(a, b)
y = random.uniform(0, m)
if y <= f(x):

below += 1
area = below/float(n)*m*(b-a)
return area

450 8 Random Numbers and Simple Games

Note that this method draws twice as many random numbers as the
previous method.

A vectorized implementation reads

import numpy as np

def MCint_area_vec(f, a, b, n, m):
x = np.random.uniform(a, b, n)
y = np.random.uniform(0, m, n)
below = y[y < f(x)].size
area = below/float(n)*m*(b-a)
return area

The only non-trivial line here is the expression y[y < f(x)], which
applies boolean indexing (Chapter 5.5.2) to extract the y values that
are below the f(x) curve. The size of y[y < f(x)] gives the number of
points below the curve.

Even for 2 million random numbers the plain loop version is not that
slow as it executes within some seconds on a slow laptop. Nevertheless,
if you need the integration being repeated many times inside another
calculation, the superior efficiency of the vectorized version may be
important. We can quantify the efficiency gain by the aid of the timer
time.clock() in the following way (see Appendix H.6.1):

import time
t0 = time.clock()
print MCint_area(f1, a, b, n, fmax)
t1 = time.clock() # time of MCint_area is t1-t0
print MCint_area_vec(f1, a, b, n, fmax)
t2 = time.clock() # time of MCint_area_vec is t2-t1
print ’loop/vectorized fraction:’, (t1-t0)/(t2-t1)

With n = 106 the author achieved a factor of about 8 in favor of the
vectorized version.

8.6 Random Walk in One Space Dimension

In this section we shall simulate a collection of particles that move
around in a random fashion. This type of simulations are fundamental
in physics, biology, chemistry as well as other sciences and can be used
to describe many phenomena. Some application areas include molecular
motion, heat conduction, quantum mechanics, polymer chains, popu-
lation genetics, brain research, hazard games, and pricing of financial
instruments.

Imagine that we have some particles that perform random moves,
either to the right or to the left. We may flip a coin to decide the
movement of each particle, say head implies movement to the right
and tail means movement to the left. Each move is one unit length.

8.6 Random Walk in One Space Dimension 451

Physicists use the term random walk for this type of movement of a
particle7.

The movement is also known as “drunkard’s walk”. You may have
experienced this after a very wet night on a pub: you step forward
and backward in a random fashion. Since these movements on average
make you stand still, and since you know that you normally reach home
within reasonable time, the model is not good for a real walk. We need
to add a drift to the walk, so the probability is greater for going forward
than backward. This is an easy adjustment, see Exercise 8.34. What
may come as a surprise is the following fact: even when there is equal
probability of going forward and backward, one can prove mathemati-
cally that the drunkard will always reach his home. Or more precisely,
he will get home in finite time (“almost surely” as the mathematicians
must add to this statement). Exercise 8.35 asks you to experiment
with this fact. For many practical purposes, “finite time” does not help
much as there might be more steps involved than the time it takes to
get sufficiently sober to remove the completely random component of
the walk.

8.6.1 Basic Implementation

How can we implement ns random steps of np particles in a program?
Let us introduce a coordinate system where all movements are along the
x axis. An array of x values then holds the positions of all particles. We
draw random numbers to simulate flipping a coin, say we draw from
the integers 1 and 2, where 1 means head (movement to the right)
and 2 means tail (movement to the left). We think the algorithm is
conveniently expressed directly as a complete Python program:

import random
import numpy
np = 4 # no of particles
ns = 100 # no of steps
positions = numpy.zeros(np) # all particles start at x=0
HEAD = 1; TAIL = 2 # constants

for step in range(ns):
for p in range(np):

coin = random.randint(1,2) # flip coin
if coin == HEAD:

positions[p] += 1 # one unit length to the right
elif coin == TAIL:

positions[p] -= 1 # one unit length to the left

This program is found in the file walk1D.py.

7 You may try this yourself: flip the coin and make one step to the left or right, and repeat

this process.

452 8 Random Numbers and Simple Games

8.6.2 Visualization

We may add some visualization of the movements by inserting a plot

command at the end of the step loop and a little pause to better
separate the frames in the animation8:

plot(positions, y, ’ko3’, axis=[xmin, xmax, -0.2, 0.2])
time.sleep(0.2) # pause

Recall from Chapter 5 that in an animation like this the axis must be
kept fixed. We know that in ns steps, no particle can move longer than
ns unit lengths to the right or to the left so the extent of the x axis
becomes [−ns, ns]. However, the probability of reaching these lower or
upper limit is very small9. Most of the movements will take place in
the center of the plot. We may therefore shrink the extent of the axis
to better view the movements. It is known that the expected extent
of the particles is of the order

√
ns, so we may take the maximum

and minimum values in the plot as ±2
√
ns. However, if a position of

a particle exceeds these values, we extend xmax and xmin by 2
√
ns in

positive and negative x direction, respectively.
The y positions of the particles are taken as zero, but it is necessary

to have some extent of the y axis, otherwise the coordinate system
collapses and most plotting packages will refuse to draw the plot. Here
we have just chosen the y axis to go from −0.2 to 0.2. You can find the
complete program in src/random/walk1Dp.py. The np and ns parameters
can be set as the first two command-line arguments:

Terminal

walk1Dp.py 6 200

It is hard to claim that this program has astonishing graphics. In Chap-
ter 8.7, where we let the particles move in two space dimensions, the
graphics gets much more exciting.

8.6.3 Random Walk as a Difference Equation

The random walk process can easily be expressed in terms of a differ-
ence equation (see Appendix A for an introduction to difference equa-
tions). Let xn be the position of the particle at time n. This position
is an evolution from time n− 1, obtained by adding a random variable
s to the previous position xn−1, where s = 1 has probability 1/2 and
s = −1 has probability 1/2. In statistics, the expression “probability
of event A” is written P(A). We can therefore write P(s = 1) = 1/2
and P(s = −1) = 1/2. The difference equation can now be expressed
mathematically as

8 These actions require from scitools.std import * and import time.
9 The probability is 2−ns , which becomes about 10−9 for 30 steps.

8.6 Random Walk in One Space Dimension 453

xn = xn−1 + s, x0 = 0, P(s = 1) = P(s = −1) = 1/2. (8.8)

This equation governs the motion of one particle. For a collection m

of particles we introduce x
(i)
n as the position of the i-th particle at the

n-th time step. Each x
(i)
n is governed by (8.8), and all the s values in

each of the m difference equations are independent of each other.

8.6.4 Computing Statistics of the Particle Positions

Scientists interested in random walks are in general not interested in
the graphics of our walk1D.py program, but more in the statistics of
the positions of the particles at each step. We may therefore, at each
step, compute a histogram of the distribution of the particles along the
x axis, plus estimate the mean position and the standard deviation.
These mathematical operations are easily accomplished by letting the
SciTools function compute_histogram and the numpy functions mean and
std operate on the positions array (see Chapter 8.1.5)10:

mean_pos = numpy.mean(positions)
stdev_pos = numpy.std(positions)
pos, freq = compute_histogram(positions, nbins=int(xmax),

piecewise_constant=True)

We can plot the particles as circles, as before, and add the histogram
and vertical lines for the mean and the positive and negative standard
deviation (the latter indicates the “width” of the distribution of parti-
cles). The vertical lines can be defined by the six lists

xmean, ymean = [mean_pos, mean_pos], [yminv, ymaxv]
xstdv1, ystdv1 = [stdev_pos, stdev_pos], [yminv, ymaxv]
xstdv2, ystdv2 = [-stdev_pos, -stdev_pos], [yminv, ymaxv]

where yminv and ymaxv are the minimum and maximum y values of
the vertical lines. The following command plots the position of every
particle as circles, the histogram as a curve, and the vertical lines with
a thicker line:

plot(positions, y, ’ko3’, # particles as circles
pos, freq, ’r’, # histogram
xmean, ymean, ’r2’, # mean position as thick line
xstdv1, ystdv1, ’b2’, # +1 standard dev.
xstdv2, ystdv2, ’b2’, # -1 standard dev.
axis=[xmin, xmax, ymin, ymax],
title=’random walk of %d particles after %d steps’ %

(np, step+1))

This plot is then created at every step in the random walk. By observing
the graphics, one will soon realize that the computation of the extent

10 The number of bins in the histogram is just based on the extent of the particles. It could

also have been a fixed number.

454 8 Random Numbers and Simple Games

of the y axis in the plot needs some considerations. We have found
it convenient to base ymax on the maximum value of the histogram
(max(freq)), plus some space (chosen as 10 percent of max(freq)).
However, we do not change the ymax value unless it is more than
0.1 different from the previous ymax value (otherwise the axis “jumps”
too often). The minimum value, ymin, is set to ymin=-0.1*ymax every
time we change the ymax value. The complete code is found in the file
walk1Ds.py. If you try out 2000 particles and 30 steps, the final graphics
becomes like that in Figure 8.6. As the number of steps is increased, the
particles are dispersed in the positive and negative x direction, and the
histogram gets flatter and flatter. Letting Ĥ(i) be the histogram value
in interval number i, and each interval having width Δx, the prob-
ability of finding a particle in interval i is Ĥ(i)Δx. It can be shown
mathematically that the histogram is an approximation to the proba-
bility density function of the normal distribution (1.6) (see page 45),
with mean zero and standard deviation s ∼

√
n, where n is the step

number.

Fig. 8.6 Particle positions (circles), histogram (piecewise constant curve), and vertical lines

indicating the mean value and the standard deviation from the mean after a one-dimensional
random walk of 2000 particles for 30 steps.

8.6.5 Vectorized Implementation

There is no problem with the speed of our one-dimensional random
walkers in the walk1Dp.py or walk1Ds.py programs, but in real-life ap-

8.6 Random Walk in One Space Dimension 455

plications of such simulation models, we often have a very large number
of particles performing a very large number of steps. It is then impor-
tant to make the implementation as efficient as possible. Two loops over
all particles and all steps, as we have in the programs above, become
very slow compared to a vectorized implementation.

A vectorized implementation of a one-dimensional walk should utilize
the functions randint or random_integers from numpy’s random module.
A first idea may be to draw steps for all particles at a step simultane-
ously. Then we repeat this process in a loop from 0 to ns−1. However,
these repetitions are just new vectors of random numbers, and we may
avoid the loop if we draw np × ns random numbers at once:

moves = numpy.random.randint(1, 3, size=np*ns)
or
moves = numpy.random.random_integers(1, 2, size=np*ns)

The values are now either 1 or 2, but we want −1 or 1. A simple scaling
and translation of the numbers transform the 1 and 2 values to −1 and
1 values:

moves = 2*moves - 3

Then we can create a two-dimensional array out of moves such that
moves[i,j] is the i-th step of particle number j:

moves.shape = (ns, np)

It does not make sense to plot the evolution of the particles and
the histogram in the vectorized version of the code, because the point
with vectorization is to speed up the calculations, and the visualiza-
tion takes much more time than drawing random numbers, even in the
walk1Dp.py and walk1Ds.py programs from Chapter 8.6.4. We therefore
just compute the positions of the particles inside a loop over the steps
and some simple statistics. At the end, after ns steps, we plot the his-
togram of the particle distribution along with circles for the positions
of the particles. The rest of the program, found in the file walk1Dv.py,
looks as follows:

positions = numpy.zeros(np)
for step in range(ns):

positions += moves[step, :]

mean_pos = numpy.mean(positions)
stdev_pos = numpy.std(positions)
print mean_pos, stdev_pos

nbins = int(3*sqrt(ns)) # no of intervals in histogram
pos, freq = compute_histogram(positions, nbins,

piecewise_constant=True)

plot(positions, zeros(np), ’ko3’,
pos, freq, ’r’,
axis=[min(positions), max(positions), -0.01, 1.1*max(freq)],
savefig=’tmp.ps’)

456 8 Random Numbers and Simple Games

8.7 Random Walk in Two Space Dimensions

A random walk in two dimensions performs a step either to the north,
south, west, or east, each one with probability 1/4. To demonstrate
this process, we introduce x and y coordinates of np particles and draw
random numbers among 1, 2, 3, or 4 to determine the move. The posi-
tions of the particles can easily be visualized as small circles in an xy
coordinate system.

8.7.1 Basic Implementation

The algorithm described above is conveniently expressed directly as a
complete working program:

def random_walk_2D(np, ns, plot_step):
xpositions = numpy.zeros(np)
ypositions = numpy.zeros(np)
extent of the axis in the plot:
xymax = 3*numpy.sqrt(ns); xymin = -xymax

NORTH = 1; SOUTH = 2; WEST = 3; EAST = 4 # constants

for step in range(ns):
for i in range(np):

direction = random.randint(1, 4)
if direction == NORTH:

ypositions[i] += 1
elif direction == SOUTH:

ypositions[i] -= 1
elif direction == EAST:

xpositions[i] += 1
elif direction == WEST:

xpositions[i] -= 1

Plot just every plot_step steps
if (step+1) % plot_step == 0:

plot(xpositions, ypositions, ’ko’,
axis=[xymin, xymax, xymin, xymax],
title=’%d particles after %d steps’ %

(np, step+1),
savefig=’tmp_%03d.eps’ % (step+1))

return xpositions, ypositions

main program:
import random
random.seed(10)
import sys
import numpy
from scitools.std import plot

np = int(sys.argv[1]) # number of particles
ns = int(sys.argv[2]) # number of steps
plot_step = int(sys.argv[3]) # plot every plot_step steps
x, y = random_walk_2D(np, ns, plot_step)

The program is found in the file walk2D.py. Figure 8.7 shows two snap-
shots of the distribution of 3000 particles after 40 and 400 steps. These
plots were generated with command-line arguments 3000 400 20, the

8.7 Random Walk in Two Space Dimensions 457

Fig. 8.7 Location of 3000 particles starting at the origin and performing a random walk:

(a) 40 steps; (b) 400 steps.

latter implying that we visualize the particles every 20 time steps
only.

To get a feeling for the two-dimensional random walk you can try
out only 30 particles for 400 steps and let each step be visualized (i.e.,
command-line arguments 30 400 1). The update of the movements is
now fast.

The walk2D.py program dumps the plots to PostScript files with
names of the form tmp_xxx.eps, where xxx is the step number. We
can create a movie out of these individual files using the movie func-
tion (Chapter 5.3.4) or the program convert from the ImageMagick
suite11:

convert -delay 50 -loop 1000 tmp_*.eps movie.gif

All the plots are now put after each other as frames in a movie, with a
delay of 50 ms between each frame. The movie will run in a loop 1000
times. Alternatively, we can create the movie with the movie function
from Easyviz, inside a program:

from scitools.std import movie
movie(’tmp_*.eps’, encoder=’convert’, output_file=’movie.gif’)

The resulting movie file is named movie.gif, which can be viewed by the
animate program (also from the ImageMagick program suite), just write
animate movie.gif. Making and showing the movie are slow processes
if a large number of steps are included in the movie – 100 steps or fewer
are appropriate, but this depends on the power of your computer.

8.7.2 Vectorized Implementation

The walk2D.py program is quite slow. Now the visualization is much
faster than the movement of the particles. Vectorization may speed up

11 If you want to run this command from an IPython session, prefix convert with an

exclamation mark: !convert.

458 8 Random Numbers and Simple Games

the walk2D.py program significantly. As in the one-dimensional phase,
we draw all the movements at once and then invoke a loop over the steps
to update the x and y coordinates. We draw ns × np numbers among
1, 2, 3, and 4. We then reshape the vector of random numbers to a
two-dimensional array moves[i, j], where i counts the steps, j counts
the particles. The if test on whether the current move is to the north,
south, east, or west can be vectorized using the where function (see
Chapter 5.5.2). For example, if the random numbers for all particles in
the current step are accessible in an array this_move, we could update
the x positions by

xpositions += np.where(this_move == EAST, 1, 0)
xpositions -= np.where(this_move == WEST, 1, 0)

provided EAST and WEST are constants, equal to 3 and 4, respectively.
A similar construction can be used for the y moves.

The complete program is listed below:

def random_walk_2D(np, ns, plot_step):
xpositions = numpy.zeros(np)
ypositions = numpy.zeros(np)
moves = numpy.random.random_integers(1, 4, size=ns*np)
moves.shape = (ns, np)

Estimate max and min positions
xymax = 3*numpy.sqrt(ns); xymin = -xymax

NORTH = 1; SOUTH = 2; WEST = 3; EAST = 4 # constants

for step in range(ns):
this_move = moves[step,:]
ypositions += numpy.where(this_move == NORTH, 1, 0)
ypositions -= numpy.where(this_move == SOUTH, 1, 0)
xpositions += numpy.where(this_move == EAST, 1, 0)
xpositions -= numpy.where(this_move == WEST, 1, 0)

Just plot every plot_step steps
if (step+1) % plot_step == 0:

plot(xpositions, ypositions, ’ko’,
axis=[xymin, xymax, xymin, xymax],
title=’%d particles after %d steps’ %

(np, step+1),
savefig=’tmp_%03d.eps’ % (step+1))

return xpositions, ypositions

Main program
from scitools.std import plot
import numpy, sys
numpy.random.seed(11)

np = int(sys.argv[1]) # number of particles
ns = int(sys.argv[2]) # number of steps
plot_step = int(sys.argv[3]) # plot each plot_step step
x, y = random_walk_2D(np, ns, plot_step)

You will easily experience that this program, found in the file
walk2Dv.py, runs significantly faster than the walk2D.py program.

8.8 Summary 459

8.8 Summary

8.8.1 Chapter Topics

Drawing Random Numbers. Random numbers can be scattered
throughout an interval in various ways, specified by the distribution
of the numbers. We have considered a uniform distribution (Chap-
ter 8.1.2) and a normal (or Gaussian) distribution (Chapter 8.1.6).
Table 8.1 shows the syntax for generating random numbers of these
two distributions, using either the standard scalar random module in
Python or the vectorized numpy.random module.

Table 8.1 Summary of important functions for drawing random numbers. N is the array

length in vectorized drawing, while m and s represent the mean and standard deviation
values of a normal distribution. Functions from the standard random module appear in the

middle column, while the corresponding functions from numpy.random are listed in the right
column.

uniform numbers in [0, 1) random() random(N)

uniform numbers in [a, b) uniform(a, b) uniform(a, b, N)

integers in [a, b] randint(a, b) randint(a, b+1, N)

random integers(a, b, N)

Gaussian numbers, mean m, st.dev. s gauss(m, s) normal(m, s, N)

set seed (i) seed(i) seed(i)

shuffle list a (in-place) shuffle(a) shuffle(a)

choose a random element in list a choice(a)

Typical Probability Computation. Many programs performing proba-
bility computations draw a large number N of random numbers and
count how many times M a random number leads to some true condi-
tion (Monte Carlo simulation):

import random
M = 0
for i in xrange(N):

r = random.randint(a, b)
if condition:

M += 1
print ’Probability estimate:’, float(M)/N

For example, if we seek the probability that we get at least four eyes
when throwing a dice, we choose the random number to be the number
of eyes, i.e., an integer in the interval [1, 6] (a=1, b=6) and condition

becomes r >= 4.
For large N we can speed up such programs by vectorization, i.e.,

drawing all random numbers at once in a big array and use operations
on the array to find M . The similar vectorized version of the program
above looks like

import numpy as np
r = np.random.uniform(a, b, N)
M = np.sum(condition)
or

460 8 Random Numbers and Simple Games

M = np.sum(where(condition, 1, 0))
print ’Probability estimate:’, float(M)/N

(Combinations of boolean expressions in the condition argument to
where requires special constructs as outlined in Exercise 8.18.) Make
sure you use np.sum when operating on large arrays and not the much
slower built-in sum function in Python.

Statistical Measures. Given an array of random numbers, the following
code computes the mean, variance, and standard deviation of the num-
bers and finally displays a plot of the histogram, which reflects how the
numbers are statistically distributed:

from scitools.std import compute_histogram, plot
import numpy as np
m = np.mean(numbers)
v = np.var(numbers)
s = np.std(numbers)
x, y = compute_histogram(numbers, 50, piecewise_constant=True)
plot(x, y)

8.8.2 Example: Random Growth

Appendix A.1.1 presents simple mathematical models for how an in-
vestment grows when there is an interest rate being added to the in-
vestment at certain intervals. The models can easily allow for a time-
varying interest rate, but for forecasting the growth of an investment,
it is difficult to predict the future interest rate. One commonly used
method is to build a probabilistic model for the development of the
interest rate, where the rate is chosen randomly at random times. This
gives a random growth of the investment, but by simulating many ran-
dom scenarios we can compute the mean growth and use the standard
deviation as a measure of the uncertainty of the predictions.

Problem. Let p be the annual interest rate in a bank in percent. Suppose
the interest is added to the investment q times per year. The new value
of the investment, xn, is given by the previous value of the investment,
xn−1, plus the p/q percent interest:

xn = xn−1 +
p

100q
xn−1.

Normally, the interest is added daily (q = 360 and n counts days),
but for efficiency in the computations later we shall assume that the
interest is added monthly, so q = 12 and n counts months.

The basic assumption now is that p is random and varies with time.
Suppose p increases with a random amount γ from one month to the
next:

pn = pn−1 + γ.

8.8 Summary 461

A typical size of p adjustments is 0.5. However, the central bank does
not adjust the interest every month. Instead this happens every M
months on average. The probability of a γ 	= 0 can therefore be taken
as 1/M . In a month where γ 	= 0, we may say that γ = m with
probability 1/2 or γ = −m with probability 1/2 if it is equally likely
that the rate goes up as down (this is not a good assumption, but a
more complicated change in γ is postponed now).

Solution. First we must develop the precise formulas to be imple-
mented. The difference equations for xn and pn are simple in the present
case, but the details of computing γ must be worked out.

In a program, we can draw two random numbers to estimate γ: one
for deciding if γ 	= 0 and the other for determining the sign of the
change. Since the probability for γ 	= 0 is 1/M , we can draw a number
r1 among the integers 1, . . . ,M and if r1 = 1 we continue with drawing
a second number r2 among the integers 1 and 2. If r2 = 1 we set γ = m,
and if r2 = 2 we set γ = −m. We must also assure that pn does not
take on unreasonable values, so we choose pn < 1 and pn > 15 as cases
where pn is not changed.

The mathematical model for the investment must track both xn
and pn. Below we express with precise mathematics the equations for
xn and pn and the computation of the random γ quantity:

xn = xn−1 +
pn−1

12 · 100xn−1, i = 1, . . . , N (8.9)

r1 = random integer in [1,M] (8.10)

r2 = random integer in [1, 2] (8.11)

γ =

⎧⎨
⎩

m, if r1 = 1 and r2 = 1,
−m, if r1 = 1 and r2 = 2,
0, if r1 	= 1

(8.12)

pn = pn−1 +

{
γ, if pn−1 + γ ∈ [1, 15],
0, otherwise

(8.13)

We remark that the evolution of pn is much like a random walk
process (Chapter 8.6), the only differences is that the plus/minus steps
are taken at some random points among the times 0, 1, 2, . . . , N rather
than at all times 0, 1, 2, . . . , N . The random walk for pn also has barriers
at p = 1 and p = 15, but that is common in a standard random walk
too.

Each time we calculate the xn sequence in the present application, we
get a different development because of the random numbers involved.
We say that one development of x0, . . . , xn is a path (or realization, but
since the realization can be viewed as a curve xn or pn versus n in this
case, it is common to use the word path). Our Monte Carlo simulation
approach consists of computing a large number of paths, as well as the
sum of the path and the sum of the paths squared. From the latter two

462 8 Random Numbers and Simple Games

sums we can compute the mean and standard deviation of the paths to
see the average development of the investment and the uncertainty of
this development. Since we are interested in complete paths, we need
to store the complete sequence of xn for each path. We may also be
interested in the statistics of the interest rate so we store the complete
sequence pn too.

Programs should be built in pieces so that we can test each piece
before testing the whole program. In the present case, a natural piece is
a function that computes one path of xn and pn with N steps, given M ,
m, and the initial conditions x0 and p0. We can then test this function
before moving on to calling the function a large number of times. An
appropriate code may be

def simulate_one_path(N, x0, p0, M, m):
x = np.zeros(N+1)
p = np.zeros(N+1)
index_set = range(0, N+1)

x[0] = x0
p[0] = p0

for n in index_set[1:]:
x[n] = x[n-1] + p[n-1]/(100.0*12)*x[n-1]

Update interest rate p
r = random.randint(1, M)
if r == 1:

Adjust gamma
r = random.randint(1, 2)
gamma = m if r == 1 else -m

else:
gamma = 0

pn = p[n-1] + gamma
p[n] = pn if 1 <= pn <= 15 else p[n-1]

return x, p

Testing such a function is challenging because the result is different
each time because of the random numbers. A first step in verifying
the implementation is to turn off the randomness (m = 0) and check
that the deterministic parts of the difference equations are correctly
computed:

x, p = simulate_one_path(3, 1, 10, 1, 0)
print x

The output becomes

[1. 1.00833333 1.01673611 1.02520891]

These numbers can quickly be checked against a formula of the type
(A.4) on page 559 in an interactive session:

>>> def g(x0, n, p):
... return x0*(1 + p/(12.*100))**n
...
>>> g(1, 1, 10)
1.0083333333333333

8.8 Summary 463

>>> g(1, 2, 10)
1.0167361111111111
>>> g(1, 3, 10)
1.0252089120370369

We can conclude that our function works well when there is no ran-
domness. A next step is to carefully examine the code that computes
gamma and compare with the mathematical formulas.

Simulating many paths and computing the average development of
xn and pn is a matter of calling simulate_one_path repeatedly, use two
arrays xm and pm to collect the sum of x and p, respectively, and finally
obtain the average path by dividing xm and pm by the number of paths
we have computed:

def simulate_n_paths(n, N, L, p0, M, m):
xm = np.zeros(N+1)
pm = np.zeros(N+1)
for i in range(n):

x, p = simulate_one_path(N, L, p0, M, m)
Accumulate paths
xm += x
pm += p

Compute average
xm /= float(n)
pm /= float(n)
return xm, pm

We can also compute the standard deviation of the paths using for-
mulas (8.3) and (8.6), with xj as either an x or a p array. It might
happen that small round-off errors generate a small negative variance,
which mathematically should have been slightly greater than zero. Tak-
ing the square root will then generate complex arrays and problems
with plotting. To avoid this problem, we therefore replace all negative
elements by zeros in the variance arrays before taking the square root.
The new lines for computing the standard deviation arrays xs and ps

are indicated below:

def simulate_n_paths(n, N, x0, p0, M, m):
...
xs = np.zeros(N+1) # standard deviation of x
ps = np.zeros(N+1) # standard deviation of p
for i in range(n):

x, p = simulate_one_path(N, x0, p0, M, m)
Accumulate paths
xm += x
pm += p
xs += x**2
ps += p**2

...
Compute standard deviation
xs = xs/float(n) - xm*xm # variance
ps = ps/float(n) - pm*pm # variance
Remove small negative numbers (round off errors)
xs[xs < 0] = 0
ps[ps < 0] = 0
xs = np.sqrt(xs)

464 8 Random Numbers and Simple Games

ps = np.sqrt(ps)
return xm, xs, pm, ps

A remark regarding the efficiency of array operations is appropriate
here. The statement xs += x**2 could equally well, from a mathemati-
cal point of view, be written as xs = xs + x**2. However, in this latter
statement, two extra arrays are created (one for the squaring and one
for the sum), while in the former only one array (x**2) is made. Since
the paths can be long and we make many simulations, such optimiza-
tions can be important.

One may wonder whether x**2 is “smart” in the sense that squaring
is detected and computed as x*x, not as a general (slow) power function.
This is indeed the case for arrays, as we have investigated in the little
test program smart_power.py in the random directory. This program
applies time measurement methods from Appendix H.6.2.

Our simulate_n_paths function generates four arrays which are nat-
ural to visualize. Having a mean and a standard deviation curve, it is
often common to plot the mean curve with one color or linetype and
then two curves, corresponding to plus one and minus one standard
deviation, with another less visible color. This gives an indication of
the mean development and the uncertainty of the underlying process.
We therefore make two plots: one with xm, xm+xs, and xm-xs, and one
with pm, pm+ps, and pm-ps.

Both for debugging and curiosity it is handy to have some plots of
a few actual paths. We may pick out 5 paths from the simulations and
visualize these:

def simulate_n_paths(n, N, x0, p0, M, m):
...
for i in range(n):

...
Show 5 random sample paths
if i % (n/5) == 0:

figure(1)
plot(x, title=’sample paths of investment’)
hold(’on’)
figure(2)
plot(p, title=’sample paths of interest rate’)
hold(’on’)

figure(1); savefig(’tmp_sample_paths_investment.eps’)
figure(2); savefig(’tmp_sample_paths_interestrate.eps’)
...
return ...

Note the use of figure: we need to hold on both figures to add new
plots and switch between the figures, both for screen plotting and calls
to savefig.

After the visualization of sample paths we make the mean± standard
deviation plots by this code:

8.8 Summary 465

Fig. 8.8 Development of an investment with random jumps of the interest rate at random
points of time: (a) mean value of investment ± one standard deviation; (b) mean value of

the interest rate ± one standard deviation; (c) five paths of the investment development;
(d) five paths of the interest rate development.

xm, xs, pm, ps = simulate_n_paths(n, N, x0, p0, M, m)
figure(3)
months = range(len(xm)) # indices along the x axis
plot(months, xm, ’r’,

months, xm-xs, ’y’,
months, xm+xs, ’y’,
title=’Mean +/- 1 st.dev. of investment’,
savefig=’tmp_mean_investment.eps’)

figure(4)
plot(months, pm, ’r’,

months, pm-ps, ’y’,
months, pm+ps, ’y’,
title=’Mean +/- 1 st.dev. of annual interest rate’,
savefig=’tmp_mean_interestrate.eps’)

The complete program for simulating the investment development is
found in the file growth_random.py.

Running the program with the input data

x0 = 1 # initial investment
p0 = 5 # initial interest rate
N = 10*12 # number of months
M = 3 # p changes (on average) every M months
n = 1000 # number of simulations
m = 0.5 # adjustment of p

and initializing the seed of the random generator to 1, we get four plots,
which are shown in Figure 8.8.

466 8 Random Numbers and Simple Games

8.9 Exercises

Exercise 8.1. Flip a coin N times.
Make a program that simulates flipping a coin N times. Print out

“tail” or “head” for each flip and let the program count the number of
heads. (Hint: Use r = random.random() and define head as r <= 0.5, or
draw an integer among {1, 2} with r = random.randint(1,2) and define
head when r is 1.) Name of program file: flip_coin.py.

Exercise 8.2. Compute a probability.
What is the probability of getting a number between 0.5 and 0.6

when drawing uniformly distributed random numbers from the interval
[0, 1)? To answer this question empirically, let a program draw N such
random numbers using Python’s standard random module, count how
many of them, M , that fall in the interval (0.5, 0.6), and compute the
probability as M/N . Run the program with the four values N = 10i

for i = 1, 2, 3, 6. Name of program file: compute_prob.py.

Exercise 8.3. Choose random colors.
Suppose we have eight different colors. Make a program that chooses

one of these colors at random and writes out the color. Hint: Use a list
of color names and use the choice function in the random module to
pick a list element. Name of program file: choose_color.py.

Exercise 8.4. Draw balls from a hat.
Suppose there are 40 balls in a hat, of which 10 are red, 10 are blue,

10 are yellow, and 10 are purple. What is the probability of getting two
blue and two purple balls when drawing 10 balls at random from the
hat? Name of program file: 4balls_from10.py.

Exercise 8.5. Computing probabilities of rolling dice.

1. You throw a die. What is the probability of getting a 6?
2. You throw a die four times in a row. What is the probability of

getting 6 all the times?
3. Suppose you have thrown the die three times with 6 coming up all

times. What is the probability of getting a 6 in the fourth throw?
4. Suppose you have thrown the die 100 times and experienced a 6 in

every throw. What do you think about the probability of getting a
6 in the next throw?

First try to solve the questions from a theoretical or common sense
point of view. Thereafter, make functions for simulating cases 1, 2,
and 3. Name of program file: rolling_dice.py.

Exercise 8.6. Estimate the probability in a dice game.
Make a program for estimating the probability of getting at least

one 6 when throwing n dice. Read n and the number of experiments

8.9 Exercises 467

from the command line. (To verify the program, you can compare the
estimated probability with the exact result 11/36 when n = 2.) Name
of program file: one6_ndice.py.

Exercise 8.7. Compute the probability of hands of cards.

Use the Deck.py module (in src/random) and the same_rank and
same_suit functions from the cards module to compute the following
probabilities by Monte Carlo simulation:

• exactly two pairs among five cards,
• four or five cards of the same suit among five cards,
• four-of-a-kind among five cards.

Name of program file: card_hands.py.

Exercise 8.8. Decide if a dice game is fair.

Somebody suggests the following game. You pay 1 euro and are al-
lowed to throw four dice. If the sum of the eyes on the dice is less than
9, you win r euros, otherwise you lose your investment. Should you
play this game when r = 10? Answer the question by making a pro-
gram that simulates the game. Read r and the number of experiments
N from the command line Name of program file: sum9_4dice.py.

Exercise 8.9. Adjust the game in Exer. 8.8.

It turns out that the game in Exercise 8.8 is not fair, since you lose
money in the long run. The purpose of this exercise is to adjust the
winning award so that the game becomes fair, i.e., that you neither lose
nor win money in the long run.

Make a program that computes the probability p of getting a sum
less than s when rolling n dice. Use the reasoning in Chapter 8.3.2 to
find the award per game, r, that makes the game fair. Run the program
from Exercise 8.8 with this r on the command line and verify that the
game is now fair. Name of program file: sum_s_ndice_fair.py.

Exercise 8.10. Generalize the game from Chap. 8.3.2.

Consider the game in Chapter 8.3.2. A generalization is to think
as follows: you throw one die until the number of eyes is less than or
equal to the previous throw. Let m be the number of throws in a game.
Use Monte Carlo simulation to compute the probability of getting m =
2, 3, 4, (Form ≥ 6 the throws must be exactly 1, 2, 3, 4, 5, 6, 6, 6, . . . ,
and the probability of each is 1/6, giving the total probability 6−m.) If
you pay 1 euro to play this game, what is the fair amount to get paid
when win? Answer this question for each of the cases m = 2, 3, 4, 5. Use
N = 106 experiments (this should suffice to estimate the probabilities
for m ≤ 5, and beyond that we have the analytical expression). Name
of program file: incr_eyes_m.py.

Exercise 8.11. Compare two playing strategies.

Suggest a player strategy for the game in Chapter 8.4.2. Remove the
question in the player_guess function in the file src/random/ndice2.py,

468 8 Random Numbers and Simple Games

and implement the chosen strategy instead. Let the program play a
large number of games, and record the number of times the computer
wins. Which strategy is best in the long run: the computer’s or yours?
Name of program file: simulate_strategies1.py.

Exercise 8.12. Solve Exercise 8.11 with different no. of dice.

Solve Exercise 8.11 for two other cases with 3 and 50 dice, respec-
tively. Name of program file: simulate_strategies2.py.

Exercise 8.13. Extend Exercise 8.12.

Extend the program from Exercise 8.12 such that the computer and
the player can use a different number of dice. Let the computer choose
a random number of dice between 2 and 20. Experiment to find out if
there is a favorable number of dice for the player. Name of program
file: simulate_strategies3.py.

Exercise 8.14. Investigate the winning chances of some games.

An amusement park offers the following game. A hat contains 20
balls: 5 red, 5 yellow, 3 green, and 7 brown. At a cost of 2n euros you
can draw 4 ≤ n ≤ 10 balls at random from the hat (without putting
them back). Before you are allowed to look at the drawn balls, you
must choose one of the following options:

1. win 60 euros if you have drawn exactly three red balls
2. win 7 + 5

√
n euros if you have drawn at least three brown balls

3. win n3− 26 euros if you have drawn exactly one yellow ball and one
brown ball

4. win 23 euros if you have drawn at least one ball of each color

For each of the 4n different types of games you can play, compute the
net income (per play) and the probability of winning. Is there any of
the games (i.e., any combinations of n and the options 1-4) where you
will win money in the long run? Name of program file: draw_balls.py.

Exercise 8.15. Compute probabilities of throwing two dice.

Make a computer program for throwing two dice a large number of
times. Record the sum of the eyes each time and count how many times
each of the possibilities for the sum (2, 3, . . . , 12) appear. A dictionary
with the sum as key and count as value is convenient here. Divide the
counts by the total number of trials such that you get the frequency of
each possible sum. Write out the frequencies and compare them with
exact probabilities. (To find the exact probabilities, set up all the 6× 6
possible outcomes of throwing two dice, and then count how many of
them that has a sum s for s = 2, 3, . . . , 12.) Name of program file:
freq_2dice.py.

Exercise 8.16. Play with vectorized boolean expressions.

Using the numpy.random module, make an array r containing N uni-
formly distributed random numbers between 0 and 1. Print out the ar-

8.9 Exercises 469

rays r <= 0.5, r[r <= 0.5], where(r <= 0.5, 1, 0) and convince your-
self that you understand what these arrays express. We want to com-
pute how many of the elements in r that are less than or equal to 0.5.
How can this be done in a vectorized way, i.e., without explicit loops
in the program, but solely with operations on complete arrays? Name
of program file: bool_vec.py.

Exercise 8.17. Vectorize the program from Exer. 8.1.
Simulate flipping a coin N times and write out the number of

tails. The code should be vectorized, i.e., there must be no loops in
Python. Hint: Use ideas from Exercise 8.16. Name of program file:
flip_coin_vec.py.

Exercise 8.18. Vectorize the code in Exer. 8.2.
The purpose of this exercise is to speed up the code in Exercise 8.2

by vectorization. Hint: First draw an array r with a large number of
random numbers in [0, 1). The simplest way to count how many ele-
ments in r that lie between 0.5 and 0.6, is to first extract the elements
larger than 0.5: r1 = r[r>0.5], and then extract the elements in r1

that are less than 0.6 and get the size of this array: r1[r1<0.6].size.
Name of program file: compute_prob_vec.py.

Remark. An alternative and more complicated method is to use
the where function. The condition (the first argument to where) is
now a compound boolean expression 0.5 <= r <= 0.6, but this can-
not be used with NumPy arrays. Instead one must test for 0.5 <=

r and r < = 0.6. The needed boolean construction in the where call
is operator.and_(0.5 <= r, r <= 0.6). See the discussion of the this
topic in Chapter 5.5.3.

Exercise 8.19. Throw dice and compute a small probability.
Compute the probability of getting 6 eyes on all dice when rolling

7 dice. Since you need a large number of experiments in this case (see
the first paragraph of Chapter 8.3), you can save quite some simula-
tion time by using a vectorized implementation. Name of program file:
roll_7dice.py.

Exercise 8.20. Difference equation for random numbers.
Simple random number generators are based on simulating difference

equations. Here is a typical set of two equations:

xn = (axn−1 + c) mod m, (8.14)

yn = xn/m, (8.15)

for n = 1, 2, A seed x0 must be given to start the sequence.
The numbers y1, y2, . . . , represent the random numbers and x0, x1, . . .
are “help” numbers. Although yn is completely deterministic from

470 8 Random Numbers and Simple Games

(8.14)–(8.15), the sequence yn appears random. The mathematical ex-
pression p mod q is coded as p % q in Python.

Use a = 8121, c = 28411, and m = 134456. Solve the system (8.14)–
(8.15) in a function that generates and returns N random numbers.
Make a histogram to examine the distribution of the numbers (the yn
numbers are randomly distributed if the histogram is approximately
flat). Name of program file: diffeq_random.py.

Exercise 8.21. Make a class for drawing balls from a hat.
Consider the example about drawing colored balls from a hat in

Chapter 8.3.3. It could be handy to have an object that acts as a
hat:

Make a hat with balls of 3 colors, each color appearing
on 4 balls
hat = Hat(colors=(’red’, ’black’, ’blue’), number_of_each_color=4)

Draw 3 balls at random
balls = hat.draw(number_of_balls=3)

Realize such code with a class Hat. You can borrow useful code from
the balls_in_hat.py program and ideas from Chapter 8.2.5. Use the
Hat class to solve the probability problem from Exercise 8.4. Name of
program file: Hat.py.

Exercise 8.22. Independent vs. dependent random numbers.
Generate a sequence of N independent random variables with values

0 or 1 and print out this sequence without space between the numbers
(i.e., as 001011010110111010).

The next task is to generate random zeros and ones that are depen-
dent. If the last generated number was 0, the probability of generating
a new 0 is p and a new 1 is 1 − p. Conversely, if the last generated
was 1, the probability of generating a new 1 is p and a new 0 is 1− p.
Since the new value depends on the last one, we say the variables are
dependent. Implement this algorithm in a function returning an array
of N zeros and ones. Print out this array in the condense format as
described above.

Choose N = 80 and try the probabilities p = 0.5, p = 0.8 and
p = 0.9. Can you by visual inspection of the output characterize the
differences between sequences of independent and dependent random
variables? Name of program file: dependent_random_variables.py.

Exercise 8.23. Compute the probability of flipping a coin.
Modify the program from either Exercise 8.1 or 8.17 to incorporate

the following extensions: look at a subset N1 ≤ N of the experiments
and compute probability of getting a head (M1/N1, where M1 is the
number of heads in N1 experiments). Choose N = 1000 and print out
the probability for N1 = 10, 100, 500, 1000. (Generate just N numbers
once in the program.) How do you think the accuracy of the computed

8.9 Exercises 471

probability vary with N1? Is the output compatible with this expecta-
tion? Name of program file: flip_coin_prob.py.

Exercise 8.24. Extend Exer. 8.23.
We address the same problem as in Exercise 8.23, but now we want

to study the probability of getting a head, p, as a function of N1, i.e.,
for N1 = 1, . . . , N . We also want to vectorize all operations in the code.
A first try to compute the probability array for p is

import numpy as np
h = np.where(r <= 0.5, 1, 0)
p = np.zeros(N)
for i in range(N):

p[i] = np.sum(h[:i+1])/float(i+1)

An array q[i] = np.sum(h([:i])) reflects a cumulative sum and can
be efficiently generated by np.cumsum: q = np.cumsum(h). Thereafter we
can compute p by q/I, where I[i]=i+1 and I can be computed by
np.arange(1,N+1) or r_[1:N+1] (integers 1, 2, . . . , up to but not includ-
ing N+1). Implement both the loop over i and the vectorized version
based on cumsum and check in the program that the resulting p array
has the same elements (for this purpose you have to compare float

elements and you can use the float_eq function from SciTools, see Ex-
ercise 2.24, or the allclose function in numpy (float_eq actually uses
allclose for array arguments)). Plot p against I for the case where
N = 10000. Annotate the axis and the plot with relevant text. Name
of program file: flip_coin_prob_developm.py.

Exercise 8.25. Simulate the problems in Exer. 4.25.
Exercise 4.25 describes some problems that can be solved exactly

using the formula (4.8), but we can also simulate these problems and
find approximate numbers for the probabilities. That is the task of this
exercise.

Make a general function simulate_binomial(p, n, x) for running n
experiments, where each experiment have two outcomes, with proba-
bilities p and 1−p. The n experiments constitute a “success” if the out-
come with probability p occurs exactly x times. The simulate_binomial
function must repeat the n experiments N times. If M is the number
of “successes” in the N experiments, the probability estimate is M/N .
Let the function return this probability estimate together with the er-
ror (the exact result is (4.8)). Simulate the three cases in Exercise 4.25
using this function. Name of program file: simulate_binomial.py.

Exercise 8.26. Simulate a poker game.
Make a program for simulating the development of a poker (or sim-

plified poker) game among n players. Use ideas from Chapter 8.2.4.
Name of program file: poker.py.

472 8 Random Numbers and Simple Games

Exercise 8.27. Write a non-vectorized version of a code.
Read the file birth_policy.py containing the code from Chap-

ter 8.3.5. To prove that you understand what is going on in this simula-
tion, replace all the vectorized code by explicit loops over the random
arrays. For such code it is natural to use Python’s standard random

module instead of numpy.random. However, to verify your alternative
implementation it is important to have the same sequence of random
numbers in the two programs. To this end, use numpy.random, but draw
a single number at a time. Name of program file: birth_policy2.py.

Exercise 8.28. Estimate growth in a simulation model.
The simulation model in Chapter 8.3.5 predicts the number of indi-

viduals from generation to generation. Make a simulation of the “one
son” policy with 10 generations, a male portion of 0.51 among newborn
babies, set the fertility to 0.92, and assume that 6% of the population
will break the law and want 6 children in a family. These parameters
implies a significant growth of the population. See if you can find a
factor r such that the number of individuals in generation n fulfills the
difference equation

xn = (1 + r)xn−1.

Hint: Compute r for two consecutive generations xn−1 and xn (r =
xn/xn−1 − 1) and see if r is approximately constant as n increases.
Name of program file: estimate_growth.py.

Exercise 8.29. Investigate guessing strategies for Ch. 8.4.1.
In the game from Chapter 8.4.1 it is smart to use the feedback from

the program to track an interval [p, q] that must contain the secret
number. Start with p = 1 and q = 100. If the user guesses at some
number n, update p to n + 1 if n is less than the secret number (no
need to care about numbers smaller than n+ 1), or update q to n− 1
if n is larger than the secret number (no need to care about numbers
larger than n− 1).

Are there any smart strategies to pick a new guess s ∈ [p, q]? To an-
swer this question, investigate two possible strategies: s as the midpoint
in the interval [p, q], or s as a uniformly distributed random integer in
[p, q]. Make a program that implements both strategies, i.e., the player
is not prompted for a guess but the computer computes the guess based
on the chosen strategy. Let the program run a large number of games
and see if either of the strategies can be considered as superior in the
long run. Name of program file: strategies4guess.py.

Exercise 8.30. Make a vectorized solution to Exer. 8.8.
Vectorize the simulation program from Exercise 8.8 with the aid of

the module numpy.random and the numpy.sum function. Name of program
file: sum9_4dice_vec.py.

8.9 Exercises 473

Exercise 8.31. Compute π by a Monte Carlo method.
Use the method in Chapter 8.5.2 to compute π by computing the

area of a circle. Choose G as the circle with its center at the origin
and with unit radius, and choose B as the rectangle [−1, 1] × [−1, 1].
A point (x, y) lies within G if x2 + y2 < 1. Compare the approximate
π with math.pi. Name of program file: MC_pi.py.

Exercise 8.32. Implement a variant of Exer. 8.31.
This exercise has the same purpose of computing π as in Exer-

cise 8.31, but this time you should choose G as a circle with center
at (2, 1) and radius 4. Select an appropriate rectangle B. A point
(x, y) lies within a circle with center at (xc, yc) and with radius R
if (x− xc)

2 + (y − yc)
2 < R2. Name of program file: MC_pi2.py.

Exercise 8.33. Compute π by a random sum.
Let x0, . . . , xN be N + 1 uniformly distributed random numbers

between 0 and 1. Explain why the random sum SN = (N + 1)−1 ×∑N
i=0 2(1− x2i)

−1/2 is an approximation to π. (Hint: Interpret the sum
as Monte Carlo integration and compute the corresponding integral ex-
actly by hand.) Make a program for plotting SN versus N for N = 10k,
k = 0, 1/2, 1, 3/2, 2, 5/2, . . . , 6. Write out the difference between S106

and pi from the math module. Name of program file: MC_pi_plot.py.

Exercise 8.34. 1D random walk with drift.
Modify the walk1D.py program such that the probability of going to

the right is r and the probability of going to the left is 1 − r (draw
numbers in [0, 1) rather than integers in {1, 2}). Compute the aver-
age position of np particles after 100 steps, where np is read from the
command line. Mathematically one can show that the average position
approaches rns − (1 − r)ns as np → ∞. Write out this exact result
together with the computed mean position with a finite number of
particles. Name of program file: walk1D_drift.py.

Exercise 8.35. 1D random walk until a point is hit.
Set np=1 in the walk1Dv.py program and modify the program to

measure how many steps it takes for one particle to reach a given
point x = xp. Give xp on the command line. Report results for xp =
5, 50, 5000, 50000. Name of program file: walk1Dv_hit_point.py.

Exercise 8.36. Simulate making a fortune from gaming.
A man plays a game where the probability of winning is p and that

of losing is consequently 1−p. When winning he earns 1 euro and when
losing he loses 1 euro. Let xi be the man’s fortune from playing this
game i number of times. The starting fortune is x0. We assume that the
man gets a necessary loan if xi < 0 such that the gaming can continue.
The target is a fortune F , meaning that the playing stops when x = F
is reached.

474 8 Random Numbers and Simple Games

Explain why xi is a 1D random walk. Modify one of the 1D random
walk programs to simulate the average number of games it takes to
reach the target fortune x = F . This average must be computed by
running a large number of random walks that start at x0 and reach F .
Use x0 = 10, F = 100, and p = 0.49 as example.

Suppose the average number of games to reach x = F is proportional
to (F −x0)

r, where r is some exponent. Try to find r by experimenting
with the program. The r value indicates how difficult it is to make a
substantial fortune by playing this game. Note that the expected earn-
ing is negative when p < 0.5, but there is still a small probability for
hitting x = F . Name of program file: game_as_walk1D.py.

Exercise 8.37. Make a class for 2D random walk.
The purpose of this exercise is to reimplement the walk2D.py pro-

gram from Chapter 8.7.1 with the aid of classes. Make a class Particle
with the coordinates (x, y) and the time step number of a particle as at-
tributes. A method move moves the particle in one of the four directions
and updates the (x, y) coordinates. Another class, Particles, holds a
list of Particle objects and a plotstep parameter (as in walk2D.py).
A method move moves all the particles one step, a method plot can
make a plot of all particles, while a method moves performs a loop over
time steps and calls move and plot in each step.

Equip the Particle and Particles classes with print functionality
such that one can print out all particles in a nice way by saying print

p (for a Particles instance p) or print self (inside a method). Hint:
In __str__, apply the pformat function from the pprint module to the
list of particles, and make sure that __repr__ just reuse __str__ in both
classes.

To verify the implementation, print the first three positions of four
particles in the walk2D.py program and compare with the corresponding
results produced by the class-based implementation (the seed of the
random number generator must of course be fixed identically in the two
programs). You can just perform p.move() and print p three times in
a verify function to do this verification task.

Organize the complete code as a module such that the classes
Particle and Particles can be reused in other programs. The test
block should call a run(N) method to run the walk for N steps, where N

is given on the command line.
Compare the efficiency of the class version against the vectorized

version in walk2Dv.py, using the techniques of Appendix H.6.1. Name
of program file: walk2Dc.py.

Exercise 8.38. Vectorize the class code from Exer. 8.37.
The program developed in Exercise 8.37 cannot be vectorized as

long as we base the implementation on class Particle. However, if we
remove that class and focus on class Particles, the latter can employ

8.9 Exercises 475

arrays for holding the positions of all particles and vectorized updates
of these positions in the moves method. Use ideas from the walk2Dv.py

program to vectorize class Particle. Verify the code against walk2Dv.py
as explained in Exercise 8.37, and measure the efficiency gain over the
version with class Particle. Name of program file: walk2Dcv.py.

Exercise 8.39. 2D random walk with walls; scalar version.
Modify the walk2D.py or walk2Dc.py programs from Exercise 8.37 so

that the walkers cannot walk outside a rectangular area A = [xL, xH]×
[yL, yH]. Do not move the particle if its new position is outside A. Name
of program file: walk2D_barrier.py.

Exercise 8.40. 2D random walk with walls; vectorized version.
Modify the walk2Dv.py program so that the walkers cannot walk

outside a rectangular area A = [xL, xH]× [yL, yH]. Hint: First perform
the moves of one direction. Then test if new positions are outside A.
Such a test returns a boolean array that can be used as index in the
position arrays to pick out the indices of the particles that have moved
outside A and move them back to the relevant boundary of A. Name
of program file: walk2Dv_barrier.py.

Exercise 8.41. Simulate the mixture of gas molecules.
Suppose we have a box with a wall dividing the box into two equally

sized parts. In one part we have a gas where the molecules are uniformly
distributed in a random fashion. At t = 0 we remove the wall. The gas
molecules will now move around and eventually fill the whole box.

This physical process can be simulated by a 2D random walk inside
a fixed area A as introduced in Exercises 8.39 and 8.40 (in reality the
motion is three-dimensional, but we only simulate the two-dimensional
part of it since we already have programs for doing this). Use the pro-
gram from either Exercises 8.39 or 8.40 to simulate the process for
A = [0, 1] × [0, 1]. Initially, place 10000 particles at uniformly dis-
tributed random positions in [0, 1/2] × [0, 1]. Then start the random
walk and visualize what happens. Simulate for a long time and make a
hardcopy of the animation (an animated GIF file, for instance). Is the
end result what you would expect? Name of program file: disorder1.py.

Molecules tend to move randomly because of collisions and forces
between molecules. We do not model collisions between particles in the
random walk, but the nature of this walk, with random movements,
simulates the effect of collisions. Therefore, the random walk can be
used to model molecular motion in many simple cases. In particular,
the random walk can be used to investigate how a quite ordered system,
where one gas fills one half of a box, evolves through time to a more
disordered system.

476 8 Random Numbers and Simple Games

Exercise 8.42. Solve a variant of Exer. 8.41.
Solve Exercise 8.41 when the wall dividing the box is not completely

removed, but instead we make a small hole in the wall initially. Name
of program file: disorder2.py.

Exercise 8.43. Guess beer brands.
You are presented n glasses of beer, each containing a different brand.

You are informed that there are m ≥ n possible brands in total, and
the names of all brands are given. For each glass, you can pay p euros
to taste the beer, and if you guess the right brand, you get q ≥ p
euros back. Suppose you have done this before and experienced that
you typically manage to guess the right brand T times out of 100, so
that your probability of guessing the right brand is b = T/100.

Make a function simulate(m, n, p, q, b) for simulating the beer
tasting process. Let the function return the amount of money earned
and how many correct guesses (≤ n) you made. Call simulate a large
number of times and compute the average earnings and the probability
of getting full score in the case m = n = 4, p = 3, q = 6, and b = 1/m
(i.e., four glasses with four brands, completely random guessing, and a
payback of twice as much as the cost). How much more can you earn
from this game if your ability to guess the right brand is better, say
b = 1/2? Name of program file: simulate_beer_tasting.py.

Exercise 8.44. Simulate stock prices.
A common mathematical model for the evolution of stock prices can

be formulated as a difference equation

xn = xn−1 +Δtμxn−1 + σxn−1

√
Δtrn−1, (8.16)

where xn is the stock price at time tn, Δt is the time interval between
two time levels (Δt = tn−tn−1), μ is the growth rate of the stock price,
σ is the volatility of the stock price, and r0, . . . , rn−1 are normally dis-
tributed random numbers with mean zero and unit standard deviation.
An initial stock price x0 must be prescribed together with the input
data μ, σ, and Δt.

We can make a remark that Equation (8.16) is a Forward Euler
discretization of a stochastic differential equation for x(t):

dx

dt
= μx+ σN(t),

where N(t) is a so-called white noise random time series signal. Such
equations play a central role in modeling of stock prices.

Make R realizations of (8.16) for n = 0, . . . , N for N = 5000 steps
over a time period of T = 180 days with a step size Δt = T/N . Name
of program file: stock_prices.py.

8.9 Exercises 477

Exercise 8.45. Compute with option prices in finance.
In this exercise we are going to consider the pricing of so-called Asian

options. An Asian option is a financial contract where the owner earns
money when certain market conditions are satisfied.

The contract is specified by a strike price K and a maturity time T .
It is written on the average price of the underlying stock, and if this
average is bigger than the strike K, the owner of the option will earn
the difference. If, on the other hand, the average becomes less, the
owner receives nothing, and the option matures in the value zero. The
average is calculated from the last trading price of the stock for each
day.

From the theory of options in finance, the price of the Asian option
will be the expected present value of the payoff. We assume the stock
price dynamics given as,

S(t+ 1) = (1 + r)S(t) + σS(t)ε(t), (8.17)

where r is the interest-rate, and σ is the volatility of the stock price.
The time t is supposed to be measured in days, t = 0, 1, 2, . . . , while
ε(t) are independent identically distributed normal random variables
with mean zero and unit standard deviation. To find the option price,
we must calculate the expectation

p = (1 + r)−TE

[
max

(
1

T

T∑
t=1

S(t)−K, 0

)]
. (8.18)

The price is thus given as the expected discounted payoff. We will use
Monte Carlo simulations to estimate the expectation. Typically, r and
σ can be set to r = 0.0002 and σ = 0.015. Assume further S(0) = 100.

(a) Make a function that simulates a path of S(t), that is, the function
computes S(t) for t = 1, . . . , T for a given T based on the recursive
definition in (8.17). The function should return the path as an array.

(b) Create a function that finds the average of S(t) from t = 1 to t = T .
Make another function that calculates the price of the Asian option
based on N simulated averages. You may choose T = 100 days and
K = 102.

(c) Plot the price p as a function of N . You may start with N = 1000.
(d) Plot the error in the price estimation as a function N (assume that

the p value corresponding to the largest N value is the “right”
price). Try to fit a curve of the form c/

√
N for some c to this error

plot. The purpose is to show that the error is reduced as 1/
√
N .

Name of program file: option_price.py.
If you wonder where the values for r and σ come from, you will

find the explanation in the following. A reasonable level for the
yearly interest-rate is around 5%, which corresponds to a daily rate

478 8 Random Numbers and Simple Games

0.05/250 = 0.0002. The number 250 is chosen because a stock exchange
is on average open this amount of days for trading. The value for
σ is calculated as the volatility of the stock price, corresponding to
the standard deviation of the daily returns of the stock defined as
(S(t+1)−S(t))/S(t). “Normally”, the volatility is around 1.5% a day.
Finally, there are theoretical reasons why we assume that the stock
price dynamics is driven by r, meaning that we consider the risk-neutral
dynamics of the stock price when pricing options. There is an exciting
theory explaining the appearance of r in the dynamics of the stock
price. If we want to simulate a stock price dynamics mimicing what we
see in the market, r in Equation (8.17) must be substituted with μ, the
expect ed return of the stock. Usually, μ is higher than r.

Exercise 8.46. Compute velocity and acceleration.
In a laboratory experiment waves are generated through the impact

of a model slide into a wave tank. (The intention of the experiment is
to model a future tsunami event in a fjord, generated by loose rocks
that fall into the fjord.) At a certain location, the elevation of the sur-
face, denoted by η, is measured at discrete points in time using an
ultra-sound wave gauge. The result is a time series of vertical positions
of the water surface elevations in meter: η(t0), η(t1), η(t2), . . . , η(tn).
There are 300 observations per second, meaning that the time differ-
ence between two neighboring measurement values η(ti) and η(ti+1) is
h = 1/300 second.

Write a Python program that accomplishes the following tasks:

1. Read h from the command line.
2. Read the η values in the file src/random/gauge.dat into an array

eta.
3. Plot eta versus the time values.
4. Compute the velocity v of the surface by the formula

vi ≈
ηi+1 − ηi−1

2h
, i = 1, . . . , n− 1.

Plot v versus time values in a separate plot.
5. Compute the acceleration a of the surface by the formula

ai ≈
ηi+1 − 2ηi + ηi−1

h2
, i = 1, . . . , n− 1.

Plot a versus the time values in a separate plot.

Name of program file: labstunami1.py.

Exercise 8.47. Differentiate noisy signals.
The purpose of this exercise is to look into numerical differentiation

of time series signals that contain measurement errors. This insight
might be helpful when analyzing the noise in real data from a laboratory
experiment in Exercises 8.46 and 8.48.

8.9 Exercises 479

1. Compute a signal

η̄i = A sin

(
2π

T
ti

)
, ti = i

T

40
, i = 0, . . . , 200.

Display η̄i versus time ti in a plot. Choose A = 1 and T = 2π. Store
the η̄ values in an array etabar.

2. Compute a signal with random noise Ei,

ηi = η̄i + Ei,

Ei is drawn from the normal distribution with mean zero and stan-
dard deviation σ = 0.04A. Plot this ηi signal as circles in the same
plot as η̄i. Store the Ei in an array E for later use.

3. Compute the first derivative of η̄i by the formula

η̄i+1 − η̄i−1

2h
, i = 1, . . . , n− 1,

and store the values in an array detabar. Display the graph.
4. Compute the first derivative of the error term by the formula

Ei+1 − Ei−1

2h
, i = 1, . . . , n− 1,

and store the values in an array dE. Calculate the mean and the
standard deviation of dE.

5. Plot detabar and detabar + dE. Use the result of the standard devi-
ation calculations to explain the qualitative features of the graphs.

6. The second derivative of a time signal ηi can be computed by

ηi+1 − 2ηi + ηi−1

h2
, i = 1, . . . , n− 1.

Use this formula on the etabar data and save the result in d2etabar.
Also apply the formula to the E data and save the result in d2E. Plot
d2etabar and d2etabar + d2E. Compute the standard deviation of
d2E and compare with the standard deviation of dE and E. Discuss
the plot in light of these standard deviations.

Name of program file: sine_noise.py.

Exercise 8.48. Model the noise in the data in Exer. 8.47.
We assume that the measured data can be modeled as a smooth

time signal η̄(t) plus a random variation E(t). Computing the velocity
of η = η̄ +E results in a smooth velocity from the η̄ term and a noisy
signal from the E term. We can estimate the level of noise in the first
derivative of E as follows. The random numbers E(ti) are assumed to
be independent and normally distributed with mean zero and standard
deviation σ. It can then be shown that

Ei+1 − Ei−1

2h

480 8 Random Numbers and Simple Games

produces numbers that come from a normal distribution with mean
zero and standard deviation 2−1/2h−1σ. How much is the original noise,
reflected by σ, magnified when we use this numerical approximation of
the velocity?

The fraction
Ei+1 − 2Ei + Ei−1

h2

will also generate numbers from a normal distribution with mean zero,
but this time with standard deviation 2h−2σ. Find out how much the
noise is magnified in the computed acceleration signal.

The numbers in the gauge.dat file are given with 5 digits. This is no
certain indication of the accuracy of the measurements, but as a test
we may assume σ is of the order 10−4. Check if the visual results for the
velocity and acceleration are consistent with the standard deviation of
the noise in these signals as modeled above.

Exercise 8.49. Reduce the noise in Exer. 8.47.
If we have a noisy signal ηi, where i = 0, . . . , n counts time levels,

the noise can be reduced by computing a new signal where the value
at a point is a weighted average of the values at that point and the
neighboring points at each side. More precisely, given the signal ηi,

i = 0, . . . , n, we compute a filtered (averaged) signal with values η
(1)
i

by the formula

η
(1)
i =

1

4
(ηi+1 + 2ηi + ηi−1), i = 1, . . . , n− 1, η

(1)
0 = η0, η(1)n = ηn.

(8.19)
Make a function filter that takes the ηi values in an array eta as input

and returns the filtered η
(1)
i values in an array. Let η

(k)
i be the signal

arising by applying the filtered function k times to the same signal.

Make a plot with curves ηi and the filtered η
(k)
i values for k = 1, 10, 100.

Make similar plots for the velocity and acceleration where these are
made from both the original η data and the filtered data. Discuss the
results. Name of program file: labstunami2.py.

Exercise 8.50. Make a class for differentiating noisy data.
Suppose you have some time series signal y(tk) for k = 0, . . . , n− 1,

where tk = kΔt are time points. Differentiating such a signal can give
very inaccurate results if the signal contains noise. Exercises 8.46–8.49
explore this topic, and Exercise 8.49 suggests to filter the signal. The
purpose of the present exercise is to make a tool for differentiating noisy
signals.

Make a class DiffNoisySignal where the constructor takes three ar-
guments: the signal y(tk) (as an array), the order of the desired deriva-
tive (as an int, either 1 or 2), and the name of the signal (as a string).
A method filter(self, n) runs the filter from Exercise 8.49 n times
on the signal. The method diff(self) performs the differentiation and

8.9 Exercises 481

stores the differentiated signal as an attribute in the class. There should
also be some plotting methods: plot(self) for plotting the current
(original or filtered) signal, plot_diff(self) for plotting the differen-
tiated signal, animate_filter for animating the effect of filtering (run
filter once per frame in the movie), and animate_diff for animating
the evolution of the derivative when filter and diff are called once
each per frame.

Implement the class and test it on the noisy signal

y(tk) = cos(2πtk) + 0.1rk, tk = kΔt, k = 0, . . . , n− 1,

with Δt = 1/60. The quantities rk are random numbers in [0, 1). Make
animations with the animate_filter and animate_diff methods. Name
of program file: DiffNoisySignal.py.

Exercise 8.51. Speed up Markov chain mutation.
The functions transition and mutate_via_markov_chain from Chap-

ter 8.3.4 were made for being easy to read and understand. Upon
closer inspection, we realize that the transition function constructs
the interval_limits every time a random transition is to be computed,
and we want to run a large number of transitions. By (i) merging the
two functions, (ii) pre-computing interval limits for each from_base,
and (iii) adding a loop over N mutations, one can reduce the com-
putation of interval limits to a minimum. Perform such an efficiency
enhancement. Measure the CPU time of this new function versus the
mutate_via_markov_chain function for 1 million mutations. Name of
program file: markov_chain_mutation2.py.

http://www.springer.com
http://www.springer.com/mycopy

Object-Oriented Programming 9

This chapter introduces the basic ideas of object-oriented program-
ming. Different people put different meanings into the term object-
oriented programming: Some use the term for programming with ob-
jects in general, while others use the term for programming with class
hierarchies. The author applies the second meaning, which is the most
widely accepted one in computer science. The first meaning is better
named object-based programming. Since everything in Python is an
object, we do object-based programming all the time, yet one usually
reserves this term for the case when classes different from Python’s
basic types (int, float, str, list, tuple, dict) are involved.

A necessary background for the present chapter is Chapter 7. For
Chapters 9.2 and 9.3 one must know basic methods for numerical dif-
ferentiation and integration, for example from Appendix B. During an
initial readings of the chapter, it can be beneficial to skip the more
advanced material in Chapters 9.2.3–9.2.6.

All the programs associated with this chapter are found in the src/oo
folder.

9.1 Inheritance and Class Hierarchies

Most of this chapter tells you how to put related classes together in
families such that the family can be viewed as one unit. This idea
helps to hide details in a program, and makes it easier to modify or
extend the program.

A family of classes is known as a class hierarchy. As in a biological
family, there are parent classes and child classes. Child classes can
inherit data and methods from parent classes, they can modify these
data and methods, and they can add their own data and methods. This
means that if we have a class with some functionality, we can extend

H.P. Langtangen, A Primer on Scientific Programming with Python,
Texts in Computational Science and Engineering 6,

DOI 10.1007/978-3-642-30293-0 9, c© Springer-Verlag Berlin Heidelberg 2012

483

http://dx.doi.org/10.1007/978-3-642-30293-0_9

484 9 Object-Oriented Programming

this class by creating a child class and simply add the functionality we
need. The original class is still available and the separate child class is
small, since it does not need to repeat the code in the parent class.

The magic of object-oriented programming is that other parts of the
code do not need to distinguish whether an object is the parent or the
child – all generations in a family tree can be treated as a unified object.
In other words, one piece of code can work with all members in a class
family or hierarchy. This principle has revolutionized the development
of large computer systems1.

The concepts of classes and object-oriented programming first ap-
peared in the Simula programming language in the 1960s. Simula was
invented by the Norwegian computer scientists Ole-Johan Dahl and
Kristen Nygaard, and the impact of the language is particularly evi-
dent in C++, Java, and C#, three of the most dominating program-
ming languages in the world today. The invention of object-oriented
programming was a remarkable achievement, and the professors Dahl
and Nygaard received two very prestigious prizes: the von Neumann
medal and the Turing prize (popularly known as the Nobel prize of
computer science).

A parent class is usually called base class or superclass, while the
child class is known as a subclass or derived class. We shall use the
terms superclass and subclass from now on.

9.1.1 A Class for Straight Lines

Assume that we have written a class for straight lines, y = c0 + c1x:

class Line:
def __init__(self, c0, c1):

self.c0 = c0
self.c1 = c1

def __call__(self, x):
return self.c0 + self.c1*x

def table(self, L, R, n):
"""Return a table with n points for L <= x <= R."""
s = ’’
import numpy as np
for x in np.linspace(L, R, n):

y = self(x)
s += ’%12g %12g\n’ % (x, y)

return s

The constructor __init__ initializes the coefficients c0 and c1 in the
expression for the straight line: y = c0+c1x. The call operator __call__
evaluates the function c1x + c0, while the table method samples the
function at n points and creates a table of x and y values.

1 Two of the most widely used computer languages today are Java and C#. Both of them

force programs to be written in an object-oriented style.

9.1 Inheritance and Class Hierarchies 485

9.1.2 A First Try on a Class for Parabolas

A parabola y = c0 + c1x + c2x
2 contains a straight line as a special

case (c2 = 0). A class for parabolas will therefore be similar to a class
for straight lines. All we have do to is to add the new term c2x

2 in the
function evaluation and store c2 in the constructor:

class Parabola:
def __init__(self, c0, c1, c2):

self.c0 = c0
self.c1 = c1
self.c2 = c2

def __call__(self, x):
return self.c2*x**2 + self.c1*x + self.c0

def table(self, L, R, n):
"""Return a table with n points for L <= x <= R."""
s = ’’
import numpy as np
for x in np.linspace(L, R, n):

y = self(x)
s += ’%12g %12g\n’ % (x, y)

return s

Observe that we can copy the table method from class Line without
any modifications.

9.1.3 A Class for Parabolas Using Inheritance

Python and other languages that support object-oriented programming
have a special construct, so that class Parabola does not need to repeat
the code that we have already written in class Line. We can specify that
class Parabola inherits all code from class Line by adding “(Line)” in
the class headline:

class Parabola(Line):

Class Parabola now automatically gets all the code from class Line –
invisibly. Exercise 9.1 asks you to explicitly demonstrate the validity
of this assertion. We say that class Parabola is derived from class Line,
or equivalently, that class Parabola is a subclass of its superclass Line.

Now, class Parabola should not be identical to class Line: it needs
to add data in the constructor (for the new term) and to modify the
call operator (because of the new term), but the table method can be
inherited as it is. If we implement the constructor and the call operator
in class Parabola, these will override the inherited versions from class
Line. If we do not implement a table method, the one inherited from
class Line is available as if it were coded visibly in class Parabola.

Class Parabola must first have the statements from the class Line

methods __call__ and __init__, and then add extra code in these
methods. An important principle in computer programming is to avoid

486 9 Object-Oriented Programming

repeating code. We should therefore call up functionality in class Line

instead of copying statements from class Line methods to Parabola

methods. Any method in the superclass Line can be called using the
syntax

Line.methodname(self, arg1, arg2, ...)
or
super(Parabola, self).methodname(arg1, arg2, ...)

The latter construction only works if the super class is derived from
Python’s general super class object (i.e., class Line must be a new-style
class).

Let us now show how to write class Parabola as a subclass of class
Line, and implement just the new additional code that we need and
that is not already written in the superclass:

class Parabola(Line):
def __init__(self, c0, c1, c2):

Line.__init__(self, c0, c1) # let Line store c0 and c1
self.c2 = c2

def __call__(self, x):
return Line.__call__(self, x) + self.c2*x**2

This short implementation of class Parabola provides exactly the same
functionality as the first version of class Parabola that we showed on
page 485 and that did not inherit from class Line. Figure 9.1 shows the
class hierarchy in UML fashion. The arrow from one class to another
indicates inheritance.

Fig. 9.1 UML diagram for the class hierarchy with superclass Line and subclass Parabola.

A quick demo of the Parabola class in a main program,

p = Parabola(1, -2, 2)
p1 = p(x=2.5)
print p1
print p.table(0, 1, 3)

gives this output:
8.5

0 1
0.5 0.5
1 1

9.1 Inheritance and Class Hierarchies 487

Program Flow. The program flow can be somewhat complicated when
we work with class hierarchies. Consider the code segment

p = Parabola(1, -1, 2)
p1 = p(x=2.5)

Let us explain the program flow in detail for these two statements. As
always, you can monitor the program flow in a debugger as explained
in Chapter F.1.

Calling Parabola(1, -1, 2) leads to a call to the constructor method
__init__, where the arguments c0, c1, and c2 in this case are int objects
with values 1, −1, and 2. The self argument in the constructor is the
object that will be returned and referred to by the variable p. Inside the
constructor in class Parabola we call the constructor in class Line. In
this latter method, we create two attributes in the self object. Printing
out dir(self) will explicitly demonstrate what self contains so far in
the construction process. Back in class Parabola’s constructor, we add
a third attribute c2 to the same self object. Then the self object is
invisibly returned and referred to by p.

The other statement, p1 = p(x=2.5), has a similar program flow.
First we enter the p.__call__ method with self as p and x as a float

object with value 2.5. The program flow jumps to the __call__ method
in class Line for evaluating the linear part c1x+c0 of the expression for
the parabola, and then the flow jumps back to the __call__ method in
class Parabola where we add the new quadratic term.

9.1.4 Checking the Class Type

Python has the function isinstance(i,t) for checking if an instance i

is of class type t:

>>> l = Line(-1, 1)
>>> isinstance(l, Line)
True
>>> isinstance(l, Parabola)
False

A Line is not a Parabola, but is a Parabola a Line?

>>> p = Parabola(-1, 0, 10)
>>> isinstance(p, Parabola)
True
>>> isinstance(p, Line)
True

Yes, from a class hierarchy perspective, a Parabola instance is regarded
as a Line instance too, since it contains everything that a Line instance
contains.

Every instance has an attribute __class__ that holds the type of
class:

488 9 Object-Oriented Programming

>>> p.__class__
<class __main__.Parabola at 0xb68f108c>
>>> p.__class__ == Parabola
True
>>> p.__class__.__name__ # string version of the class name
’Parabola’

Note that p.__class__ is a class object (or class definition one may
say2), while p.__class__.__name__ is a string. These two variables can
be used as an alternative test for the class type:

if p.__class__.__name__ == ’Parabola’:
<statements>

or
if p.__class__ == Parabola:

<statements>

However, isinstance(p, Parabola) is the recommended programming
style for checking the type of an object.

A function issubclass(c1, c2) tests if class c1 is a subclass of class
c2, e.g.,

>>> issubclass(Parabola, Line)
True
>>> issubclass(Line, Parabola)
False

The superclasses of a class are stored as a tuple in the __bases__ at-
tribute of the class object:

>>> p.__class__.__bases__
(<class __main__.Line at 0xb7c5d2fc>,)
>>> p.__class__.__bases__[0].__name__ # extract name as string
’Line’

9.1.5 Attribute Versus Inheritance

Instead of letting class Parabola inherit from a class Line, we may let
it contain a class Line instance as an attribute:

class Parabola:
def __init__(self, c0, c1, c2):

self.line = Line(c0, c1) # let Line store c0 and c1
self.c2 = c2

def __call__(self, x):
return self.line(x) + self.c2*x**2

Whether to use inheritance or an attribute depends on the problem
being solved. If it is natural to say that class Parabola is a Line

object, we say that Parabola has an is-a relationship with class Line.
Alternatively, if it is natural to think that class Parabola has a Line

2 This means that even the definition of a class, i.e., the class code, is an object that can

be referred to by a variable.

9.1 Inheritance and Class Hierarchies 489

object, we speak about a has-a relationship with class Line. In the
present example, the is-a relationship is more natural since a special
case of a parabola is a straight line.

From a mathematical point of view, however, many will say that a
parabola is not a line, but that a line is a special case of a parabola.
Adopting this reasoning reverses the dependency of the classes: now it is
more natural to let Line is a subclass of Parabola (Line is a Parabola).
This easy, and all we have to do is

class Parabola:
def __init__(self, c0, c1, c2):

self.c0, self.c1, self.c2 = c0, c2, c2

def __call__(self, x):
return self.c0 + self.c1*x + self.c2*x**2

def table(self, L, R, n): # implemented as shown above

class Line(Parabola):
def __init__(self, c0, c1):

Parabola.__init__(self, c0, c1, 0)

The inherited __call__ method from class Parabola will work since the
c3 coefficient is zero. Exercises 9.4 suggests deriving Parabola from a
general class Polynomial and asks you to discuss which class design you
prefer.

How classes depend on each other is influenced by two factors: shar-
ing of code and logical relations. From a sharing of code perspective,
many will say that class Parabola is naturally a subclass of Line, the
former adds code to the latter. On the other hand, Line is naturally a
subclass of Parabola from the logical relations in mathematics. Compu-
tational efficiency is a third perspective when we implement mathemat-
ics. When Line is a subclass of Parabola we always evaluate the c2x

2

term in the parabola although this term is zero. Nevertheless, when
Parabola is a subclass of Line, we call Line.__call__ to evaluate the
linear part of the second-degree polynomial, and this call is costly in
Python. From a pure efficiency point of view, we would reprogram the
linear part in Parabola.__call__ (which is against the programming
habit we have been arguing for!). This little discussion here highlights
the many different considerations that come into play when establishing
class relations.

9.1.6 Extending Versus Restricting Functionality

In our example of Parabola as a subclass of Line, we used inheritance
to extend the functionality of the superclass. Inheritance can also be
used for restricting functionality. Say we have class Parabola:

490 9 Object-Oriented Programming

class Parabola:
def __init__(self, c0, c1, c2):

self.c0 = c0
self.c1 = c1
self.c2 = c2

def __call__(self, x):
return self.c2*x**2 + self.c1*x + self.c0

def table(self, L, R, n):
...

We can define Line as a subclass of Parabola and restrict the function-
ality:

class Line(Parabola):
def __init__(self, c0, c1):

Parabola.__init__(self, c0, c1, 0)

The __call__ and table methods can be inherited as they are defined
in class Parabola.

From this example it becomes clear that there is no unique way of ar-
ranging classes in hierarchies. Rather than starting with Line and intro-
ducing Parabola, Cubic, and perhaps eventually a general Polynomial
class, we can start with a general Polynomial class and let Parabola

be a subclass which restricts all coefficients except the first three to
be zero. Class Line can then be a subclass of Parabola, restricting the
value of one more coefficient. Exercise 9.4 asks you to implement such
a class hierarchy, and to discuss what kind of hierarchy design you like
best.

9.1.7 Superclass for Defining an Interface

As another example of class hierarchies, we now want to represent
functions by classes, as described in Chapter 7.1.2, but in addition to
the __call__ method, we also want to provide methods for the first and
second derivative. The class can be sketched as

class SomeFunc:
def __init__(self, parameter1, parameter2, ...)

Store parameters
def __call__(self, x):

Evaluate function
def df(self, x):

Evaluate the first derivative
def ddf(self, x):

Evaluate the second derivative

For a given function, the analytical expressions for first and second
derivative must be manually coded. However, we could think of in-
heriting general functions for computing these derivatives numerically,

9.1 Inheritance and Class Hierarchies 491

such that the only thing we must always implement is the function
itself. To realize this idea, we create a superclass3

class FuncWithDerivatives:
def __init__(self, h=1.0E-5):

self.h = h # spacing for numerical derivatives

def __call__(self, x):
raise NotImplementedError\
(’___call__ missing in class %s’ % self.__class__.__name__)

def df(self, x):
"""Return the 1st derivative of self.f."""
Compute first derivative by a finite difference
h = self.h
return (self(x+h) - self(x-h))/(2.0*h)

def ddf(self, x):
"""Return the 2nd derivative of self.f."""
Compute second derivative by a finite difference:
h = self.h
return (self(x+h) - 2*self(x) + self(x-h))/(float(h)**2)

This class is only meant as a superclass of other classes. For a particular
function, say f(x) = cos(ax) + x3, we represent it by a subclass:

class MyFunc(FuncWithDerivatives):
def __init__(self, a):

self.a = a

def __call__(self, x):
return cos(self.a*x) + x**3

def df(self, x):
a = self.a
return -a*sin(a*x) + 3*x**2

def ddf(self, x):
a = self.a
return -a*a*cos(a*x) + 6*x

The superclass constructor is never called, hence h is never initialized,
and there are no possibilities for using numerical approximations via
the superclass methods df and ddf. Instead, we override all the in-
herited methods and implement our own versions. Many think it is a
good programming style to always call the superclass constructor in a
subclass constructor, even in simple classes where we do not need the
functionality of the superclass constructor.

For a more complicated function, e.g., f(x) = ln |p tanh(qx cos rx)|,
we may skip the analytical derivation of the derivatives, and just code
f(x) and rely on the difference approximations inherited from the su-
perclass to compute the derivatives:

3 Observe that we carefully ensure that the divisions in methods df and ddf can never be

integer divisions.

492 9 Object-Oriented Programming

class MyComplicatedFunc(FuncWithDerivatives):
def __init__(self, p, q, r, h=1.0E-5):

FuncWithDerivatives.__init__(self, h)
self.p, self.q, self.r = p, q, r

def __call__(self, x):
return log(abs(self.p*tanh(self.q*x*cos(self.r*x))))

That’s it! We are now ready to use this class:

>>> f = MyComplicatedFunc(1, 1, 1)
>>> x = pi/2
>>> f(x)
-36.880306514638988
>>> f.df(x)
-60.593693618216086
>>> f.ddf(x)
3.3217246931444789e+19

Class MyComplicatedFunc inherits the df and ddf methods from the
superclass FuncWithDerivatives. These methods compute the first
and second derivatives approximately, provided that we have de-
fined a __call__ method. If we fail to define this method, we will
inherit __call__ from the superclass, which just raises an excep-
tion, saying that the method is not properly implemented in class
MyComplicatedFunc.

The important message in this subsection is that we introduced a
super class to mainly define an interface, i.e., the operations (in terms
of methods) that one can do with a class in this class hierarchy. The
superclass itself is of no direct use, since it does not implement any
function evaluation in the __call__ method. However, it stores a vari-
able common to all subclasses (h), and it implements general methods
df and ddf that any subclass can make use of. A specific mathematical
function must be represented as a subclass, where the programmer can
decide whether analytical derivatives are to be used, or if the more lazy
approach of inheriting general functionality (df and ddf) for computing
numerical derivatives is satisfactory.

In object-oriented programming, the superclass very often defines an
interface, and instances of the superclass have no applications on their
own – only instances of subclasses can do anything useful.

To digest the present material on inheritance, we recommend to do
Exercises 9.1–9.4 before reading the next section.

9.2 Class Hierarchy for Numerical Differentiation

Chapter 7.3.2 presents a class Derivative that “can differentiate” any
mathematical function represented by a callable Python object. The
class employs the simplest possible numerical derivative. There are a
lot of other numerical formulas for computing approximations to f ′(x):

9.2 Class Hierarchy for Numerical Differentiation 493

f ′(x) =
f(x+ h)− f(x)

h
+O(h), (1st-order forward diff.) (9.1)

f ′(x) =
f(x)− f(x− h)

h
+O(h), (1st-order backward diff.) (9.2)

f ′(x) =
f(x+ h)− f(x− h)

2h
+O(h2), (2nd-order central diff.) (9.3)

f ′(x) =
4

3

f(x+ h)− f(x− h)

2h
− 1

3

f(x+ 2h)− f(x− 2h)

4h
+O(h4),

(4th-order central diff.) (9.4)

f ′(x) =
3

2

f(x+ h)− f(x− h)

2h
− 3

5

f(x+ 2h)− f(x− 2h)

4h
+

1

10

f(x+ 3h)− f(x− 3h)

6h
+O(h6),

(6th-order central diff.) (9.5)

f ′(x) =
1

h

(
−1

6
f(x+ 2h) + f(x+ h)− 1

2
f(x)− 1

3
f(x− h)

)
+O(h3),

(3rd-order forward diff.) (9.6)

The key ideas about the implementation of such a family of formu-
las are explained in Chapter 9.2.1. For the interested reader, Chap-
ters 9.2.3–9.2.6 contains more advanced additional material that can
well be skipped in a first reading. However, the additional material puts
the basic solution in Chapter 9.2.1 into a wider perspective, which may
increase the understanding of object orientation.

9.2.1 Classes for Differentiation

It is argued in Chapter 7.3.2 that it is wise to implement a numerical
differentiation formula as a class where f(x) and h are attributes and
a __call__ method makes class instances behave as ordinary Python
functions. Hence, when we have a collection of different numerical dif-
ferentiation formulas, like (9.1)–(9.6), it makes sense to implement each
one of them as a class.

Doing this implementation (see Exercise 7.13), we realize that the
constructors are identical because their task in the present case to
store f and h. Object-orientation is now a natural next step: We can
avoid duplicating the constructors by letting all the classes inherit the
common constructor code. To this end, we introduce a superclass Diff
and implement the different numerical differentiation rules in subclasses
of Diff. Since the subclasses inherit their constructor, all they have
to do is to provide a __call__ method that implements the relevant
differentiation formula.

Let us show what the superclass Diff looks like and how three sub-
classes implement the formulas (9.1)–(9.3):

494 9 Object-Oriented Programming

class Diff:
def __init__(self, f, h=1E-5):

self.f = f
self.h = float(h)

class Forward1(Diff):
def __call__(self, x):

f, h = self.f, self.h
return (f(x+h) - f(x))/h

class Backward1(Diff):
def __call__(self, x):

f, h = self.f, self.h
return (f(x) - f(x-h))/h

class Central2(Diff):
def __call__(self, x):

f, h = self.f, self.h
return (f(x+h) - f(x-h))/(2*h)

These small classes demonstrates an important feature of object-
orientation: code common to many different classes are placed in a
superclass, and the subclasses add just the code that differs among the
classes.

We can easily implement the formulas (9.4)–(9.6) by following the
same method:

class Central4(Diff):
def __call__(self, x):

f, h = self.f, self.h
return (4./3)*(f(x+h) - f(x-h)) /(2*h) - \

(1./3)*(f(x+2*h) - f(x-2*h))/(4*h)

class Central6(Diff):
def __call__(self, x):

f, h = self.f, self.h
return (3./2) *(f(x+h) - f(x-h)) /(2*h) - \

(3./5) *(f(x+2*h) - f(x-2*h))/(4*h) + \
(1./10)*(f(x+3*h) - f(x-3*h))/(6*h)

class Forward3(Diff):
def __call__(self, x):

f, h = self.f, self.h
return (-(1./6)*f(x+2*h) + f(x+h) - 0.5*f(x) - \

(1./3)*f(x-h))/h

Here is a short example of using one of these classes to numerically
differentiate the sine function4:

>>> from Diff import *
>>> from math import sin
>>> mycos = Central4(sin)
>>> mycos(pi) # compute sin’(pi)
-1.000000082740371

4 We have placed all the classes in the file Diff.py such that these classes constitute a
module. In an interactive session or a small program, we must import the differentiation

classes from the Diff module.

9.2 Class Hierarchy for Numerical Differentiation 495

Instead of a plain Python function we may use an object with a
__call__ method, here exemplified through the function f(t; a, b, c) =
at2 + bt+ c:

class Poly2:
def __init__(self, a, b, c):

self.a, self.b, self.c = a, b, c
def __call__(self, t):

return self.a*t**2 + self.b*t + self.c

f = Poly2(1, 0, 1)
dfdt = Central4(f)
t = 2
print "f’(%g)=%g" % (t, dfdt(t))

Let us examine the program flow. When Python encounters dfdt =

Central4(f), it looks for the constructor in class Central4, but there is
no constructor in that class. Python then examines the superclasses of
Central4, listed in Central4.__bases__. The superclass Diff contains a
constructor, and this method is called. When Python meets the dfdt(t)
call, it looks for __call__ in class Central4 and finds it, so there is no
need to examine the superclass. This process of looking up methods of
a class is called dynamic binding.

Computer Science Remark. Dynamic binding means that a name is
bound to a function while the program is running. Normally, in com-
puter languages, a function name is static in the sense that it is hard-
coded as part of the function body and will not change during the
execution of the program. This principle is known as static binding of
function/method names. Object orientation offers the technical means
to associate different functions with the same name, which yields a kind
of magic for increased flexibility in programs. The particular function
that the name refers to can be set at run-time, i.e., when the program
is running, and therefore known as dynamic binding.

In Python, dynamic binding is a natural feature since names (vari-
ables) can refer to functions and therefore be dynamically bound dur-
ing execution, just as any ordinary variable. To illustrate this point,
let func1 and func2 be two Python functions of one argument, and
consider the code

if input == ’func1’:
f = func1

elif input == ’func2’:
f = func2

y = f(x)

Here, the name f is bound to one of the func1 and func2 function ob-
jects while the program is running. This is a result of two features:
(i) dynamic typing (so the contents of f can change), and (ii) func-
tions being ordinary objects. The bottom line is that dynamic binding
comes natural in Python, while it appears more like convenient magic
in languages like C++, Java, and C#.

496 9 Object-Oriented Programming

9.2.2 A Flexible Main Program

As a demonstration of the power of Python programming, we shall now
write a program that accepts a function on the command-line, together
with information about the difference type (centered, backward, or for-
ward), the order of the approximation, and a value of the independent
variable. The output from the program is the derivative of the given
function. An example of the usage of the program goes like this:

Terminal

differentiate.py ’exp(sin(x))’ Central 2 3.1
-1.04155573055

Here, we asked the program to differentiate f(x) = esinx at x = 3.1
with a central scheme of order 2 (using the Central2 class in the Diff

hierarchy).
We can provide any expression with x as input and request any

scheme from the Diff hierarchy, and the derivative will be (approxi-
mately) computed. One great thing with Python is that the code is
very short:

import sys
from Diff import *
from math import *
from scitools.StringFunction import StringFunction

formula = sys.argv[1]
f = StringFunction(formula)
difftype = sys.argv[2]
difforder = sys.argv[3]
classname = difftype + difforder
df = eval(classname + ’(f)’)
x = float(sys.argv[4])
print df(x)

Read the code line by line, and convince yourself that you understand
what is going on. You may need to review Chapters 4.1.2 and 4.1.4.

One disadvantage is that the code above is limited to x as the name
of the independent variable. If we allow a 5th command-line argument
with the name of the independent variable, we can pass this name on
to the StringFunction constructor, and suddenly our program works
with any name for the independent variable!

varname = sys.argv[5]
f = StringFunction(formula, independent_variables=varname)

Of course, the program crashes if we do not provide five command-
line arguments, and the program does not work properly if we are not
careful with ordering of the command-line arguments. There is some
way to go before the program is really user friendly, but that is beyond
the scope of this chapter.

There are two strengths of the differentiate.py program: i) inter-
active specification of the function and the differentiation method, and

9.2 Class Hierarchy for Numerical Differentiation 497

ii) identical syntax for calling any differentiation method. With one
line we create the subclass instance based on input strings. Many other
popular programming languages (C++, Java, C#) cannot perform the
eval operation while the program is running. The result is that we need
if tests to turn the input string information into creation of subclass
instances. Such type of code would look like this in Python:

if classname == ’Forward1’:
df = Forward1(f)

elif classname == ’Backward1’:
df = Backward1(f)

...

and so forth. This piece of code is very common in object-oriented sys-
tems and often put in a function that is referred to as a factory function.
Factory functions can be made very compact in Python thanks to eval.

9.2.3 Extensions

The great advantage of sharing code via inheritance becomes obvious
when we want to extend the functionality of a class hierarchy. It is pos-
sible to do this by adding more code to the superclass only. Suppose we
want to be able to assess the accuracy of the numerical approximation
to the derivative by comparing with the exact derivative, if available.
All we need to do is to allow an extra argument in the constructor
and provide an additional superclass method that computes the error
in the numerical derivative. We may add this code to class Diff, or
we may add it in a subclass Diff2 and let the other classes for various
numerical differentiation formulas inherit from class Diff2. We follow
the latter approach:

class Diff2(Diff):
def __init__(self, f, h=1E-5, dfdx_exact=None):

Diff.__init__(self, f, h)
self.exact = dfdx_exact

def error(self, x):
if self.exact is not None:

df_numerical = self(x)
df_exact = self.exact(x)
return df_exact - df_numerical

class Forward1(Diff2):
def __call__(self, x):

f, h = self.f, self.h
return (f(x+h) - f(x))/h

The other subclasses, Backward1, Central2, and so on, must also be
derived from Diff2 to equip all subclasses with new functionality for
perfectly assessing the accuracy of the approximation. No other mod-
ifications are necessary in this example, since all the subclasses can
inherit the superclass constructor and the error method. Figure 9.2
shows a UML diagram of the new Diff class hierarchy.

498 9 Object-Oriented Programming

Fig. 9.2 UML diagram of the Diff hierarchy for a series of differentiation formulas
(Backward1, Central2, etc.).

Here is an example of usage:

mycos = Forward1(sin, dfdx_exact=cos)
print ’Error in derivative is’, mycos.error(x=pi)

The program flow of the mycos.error(x=pi) call can be interesting to
follow. We first enter the error method in class Diff2, which then calls
self(x), i.e., the __call__ method in class Forward1, which jumps out
to the self.f function, i.e., the sin function in the math module in the
present case. After returning to the error method, the next call is to
self.exact, which is the cos function (from math) in our case.

Application. We can apply the methods in the Diff2 hierarchy to get
some insight into the accuracy of various difference formulas. Let us
write out a table where the rows correspond to different h values, and
the columns correspond to different approximation methods (except

9.2 Class Hierarchy for Numerical Differentiation 499

the first column which reflects the h value). The values in the table can
be the numerically computed f ′(x) or the error in this approximation
if the exact derivative is known. The following function writes such a
table:

def table(f, x, h_values, methods, dfdx=None):
Print headline (h and class names for the methods)
print ’ h ’,
for method in methods:

print ’%-15s’ % method.__name__,
print # newline
Print table
for h in h_values:

print ’%10.2E’ % h,
for method in methods:

if dfdx is not None: # write error
d = method(f, h, dfdx)
output = d.error(x)

else: # write value
d = method(f, h)
output = d(x)

print ’%15.8E’ % output,
print # newline

The next lines tries three approximation methods on f(x) = e−10x for
x = 0 and with h = 1, 1/2, 1/4, 1/16, . . . , 1/512:

from Diff2 import *
from math import exp

def f1(x):
return exp(-10*x)

def df1dx(x):
return -10*exp(-10*x)

table(f1, 0, [2**(-k) for k in range(10)],
[Forward1, Central2, Central4], df1dx)

Note how convenient it is to make a list of class names – class names can
be used as ordinary variables, and to print the class name as a string
we just use the __name__ attribute. The output of the main program
above becomes

h Forward1 Central2 Central4
1.00E+00 -9.00004540E+00 1.10032329E+04 -4.04157586E+07
5.00E-01 -8.01347589E+00 1.38406421E+02 -3.48320240E+03
2.50E-01 -6.32833999E+00 1.42008179E+01 -2.72010498E+01
1.25E-01 -4.29203837E+00 2.81535264E+00 -9.79802452E-01
6.25E-02 -2.56418286E+00 6.63876231E-01 -5.32825724E-02
3.12E-02 -1.41170013E+00 1.63556996E-01 -3.21608292E-03
1.56E-02 -7.42100948E-01 4.07398036E-02 -1.99260429E-04
7.81E-03 -3.80648092E-01 1.01756309E-02 -1.24266603E-05
3.91E-03 -1.92794011E-01 2.54332554E-03 -7.76243120E-07
1.95E-03 -9.70235594E-02 6.35795004E-04 -4.85085874E-08

From one row to the next, h is halved, and from about the 5th row and
onwards, the Forward1 errors are also halved, which is consistent with
the error O(h) of this method. Looking at the 2nd column, we see that
the errors are reduced to 1/4 when going from one row to the next, at
least after the 5th row. This is also according to the theory since the
error is proportional to h2. For the last row with a 4th-order scheme,

500 9 Object-Oriented Programming

the error is reduced by 1/16, which again is what we expect when the
error term is O(h4). What is also interesting to observe, is the benefit of
using a higher-order scheme like Central4: with, for example, h = 1/128
the Forward1 scheme gives an error of −0.7, Central2 improves this to
0.04, while Central4 has an error of −0.0002. More accurate formulas
definitely give better results5. The test example shown here is found in
the file Diff2_examples.py.

9.2.4 Alternative Implementation via Functions

Could we implement the functionality offered by the Diff hierarchy of
objects by using plain functions and no object orientation? The answer
is “yes, almost”. What we have to pay for a pure function-based solution
is a less friendly user interface to the differentiation functionality: More
arguments must be supplied in function calls, because each difference
formula, now coded as a straight Python function, must get f(x), x,
and h as arguments. In the class version we first store f and h as
attributes in the constructor, and every time we want to compute the
derivative, we just supply x as argument.

A Python function for implementing numerical differentiation reads

def central2_func(f, x, h=1.0E-5):
return (f(x+h) - f(x-h))/(2*h)

The usage demonstrates the difference from the class solution:

mycos = central2_func(sin, pi, 1E-6)
Compute sin’(pi):
print "g’(%g)=%g (exact value is %g)" % (pi, mycos, cos(pi))

Now, mycos is a number, not a callable object. The nice thing with the
class solution is that mycos appeared to be a standard Python function
whose mathematical values equal the derivative of the Python function
sin(x). But does it matter whether mycos is a function or a number?
Yes, it matters if we want to apply the difference formula twice to
compute the second-order derivative. When mycos is a callable object
of type Central2, we just write

mysin = Central2(mycos)
or
mysin = Central2(Central2(sin))

Compute g’’(pi):
print "g’’(%g)=%g" % (pi, mysin(pi))

With the central2_func function, this composition will not work. More-
over, when the derivative is an object, we can send this object to any

5 Strictly speaking, it is the fraction of the work and the accuracy that counts: Central4

needs four function evaluations, while Central2 and Forward1 only needs two.

9.2 Class Hierarchy for Numerical Differentiation 501

algorithm that expects a mathematical function, and such algorithms
include numerical integration, differentiation, interpolation, ordinary
differential equation solvers, and finding zeros of equations, so the ap-
plications are many.

9.2.5 Alternative Implementation via Functional Programming

As a conclusion of the previous section, the great benefit of the object-
oriented solution in Chapter 9.2.1 is that one can have some subclass
instance d from the Diff (or Diff2) hierarchy and write d(x) to eval-
uate the derivative at a point x. The d(x) call behaves as if d were a
standard Python function containing a manually coded expression for
the derivative.

The d(x) interface to the derivative can also be obtained by other
and perhaps more direct means than object-oriented programming. In
programming languages where functions are ordinary objects that can
be referred to by variables, as in Python, one can make a function
that returns the right d(x) function according to the chosen numerical
derivation rule. The code looks as this:

def differentiate(f, method, h=1.0E-5):
h = float(h) # avoid integer division

if method == ’Forward1’:
def Forward1(x):

return (f(x+h) - f(x))/h
return Forward1

elif method == ’Backward1’:
def Backward1(x):

return (f(x) - f(x-h))/h
return Backward1

...

And the usage is like this:

mycos = differentiate(sin, ’Forward1’)
mysin = differentiate(mycos, ’Forward1’)
x = pi
print mycos(x), cos(x), mysin, -sin(x)

The surprising thing is that when we call mycos(x) we provide only x,
while the function itself looks like

def Forward1(x):
return (f(x+h) - f(x))/h

return Forward1

How do the parameters f and h get their values when we call mycos(x)?
There is some magic attached to the Forward1 function, or literally,
there are some variables attached to Forward1: this function “remem-
bers” the values of f and h that existed as local variables in the
differentiate function when the Forward1 function was defined.

502 9 Object-Oriented Programming

In computer science terms, the Forward1 always has access to vari-
ables in the scope in which the function was defined. The Forward1

function is what is known as a closure in some computer languages.
Closures are much used in a programming style called functional pro-
gramming. Two key features of functional programming is operations
on lists (like list comprehensions) and returning functions from func-
tions. Python supports functional programming, but we will not con-
sider this programming style further in this book.

9.2.6 Alternative Implementation via a Single Class

Instead of making many classes or functions for the many different
differentiation schemes, the basic information about the schemes can
be stored in one table. With a single method in one single class can use
the table information, and for a given scheme, compute the derivative.
To do this, we need to reformulate the mathematical problem (actually
by using ideas from Chapter 9.3.1).

A family of numerical differentiation schemes can be written

f ′(x) ≈ h−1
r∑

i=−r

wif(xi), (9.7)

where wi are weights and xi are points. The 2r+1 points are symmetric
around some point x:

xi = x+ ih, i = −r, . . . , r.

The weights depend on the differentiation scheme. For example, the
Midpoint scheme (9.3) has

w−1 = −1, w0 = 0, w1 = 1.

Table 9.1 lists the values of wi for different difference formulas. In this
table we have set r = 4, which is sufficient for the schemes written up
in this book.

Given a table of the wi values, we can use (9.7) to compute the
derivative. A faster, vectorized computation can have the xi, wi, and
f(xi) values as stored in three vectors. Then h−1

∑
iwif(xi) can be

interpreted as a dot product between the two vectors with components
wi and f(xi), respectively.

A class with the table of weights as a static variable, a constructor,
and a __call__method for evaluating the derivative via h−1

∑
iwif(xi)

looks as follows:

9.2 Class Hierarchy for Numerical Differentiation 503

Table 9.1 Weights in some difference schemes. The number after the nature of a scheme
denotes the order of the schemes (for example, “central 2” is a central difference of 2nd

order).

points x− 4h x− 3h x− 2h x− h x x+ h x+ 2h x+ 3h x+ 4h

central 2 0 0 0 − 1
2

0 1
2

0 0 0

central 4 0 0 1
12

− 2
3

0 2
3

− 1
12

0 0

central 6 0 − 1
60

3
20

− 3
4

0 3
4

− 3
20

1
60

0

central 8 1
280

− 4
105

12
60

− 4
5

0 4
5

− 12
60

4
105

− 1
280

forward 1 0 0 0 0 1 1 0 0 0

forward 3 0 0 0 − 2
6

− 1
2

1 − 1
6

0 0

backward 1 0 0 0 −1 1 0 0 0 0

class Diff3:
table = {
(’forward’, 1):
[0, 0, 0, 0, 1, 1, 0, 0, 0],
(’central’, 2):
[0, 0, 0, -1./2, 0, 1./2, 0, 0, 0],
(’central’, 4):
[0, 0, 1./12, -2./3, 0, 2./3, -1./12, 0, 0],
...
}
def __init__(self, f, h=1.0E-5, type=’central’, order=2):

self.f, self.h, self.type, self.order = f, h, type, order
self.weights = np.array(Diff2.table[(type, order)])

def __call__(self, x):
f_values = np.array([f(self.x+i*self.h) \

for i in range(-4,5)])
return np.dot(self.weights, f_values)/self.h

Here we used numpy’s dot(x, y) function for computing the inner or
dot product between two arrays x and y.

Class Diff3 can be found in the file Diff3.py. Using class Diff3 to
differentiate the sine function goes like this:

import Diff3
mycos = Diff3.Diff3(sin, type=’central’, order=4)
print "sin’(pi):", mycos(pi)

Remark. The downside of class Diff3, compared with the other imple-
mentation techniques, is that the sum h−1

∑
iwif(xi) contains many

multiplications by zero for lower-order schemes. These multiplications
are known to yield zero in advance so we waste computer resources on
trivial calculations. Once upon a time, programmers would have been
extremely careful to avoid wasting multiplications this way, but today
arithmetic operations are quite cheap, especially compared to fetching
data from the computer’s memory. Lots of other factors also influence
the computational efficiency of a program, but this is beyond the scope
of this book.

504 9 Object-Oriented Programming

9.3 Class Hierarchy for Numerical Integration

There are many different numerical methods for integrating a mathe-
matical function, just as there are many different methods for differ-
entiating a function. It is thus obvious that the idea of object-oriented
programming and class hierarchies can be applied to numerical inte-
gration formulas in the same manner as we did in Chapter 9.2.

9.3.1 Numerical Integration Methods

First, we list some different methods for integrating
∫ b
a f(x)dx using n

evaluation points. All the methods can be written as

∫ b

a
f(x)dx ≈

n−1∑
i=0

wif(xi), (9.8)

where wi are weights and xi are evaluation points, i = 0, . . . , n−1. The
Midpoint method has

xi = a+
h

2
+ ih, wi = h, h =

b− a

n
, i = 0, . . . , n− 1. (9.9)

The Trapezoidal method has the points

xi = a+ ih, h =
b− a

n− 1
, i = 0, . . . , n− 1, (9.10)

and the weights

w0 = wn−1 =
h

2
, wi = h, i = 1, . . . , n− 2. (9.11)

Simpson’s rule has the same evaluation points as the Trapezoidal rule,
but

h = 2
b− a

n− 1
, w0 = wn−1 =

h

6
, (9.12)

wi =
h

3
for i = 2, 4, . . . , n− 3, (9.13)

wi =
2h

3
for i = 1, 3, 5, . . . , n− 2. (9.14)

Note that n must be odd in Simpson’s rule. A Two-Point Gauss-
Legendre method takes the form

xi = a+

(
i+

1

2

)
h− 1√

3

h

2
for i = 0, 2, 4, . . . , n− 2, (9.15)

xi = a+

(
i+

1

2

)
h+

1√
3

h

2
for i = 1, 3, 5, . . . , n− 1, (9.16)

9.3 Class Hierarchy for Numerical Integration 505

Fig. 9.3 Illustration of the distribution of points for various numerical integration methods.
The Gauss-Legendre method has 10 points, while the other methods have 11 points in [0, 10].

with h = 2(b − a)/n. Here n must be even. All the weights have the
same value: wi = h/2, i = 0, . . . , n − 1. Figure 9.3 illustrates how the
points in various integration rules are distributed over a few intervals.

9.3.2 Classes for Integration

We may store xi and wi in two NumPy arrays and compute the integral
as

∑n−1
i=0 wif(xi). This operation can also be vectorized as a dot (inner)

product between the wi vector and the f(xi) vector, provided f(x) is
implemented in a vectorizable form.

We argued in Chapter 7.3.3 that it pays off to implement a numerical
integration formula as a class. If we do so with the different methods
from the previous section, a typical class looks like this:

class SomeIntegrationMethod:
def __init__(self, a, b, n):

Compute self.points and self.weights

def integrate(self, f):
s = 0
for i in range(len(self.weights)):

s += self.weights[i]*f(self.points[i])
return s

Making such classes for many different integration methods soon re-
veals that all the classes contain common code, namely the integrate

method for computing
∑n−1

i=0 wif(xi). Therefore, this common code can
be placed in a superclass, and subclasses can just add the code that is
specific to a certain numerical integration formula, namely the defini-
tion of the weights wi and the points xi.

506 9 Object-Oriented Programming

Let us start with the superclass:

class Integrator:
def __init__(self, a, b, n):

self.a, self.b, self.n = a, b, n
self.points, self.weights = self.construct_method()

def construct_method(self):
raise NotImplementedError(’no rule in class %s’ %

self.__class__.__name__)

def integrate(self, f):
s = 0
for i in range(len(self.weights)):

s += self.weights[i]*f(self.points[i])
return s

As we have seen, we store the a, b, and n data about the integra-
tion method in the constructor. Moreover, we compute arrays or lists
self.points for the xi points and self.weights for the wi weights. All
this code can now be inherited by all subclasses.

The initialization of points and weights is put in a separate method,
construct_method, which is supposed to be implemented in each sub-
class, but the superclass provides a default implementation which
tells the user that the method is not implemented. What happens is
that when subclasses redefine a method, that method overrides the
method inherited from the superclass. Hence, if we forget to redefine
construct_method in a subclass, we will inherit the one from the su-
perclass, and this method issues an error message. The construction of
this error message is quite clever in the sense that it will tell in which
class the construct_methodmethod is missing (self will be the subclass
instance and its __class__.__name__ is a string with the corresponding
subclass name).

In computer science one usually speaks about overloading a method
in a subclass, but the words redefining and overriding are also used.
A method that is overloaded is said to be polymorphic. A related term,
polymorphism, refers to coding with polymorphic methods. Very often,
a superclass provides some default implementation of a method, and a
subclass overloads the method with the purpose of tailoring the method
to a particular application.

The integrate method is common for all integration rules, i.e., for
all subclasses, so it can be inherited as it is. A vectorized version can
also be added in the superclass to make it automatically available also
in all subclasses:

def vectorized_integrate(self, f):
return np.dot(self.weights, f(self.points))

Let us then implement a subclass. Only the construct_method

method needs to be written. For the Midpoint rule, this is a matter
of translating the formulas in (9.9) to Python:

9.3 Class Hierarchy for Numerical Integration 507

class Midpoint(Integrator):
def construct_method(self):

a, b, n = self.a, self.b, self.n # quick forms
h = (b-a)/float(n)
x = np.linspace(a + 0.5*h, b - 0.5*h, n)
w = np.zeros(len(x)) + h
return x, w

Observe that we implemented directly a vectorized code. We could also
have used (slow) loops and explicit indexing:

x = np.zeros(n)
w = np.zeros(n)
for i in range(n):

x[i] = a + 0.5*h + i*h
w[i] = h

Before we continue with other subclasses for other numerical inte-
gration formulas, we will have a look at the program flow when we
use class Midpoint. Suppose we want to integrate

∫ 2
0 x2dx using 101

points:

def f(x): return x*x
m = Midpoint(0, 2, 101)
print m.integrate(f)

How is the program flow? The assignment to m invokes the construc-
tor in class Midpoint. Since this class has no constructor, we invoke
the inherited one from the superclass Integrator. Here attributes are
stored, and then the construct_method method is called. Since self is
a Midpoint instance, it is the construct_method in the Midpoint class
that is invoked, even if there is a method with the same name in the su-
perclass. Class Midpoint overloads construct_method in the superclass.
In a way, we “jump down” from the constructor in class Integrator

to the construct_method in the Midpoint class. The next statement,
m.integrate(f), just calls the inherited integral method that is com-
mon to all subclasses.

A vectorized Trapezoidal rule can be implemented in another sub-
class with name Trapezoidal:

class Trapezoidal(Integrator):
def construct_method(self):

x = np.linspace(self.a, self.b, self.n)
h = (self.b - self.a)/float(self.n - 1)
w = np.zeros(len(x)) + h
w[0] /= 2
w[-1] /= 2
return x, w

Observe how we divide the first and last weight by 2, using index 0
(the first) and −1 (the last) and the /= operator (a /= b is equivalent to
a = a/b). Here also we could have implemented a scalar version with
loops. The relevant code is in function trapezoidal in Chapter 7.3.3.

508 9 Object-Oriented Programming

Class Simpson has a slightly more demanding rule, at least if we
want to vectorize the expression, since the weights are of two types.

class Simpson(Integrator):
def construct_method(self):

if self.n % 2 != 1:
print ’n=%d must be odd, 1 is added’ % self.n
self.n += 1

x = np.linspace(self.a, self.b, self.n)
h = (self.b - self.a)/float(self.n - 1)*2
w = np.zeros(len(x))
w[0:self.n:2] = h*1.0/3
w[1:self.n-1:2] = h*2.0/3
w[0] /= 2
w[-1] /= 2
return x, w

We first control that we have an odd number of points, by checking that
the remainder of self.n divided by two is 1. If not, an exception could
be raised, but for smooth operation of the class, we simply increase n
so it becomes odd. Such automatic adjustments of input is not a rule to
be followed in general. Wrong input is best notified explicitly. However,
sometimes it is user friendly to make small adjustments of the input,
as we do here, to achieve a smooth and successful operation. (In cases
like this, a user might become uncertain whether the answer can be
trusted if she (later) understands that the input should not yield a
correct result. Therefore, do the adjusted computation, and provide a
notification to the user about what has taken place.)

The computation of the weights w in class Simpson applies slices with
stride (jump/step) 2 such that the operation is vectorized for speed.
Recall that the upper limit of a slice is not included in the set, so
self.n-1 is the largest index in the first case, and self.n-2 is the
largest index in the second case. Instead of the vectorized operation of
slices for computing w, we could use (slower) straight loops:

for i in range(0, self.n, 2):
w[i] = h*1.0/3

for i in range(1, self.n-1, 2):
w[i] = h*2.0/3

The points in the Two-Point Gauss-Legendre rule are slightly more
complicated to calculate, so here we apply straight loops to make a safe
first implementation:

class GaussLegendre2(Integrator):
def construct_method(self):

if self.n % 2 != 0:
print ’n=%d must be even, 1 is subtracted’ % self.n
self.n -= 1

nintervals = int(self.n/2.0)
h = (self.b - self.a)/float(nintervals)
x = np.zeros(self.n)
sqrt3 = 1.0/math.sqrt(3)
for i in range(nintervals):

x[2*i] = self.a + (i+0.5)*h - 0.5*sqrt3*h
x[2*i+1] = self.a + (i+0.5)*h + 0.5*sqrt3*h

9.3 Class Hierarchy for Numerical Integration 509

w = np.zeros(len(x)) + h/2.0
return x, w

A vectorized calculation of x is possible by observing that the
(i+0.5)*h expression can be computed by np.linspace, and then we
can add the remaining two terms:

m = np.linspace(0.5*h, (nintervals-1+0.5)*h, nintervals)
x[0:self.n-1:2] = m + self.a - 0.5*sqrt3*h
x[1:self.n:2] = m + self.a + 0.5*sqrt3*h

The array on the right-hand side has half the length of x (n/2), but
the length matches exactly the slice with stride 2 on the left-hand side.

9.3.3 Using the Class Hierarchy

To verify the implementation, we first try to integrate a linear function.
All methods should compute the correct integral value regardless of the
number of evaluation points:

def f(x):
return x + 2

a = 2; b = 3; n = 4
for Method in Midpoint, Trapezoidal, Simpson, GaussLegendre2:

m = Method(a, b, n)
print m.__class__.__name__, m.integrate(f)

Observe how we simply list the class names as a tuple (comma-
separated objects), and Method will in the for loop attain the values
Midpoint, Trapezoidal, and so forth. For example, in the first pass of
the loop, Method(a, b, n) is identical to Midpoint(a, b, n).

The output of the test above becomes

Midpoint 4.5
Trapezoidal 4.5
n=4 must be odd, 1 is added
Simpson 4.5
GaussLegendre2 4.5

Since
∫ 3
2 (x+ 2)dx = 9

2 = 4.5, all methods passed this simple test.
A more challenging integral, from a numerical point of view, is

∫ 1

0

(
1 +

1

m

)
t

1

mdt = 1.

To use any subclass in the Integrator hierarchy, the integrand must
be a function of one variable only. For the present integrand, which
depends on t and m, we use a class to represent it:

class F:
def __init__(self, m):

self.m = float(m)

510 9 Object-Oriented Programming

def __call__(self, t):
m = self.m
return (1 + 1/m)*t**(1/m)

We now ask the question: How much is the error in the integral reduced
as we increase the number of integration points (n)? It appears that the
error decreases exponentially with n, so if we want to plot the errors
versus n, it is best to plot the logarithm of the error versus lnn. We
expect this graph to be a straight line, and the steeper the line is, the
faster the error goes to zero as n increases. A common conception is to
regard one numerical method as better than another if the error goes
faster to zero as we increase the computational work (here n).

For a given m and method, the following function computes two
lists containing the logarithm of the n values, and the logarithm of the
corresponding errors in a series of experiments:

def error_vs_n(f, exact, n_values, Method, a, b):
log_n = [] # log of actual n values (Method may adjust n)
log_e = [] # log of corresponding errors
for n_value in n_values:

method = Method(a, b, n_value)
error = abs(exact - method.integrate(f))
log_n.append(log(method.n))
log_e.append(log(error))

return log_n, log_e

We can plot the error versus n for several methods in the same plot
and make one plot for each m value. The loop over m below makes
such plots:

n_values = [10, 20, 40, 80, 160, 320, 640]
for m in 1./4, 1./8., 2, 4, 16:

f = F(m)
figure()
for Method in Midpoint, Trapezoidal, \

Simpson, GaussLegendre2:
n, e = error_vs_n(f, 1, n_values, Method, 0, 1)
plot(n, e); legend(Method.__name__); hold(’on’)

title(’m=%g’ % m); xlabel(’ln(n)’); ylabel(’ln(error)’)

The code snippets above are collected in a function test in the
integrate.py file.

The plots for m > 1 look very similar. The plots for 0 < m < 1 are
also similar, but different from the m > 1 cases. Let us have a look at
the results for m = 1/4 and m = 2. The first, m = 1/4, corresponds

to
∫ 1
0 5x4dx. Figure 9.4 shows that the error curves for the Trapezoidal

and Midpoint methods converge more slowly compared to the error
curves for Simpson’s rule and the Gauss-Legendre method. This is the
usual situation for these methods, and mathematical analysis of the
methods can confirm the results in Figure 9.4.

However, when we consider the integral
∫ 1
0

3
2

√
xdx, (m = 2) and

m > 1 in general, all the methods converge with the same speed, as
shown in Figure 9.5. Our integral is difficult to compute numerically

9.3 Class Hierarchy for Numerical Integration 511

when m > 1, and the theoretically better methods (Simpson’s rule and
the Gauss-Legendre method) do not converge faster than the simpler
methods. The difficulty is due to the infinite slope (derivative) of the
integrand at x = 0.

Fig. 9.4 The logarithm of the error versus the logarithm of integration points for integral

5x4 computed by the Trapezoidal and Midpoint methods (upper two lines), and Simpson’s
rule and the Gauss-Legendre methods (lower two lines).

Fig. 9.5 The logarithm of the error versus the logarithm of integration points for integral
3
2

√
x computed by the Trapezoidal method and Simpson’s rule (upper two lines), and

Midpoint and Gauss-Legendre methods (lower two lines).

9.3.4 About Object-Oriented Programming

From an implementational point of view, the advantage of class hierar-
chies in Python is that we can save coding by inheriting functionality

512 9 Object-Oriented Programming

from a superclass. In programming languages where each variable must
be specified with a fixed type, class hierarchies are particularly useful
because a function argument with a special type also works with all
subclasses of that type. Suppose we have a function where we need to
integrate:

def do_math(arg1, arg2, integrator):
...
I = integrator.integrate(myfunc)
...

That is, integrator must be an instance of some class, or a module,
such that the syntax integrator.integrate(myfunc) corresponds to a
function call, but nothing more (like having a particular type) is de-
manded.

This Python code will run as long as integrator has a method
integrate taking one argument. In other languages, the function ar-
guments are specified with a type, say in Java we would write

void do_math(double arg1, int arg2, Simpson integrator)

A compiler will examine all calls to do_math and control that the argu-
ments are of the right type. Instead of specifying the integration method
to be of type Simpson, one can in Java and other object-oriented lan-
guages specify integrator to be of the superclass type Integrator:

void do_math(double arg1, int arg2, Integrator integrator)

Now it is allowed to pass an object of any subclass type of Integrator
as the third argument. That is, this method works with integrator of
type Midpoint, Trapezoidal, Simpson, etc., not just one of them. Class
hierarchies and object-oriented programming are therefore important
means for parameterizing away types in languages like Java, C++,
and C#. We do not need to parameterize types in Python, since argu-
ments are not declared with a fixed type. Object-oriented programming
is hence not so technically important in Python as in other languages
for providing increased flexibility in programs.

Is there then any use for object-oriented programming beyond inher-
itance? The answer is yes! For many code developers object-oriented
programming is not just a technical way of sharing code, but it is more
a way of modeling the world, and understanding the problem that the
program is supposed to solve. In mathematical applications we already
have objects, defined by the mathematics, and standard programming
concepts such as functions, arrays, lists, and loops are often sufficient
for solving simpler problems. In the non-mathematical world the con-
cept of objects is very useful because it helps to structure the problem
to be solved. As an example, think of the phone book and message list
software in a mobile phone. Class Person can be introduced to hold the
data about one person in the phone book, while class Message can hold
data related to an SMS message. Clearly, we need to know who sent a

9.4 Class Hierarchy for Making Drawings 513

message so a Message object will have an associated Person object, or
just a phone number if the number is not registered in the phone book.
Classes help to structure both the problem and the program. The im-
pact of classes and object-oriented programming on modern software
development can hardly be exaggerated.

A good, real-world, pedagogical example on inheritance is the class
hierarchy for numerical methods for ordinary differential equations de-
scribed in Appendix E.2.

9.4 Class Hierarchy for Making Drawings

Implementing a drawing program provides a very good example on the
usefulness of object-oriented programming. In the following we shall
develop the simpler parts of a relatively small and compact drawing
program for making sketches of the type shown in Figure 9.6. This is
a typical principal sketch of a physics problem, here involving a rolling
wheel on an inclined plane. The sketch is made up many individual
elements: a rectangle filled with a pattern (the inclined plane), a hollow
circle with color (the wheel), arrows with labels (the N and Mg forces,
and the x axis), an angle with symbol θ, and a dashed line indicating
the starting location of the wheel.

Drawing software and plotting programs can produce such figures
quite easily in principle, but the amount of details the user needs to
control with the mouse can be substantial. Software more tailored to
producing sketches of this type would work with more convenient ab-
stractions, such as circle, wall, angle, force arrow, axis, and so forth.
And as soon we start programming to construct the figure we get a
range of other powerful tools at disposal. For example, we can easily
translate and rotate parts of the figure and make an animation that

Fig. 9.6 Sketch of a physics problem.

514 9 Object-Oriented Programming

illustrates the physics of the problem. Programming as a superior al-
ternative to interactive drawing is the mantra of this section.

Classes are very suitable for implementing the various components
that build up a sketch. In particular, we shall demonstrate that as
soon as some classes are established, more are easily added. Enhanced
functionality for all the classes is also easy to implement in common,
generic code that can immediately be shared by all present and future
classes.

The fundamental data structure involved in this case study is a hier-
archical tree, and much of the material on implementation issues targets
how to traverse tree structures with recursive function calls. This topic
is of key relevance in a wide range of other applications as well.

9.4.1 Using the Object Collection

We start by demonstrating a convenient user interface for making
sketches of the type in Figure 9.6. However, it is more appropriate
to start with a significantly simpler example as depicted in Figure 9.7.
This toy sketch consists of several elements: two circles, two rectangles,
and a “ground” element.

Fig. 9.7 Sketch of a simple figure.

Basic Drawing. A typical program creating these five elements is shown
next. After importing the pysketcher package, the first task is always
to define a coordinate system:

from pysketcher import *

drawing_tool.set_coordinate_system(
xmin=0, xmax=10, ymin=-1, ymax=8)

Instead of working with lengths expressed by specific numbers it is
highly recommended to use variables to parameterize lengths as this
makes it easier to change dimensions later. Here we introduce some

9.4 Class Hierarchy for Making Drawings 515

key lengths for the radius of the wheels, distance between the wheels,
etc.:

R = 1 # radius of wheel
L = 4 # distance between wheels
H = 2 # height of vehicle body
w_1 = 5 # position of front wheel
drawing_tool.set_coordinate_system(xmin=0, xmax=w_1 + 2*L + 3*R,

ymin=-1, ymax=2*R + 3*H)

With the drawing area in place we can make the first Circle object in
an intuitive fashion:

wheel1 = Circle(center=(w_1, R), radius=R)

to change dimensions later.
To translate the geometric information about the wheel1 object

to instructions for the plotting engine (in this case Matplotlib), one
calls the wheel1.draw(). To display all drawn objects, one issues
drawing_tool.display(). The typical steps are hence:

wheel1 = Circle(center=(w_1, R), radius=R)
wheel1.draw()

Define other objects and call their draw() methods
drawing_tool.display()
drawing_tool.savefig(’tmp.png’) # store picture

The next wheel can be made by taking a copy of wheel1 and translat-
ing the object to the right according to a displacement vector (L, 0):

wheel2 = wheel1.copy()
wheel2.translate((L,0))

The two rectangles are also made in an intuitive way:

under = Rectangle(lower_left_corner=(w_1-2*R, 2*R),
width=2*R + L + 2*R, height=H)

over = Rectangle(lower_left_corner=(w_1, 2*R + H),
width=2.5*R, height=1.25*H)

Groups of Objects. Instead of calling the draw method of every object,
we can group objects and call draw, or perform other operations, for the
whole group. For example, we may collect the two wheels in a wheels

group and the over and under rectangles in a body group. The whole
vehicle is a composition of its wheels and body groups. The code goes
like

wheels = Composition({’wheel1’: wheel1, ’wheel2’: wheel2})
body = Composition({’under’: under, ’over’: over})

vehicle = Composition({’wheels’: wheels, ’body’: body})

The ground is illustrated by an object of type Wall, mostly used to
indicate walls in sketches of mechanical systems. A Wall takes the x and

516 9 Object-Oriented Programming

y coordinates of some curve, and a thickness parameter, and creates a
“thick” curve filled with a simple pattern. In this case the curve is just
a flat line so the construction is made of two points on the ground line
((w1 − L, 0) and (w1 + 3L, 0)):

ground = Wall(x=[w_1 - L, w_1 + 3*L], y=[0, 0], thickness=-0.3*R)

The negative thickness makes the pattern-filled rectangle appear below
the defined line, otherwise it appears above.

We may now collect all the objects in a “top” object that contains
the whole figure:

fig = Composition({’vehicle’: vehicle, ’ground’: ground})
fig.draw() # send all figures to plotting backend
drawing_tool.display()
drawing_tool.savefig(’tmp.png’)

The fig.draw() call will visit all subgroups, their subgroups, and so
forth in the hierarchical tree structure of figure elements, and call draw
for every object.

Changing Line Styles and Colors. Controlling the line style, line color,
and line width is fundamental when designing figures. The pysketcher

package allows the user to control such properties in single objects, but
also set global properties that are used if the object has no particular
specification of the properties. Setting the global properties are done
like

drawing_tool.set_linestyle(’dashed’)
drawing_tool.set_linecolor(’black’)
drawing_tool.set_linewidth(4)

At the object level the properties are specified in a similar way:

wheels.set_linestyle(’solid’)
wheels.set_linecolor(’red’)

and so on.
Geometric figures can be specified as filled, either with a color or

with a special visual pattern:

Set filling of all curves
drawing_tool.set_filled_curves(color=’blue’, pattern=’/’)

Turn off filling of all curves
drawing_tool.set_filled_curves(False)

Fill the wheel with red color
wheel1.set_filled_curves(’red’)

The Figure Composition as an Object Hierarchy. The composition of
objects making up the figure is hierarchical, similar to a family, where
each object has a parent and a number of children. Do a print fig to
display the relations:

9.4 Class Hierarchy for Making Drawings 517

ground
wall

vehicle
body

over
rectangle

under
rectangle

wheels
wheel1

arc
wheel2

arc

The indentation reflects how deep down in the hierarchy (family) we
are. This output is to be interpreted as follows:

• fig contains two objects, ground and vehicle

• ground contains an object wall
• vehicle contains two objects, body and wheels

• body contains two objects, over and under

• wheels contains two objects, wheel1 and wheel2

In this listing there are also objects not defined by the programmer:
rectangle and arc. These are of type Curve and automatically gener-
ated by the classes Rectangle and Circle.

More detailed information can be printed by

print fig.show_hierarchy(’std’)

yielding the output

ground (Wall):
wall (Curve): 4 coords fillcolor=’white’ fillpattern=’/’

vehicle (Composition):
body (Composition):

over (Rectangle):
rectangle (Curve): 5 coords

under (Rectangle):
rectangle (Curve): 5 coords

wheels (Composition):
wheel1 (Circle):

arc (Curve): 181 coords
wheel2 (Circle):

arc (Curve): 181 coords

Here we can see the class type for each figure object, how many coor-
dinates that are involved in basic figures (Curve objects), and special
settings of the basic figure (fillcolor, line types, etc.). For example,
wheel2 is a Circle object consisting of an arc, which is a Curve object
consisting of 181 coordinates (the points needed to draw a smooth cir-
cle). The Curve objects are the only objects that really holds specific
coordinates to be drawn. The other object types are just compositions
used to group parts of the complete figure.

One can also get a graphical overview of the hierarchy of
figure objects that build up a particular figure fig. Just call
fig.graphviz_dot(’fig’) to produce a file fig.dot in the dot for-
mat. This file contains relations between parent and child objects

518 9 Object-Oriented Programming

in the figure and can be turned into an image, as in Figure 9.8, by
running the dot program:

Terminal

Terminal> dot -Tpng -o fig.png fig.dot

Fig. 9.8 Hierarchical relation between figure objects.

The call fig.graphviz_dot(’fig’, classname=True)makes a fig.dot
file where the class type of each object is also visible, see Figure 9.9.
The ability to write out the object hierarchy or view it graphically can
be of great help when working with complex figures that involve layers
of subfigures.

Any of the objects can in the program be reached through their
names, e.g.,

fig[’vehicle’]
fig[’vehicle’][’wheels’]
fig[’vehicle’][’wheels’][’wheel2’]
fig[’vehicle’][’wheels’][’wheel2’][’arc’]
fig[’vehicle’][’wheels’][’wheel2’][’arc’].x # x coords
fig[’vehicle’][’wheels’][’wheel2’][’arc’].y # y coords
fig[’vehicle’][’wheels’][’wheel2’][’arc’].linestyle
fig[’vehicle’][’wheels’][’wheel2’][’arc’].linetype

Grabbing a part of the figure this way is handy for changing properties
of that part, for example, colors, line styles (see Figure 9.10):

fig[’vehicle’][’wheels’].set_filled_curves(’blue’)
fig[’vehicle’][’wheels’].set_linewidth(6)
fig[’vehicle’][’wheels’].set_linecolor(’black’)

fig[’vehicle’][’body’][’under’].set_filled_curves(’red’)

fig[’vehicle’][’body’][’over’].set_filled_curves(pattern=’/’)
fig[’vehicle’][’body’][’over’].set_linewidth(14)
fig[’vehicle’][’body’][’over’][’rectangle’].linewidth = 4

9.4 Class Hierarchy for Making Drawings 519

Fig. 9.9 Hierarchical relation between figure objects, including their class names.

Fig. 9.10 Left: Basic line-based drawing. Right: Thicker lines and filled parts.

The last line accesses the Curve object directly, while the line above,
accesses the Rectangle object which will then set the linewidth of its
Curve object, and other objects if it had any. The result of the actions
above is shown in Figure 9.10.

We can also change position of parts of the figure and thereby make
animations, as shown next.

Animation: Translating the Vehicle. Can we make our little vehicle
roll? A first attempt will be to fake rolling by just displacing all parts
of the vehicle. The relevant parts constitute the fig[’vehicle’] object.
This part of the figure can be translated, rotated, and scaled. A trans-
lation along the ground means a translation in x direction, say a length
L to the right:

fig[’vehicle’].translate((L,0))

You need to erase, draw, and display to see the movement:

520 9 Object-Oriented Programming

drawing_tool.erase()
fig.draw()
drawing_tool.display()

Without erasing, the old drawing of the vehicle will remain in the figure
so you get two vehicles. Without fig.draw() the new coordinates of
the vehicle will not be communicated to the drawing tool, and without
calling display the updated drawing will not be visible.

A figure that moves in time is conveniently realized by the function
animate:

animate(fig, tp, action)

Here, fig is the entire figure, tp is an array of time points, and action

is a user-specified function that changes fig at a specific time point.
Typically, action will move parts of fig.

In the present case we can define the movement through a velocity
function v(t) and displace the figure v(t)*dt for small time intervals
dt. A possible velocity function is

def v(t):
return -8*R*t*(1 - t/(2*R))

Our action function for horizontal displacements v(t)*dt becomes

def move(t, fig):
x_displacement = dt*v(t)
fig[’vehicle’].translate((x_displacement, 0))

Since our velocity is negative for t ∈ [0, 2R] the displacement is to the
left.

The animate function will for each time point t in tp erase the draw-
ing, call action(t, fig), and show the new figure by fig.draw() and
drawing_tool.display(). Here we choose a resolution of the animation
corresponding to 25 time points in the time interval [0, 2R]:

import numpy
tp = numpy.linspace(0, 2*R, 25)
dt = tp[1] - tp[0] # time step

animate(fig, tp, move, pause_per_frame=0.2)

The pause_per_frame adds a pause, here 0.2 seconds, between each
frame in the animation.

We can also ask animate to store each frame in a file:

files = animate(fig, tp, move_vehicle, moviefiles=True,
pause_per_frame=0.2)

The files variable, here ’tmp_frame*.png’, is a string expressing the
family of frame files. This string can be used directly in commands

9.4 Class Hierarchy for Making Drawings 521

for making a movie out of the files. A simple approach is to gener-
ate an animated GIF file with help of the convert program from the
ImageMagick software suite:

Terminal

Terminal> convert -delay 20 tmp_frame*.png anim.gif
Terminal> animate anim.gif # play movie

The delay between frames governs the speed of the movie. The anim.gif
file can be embedded in a web page and shown as a movie when the
page is loaded into a web browser (just insert in
the HTML code).

The tool ffmpeg can alternatively be used to create an MPEG movie,
e.g.,

Terminal

Terminal> ffmpeg -i "tmp_frame_%04d.png" -b 800k -r 25 \
-vcodec mpeg4 -y -qmin 2 -qmax 31 anim.mpeg

An easy-to-use Python interface to movie-making tools is provided by
the SciTools package:

from scitools.std import movie

HTML page showing individual frames
movie(files, encoder=’html’, output_file=’anim.html’)

Standard GIF file
movie(files, encoder=’convert’, output_file=’anim.gif’)

AVI format
movie(’tmp_*.png’, encoder=’ffmpeg’, fps=4,

output_file=’anim.avi’) # requires ffmpeg package

MPEG format
movie(’tmp_*.png’, encoder=’ffmpeg’, fps=4,

output_file=’anim2.mpeg’, vodec=’mpeg2video’)
or
movie(files, encoder=’ppmtompeg’, fps=24,

output_file=’anim.mpeg’) # requires the netpbm package

When difficulties with encoders and players arise, the simple web page
for showing a movie, here anim.html (generated by the first movie com-
mand above), is a safe method that you always can rely on. You can
try loading anim.html into a web browser, after first having run the
present example in the file vehicle0.py.

Animation: Rolling the Wheels. It is time to show rolling wheels. To
this end, we add spokes to the wheels, formed by two crossing lines, see
Figure 9.11. The construction of the wheels will now involve a circle
and two lines:

522 9 Object-Oriented Programming

wheel1 = Composition({
’wheel’: Circle(center=(w_1, R), radius=R),
’cross’: Composition({’cross1’: Line((w_1,0), (w_1,2*R)),

’cross2’: Line((w_1-R,R), (w_1+R,R))})})
wheel2 = wheel1.copy()
wheel2.translate((L,0))

Observe that wheel1.copy() copies all the objects that make up the
first wheel, and wheel2.translate translates all the copied objects.

Fig. 9.11 Wheels with spokes to illustrate rolling.

The move function now needs to displace all the objects in the entire
vehicle and also rotate the cross1 and cross2 objects in both wheels.
The rotation angle follows from the fact that the arc length of a rolling
wheel equals the displacement of the center of the wheel, leading to a
rotation angle

angle = - x_displacement/R

With w_1 tracking the x coordinate of the center of the front wheel, we
can rotate that wheel by

w1 = fig[’vehicle’][’wheels’][’wheel1’]
from math import degrees
w1.rotate(degrees(angle), center=(w_1, R))

The rotate function takes two parameters: the rotation angle (in de-
grees) and the center point of the rotation, which is the center of the
wheel in this case. The other wheel is rotated by

w2 = fig[’vehicle’][’wheels’][’wheel2’]
w2.rotate(degrees(angle), center=(w_1 + L, R))

That is, the angle is the same, but the rotation point is different. The
update of the center point is done by w_1 += x_displacement. The com-
plete move function with translation of the entire vehicle and rotation
of the wheels then becomes

w_1 = w_1 + L # start position

def move(t, fig):
x_displacement = dt*v(t)
fig[’vehicle’].translate((x_displacement, 0))

9.4 Class Hierarchy for Making Drawings 523

Rotate wheels
global w_1
w_1 += x_displacement
R*angle = -x_displacement
angle = - x_displacement/R
w1 = fig[’vehicle’][’wheels’][’wheel1’]
w1.rotate(degrees(angle), center=(w_1, R))
w2 = fig[’vehicle’][’wheels’][’wheel2’]
w2.rotate(degrees(angle), center=(w_1 + L, R))

The complete example is found in the file vehicle1.py.
The advantages with making figures this way, through programming

rather than using interactive drawing programs, are numerous. For ex-
ample, the objects are parameterized by variables so that various di-
mensions can easily be changed. Subparts of the figure, possible involv-
ing a lot of figure objects, can change color, linetype, filling or other
properties through a single function call. Subparts of the figure can
be rotated, translated, or scaled. Subparts of the figure can also be
copied and moved to other parts of the drawing area. However, the
single most important feature is probably the ability to make anima-
tions governed by mathematical formulas or data coming from physics
simulations of the problem, as very simplistically shown in the example
above.

9.4.2 Example of Classes for Geometric Objects

We shall now explain how we can, quite easily, realize software with
the capabilities demonstrated in the previous examples. Each object in
the figure is represented as a class in a class hierarchy. Using inheri-
tance, classes can inherit properties from parent classes and add new
geometric features.

We introduce class Shape as superclass for all specialized objects
in a figure. This class does not store any data, but provides a series
of functions that add functionality to all the subclasses. This will be
shown later.

Simple Geometric Objects. One simple subclass is Rectangle, specified
by the coordinates of the lower left corner and its width and height:

class Rectangle(Shape):
def __init__(self, lower_left_corner, width, height):

p = lower_left_corner # short form
x = [p[0], p[0] + width,

p[0] + width, p[0], p[0]]
y = [p[1], p[1], p[1] + height,

p[1] + height, p[1]]
self.shapes = {’rectangle’: Curve(x,y)}

Any subclass of Shape will have a constructor which takes geomet-
ric information about the shape of the object and creates a dictionary

524 9 Object-Oriented Programming

self.shapes with the shape built of simpler shapes. The most funda-
mental shape is Curve, which is just a collection of (x, y) coordinates
in two arrays x and y. Drawing the Curve object is a matter of plotting
y versus x. For class Rectangle the x and y arrays contain the cor-
ner points of the rectangle in counterclockwise direction, starting and
ending with in the lower left corner.

Class Line is also a simple class:

class Line(Shape):
def __init__(self, start, end):

x = [start[0], end[0]]
y = [start[1], end[1]]
self.shapes = {’line’: Curve(x, y)}

Here we only need two points, the start and end point on the line.
However, we may want to add some useful functionality, e.g., the ability
to give an x coordinate and have the class calculate the corresponding
y coordinate:

def __call__(self, x):
"""Given x, return y on the line."""
x, y = self.shapes[’line’].x, self.shapes[’line’].y
self.a = (y[1] - y[0])/(x[1] - x[0])
self.b = y[0] - self.a*x[0]
return self.a*x + self.b

Unfortunately, this is too simplistic because vertical lines cannot be
handled (infinite self.a). The true source code of Line therefore pro-
vides a more general solution at the cost of significantly longer code
with more tests.

A circle implies a somewhat increased complexity. Again we repre-
sent the geometric object by a Curve object, but this time the Curve

object needs to store a large number of points on the curve such that a
plotting program produces a visually smooth curve. The points on the
circle must be calculated manually in the constructor of class Circle.
The formulas for points (x, y) on a curve with radius R and center at
(x0, y0) are given by

x = x0 +R cos(t),

y = y0 +R sin(t),

where t ∈ [0, 2π]. A discrete set of t values in this interval gives the
corresponding set of (x, y) coordinates on the circle. The user must
specify the resolution as the number of t values. The circle’s radius and
center must of course also be specified.

We can write the Circle class as

class Circle(Shape):
def __init__(self, center, radius, resolution=180):

self.center, self.radius = center, radius
self.resolution = resolution

9.4 Class Hierarchy for Making Drawings 525

t = linspace(0, 2*pi, resolution+1)
x0 = center[0]; y0 = center[1]
R = radius
x = x0 + R*cos(t)
y = y0 + R*sin(t)
self.shapes = {’circle’: Curve(x, y)}

As in class Line we can offer the possibility to give an angle θ (equivalent
to t in the formulas above) and then get the corresponding x and y
coordinates:

def __call__(self, theta):
"""Return (x, y) point corresponding to angle theta."""
return self.center[0] + self.radius*cos(theta), \

self.center[1] + self.radius*sin(theta)

There is one flaw with this method: it yields illegal values after a trans-
lation, scaling, or rotation of the circle.

A part of a circle, an arc, is a frequent geometric object when drawing
mechanical systems. The arc is constructed much like a circle, but t runs
in [θs, θs + θa]. Giving θs and θa the slightly more descriptive names
start_angle and arc_angle, the code looks like this:

class Arc(Shape):
def __init__(self, center, radius,

start_angle, arc_angle,
resolution=180):

self.start_angle = radians(start_angle)
self.arc_angle = radians(arc_angle)

t = linspace(self.start_angle,
self.start_angle + self.arc_angle,
resolution+1)

x0 = center[0]; y0 = center[1]
R = radius
x = x0 + R*cos(t)
y = y0 + R*sin(t)
self.shapes = {’arc’: Curve(x, y)}

Having the Arc class, a Circle can alternatively be defined as a
subclass specializing the arc to a circle:

class Circle(Arc):
def __init__(self, center, radius, resolution=180):

Arc.__init__(self, center, radius, 0, 360, resolution)

Class Curve. Class Curve sits on the coordinates to be drawn, but how
is that done? The constructor of class Curve just stores the coordinates,
while a method draw sends the coordinates to the plotting program to
make a graph. Or more precisely, to avoid a lot of (e.g.) Matplotlib-
specific plotting commands in class Curve we have created a small layer
with a simple programming interface to plotting programs. This makes
it straightforward to change from Matplotlib to another plotting pro-
gram. The programming interface is represented by the drawing_tool

object and has a few functions:

526 9 Object-Oriented Programming

• plot_curve for sending a curve in terms of x and y coordinates to
the plotting program,

• set_coordinate_system for specifying the graphics area,
• erase for deleting all elements of the graph,
• set_grid for turning on a grid (convenient while constructing the
figure),

• set_instruction_file for creating a separate file with all plotting
commands (Matplotlib commands in our case),

• a series of set_X functions where X is some property like linecolor,
linestyle, linewidth, filled_curves.

This is basically all we need to communicate to a plotting program.
Any class in the Shape hierarchy inherits set_X functions for set-

ting properties of curves. This information is propagated to all
other shape objects in the self.shapes dictionary. Class Curve stores
the line properties together with the coordinates of its curve and
propagates this information to the plotting program. When saying
vehicle.set_linewidth(10), all objects that make up the vehicle ob-
ject will get a set_linewidth(10) call, but only the Curve object at the
end of the chain will actually store the information and send it to the
plotting program.

A rough sketch of class Curve reads

class Curve(Shape):
"""General curve as a sequence of (x,y) coordinates."""
def __init__(self, x, y):

self.x = asarray(x, dtype=float)
self.y = asarray(y, dtype=float)

def draw(self):
drawing_tool.plot_curve(

self.x, self.y,
self.linestyle, self.linewidth, self.linecolor, ...)

def set_linewidth(self, width):
self.linewidth = width

det set_linestyle(self, style):
self.linestyle = style

...

Compound Geometric Objects. The simple classes Line, Arc, and Circle

could can the geometric shape through just one Curve object. More
complicated shapes are built from instances of various subclasses of
Shape. Classes used for professional drawings soon get quite complex
in composition and have a lot of geometric details, so here we prefer
to make a very simple composition: the already drawn vehicle from
Figure 9.7. That is, instead of composing the drawing in a Python
program as shown above, we make a subclass Vehicle0 in the Shape

hierarchy for doing the same thing.
The Shape hierarchy is found in the pysketcher package, so to use

these classes or derive a new one, we need to import pysketcher. The

9.4 Class Hierarchy for Making Drawings 527

constructor of class Vehicle0 performs approximately the same state-
ments as in the example program we developed for making the drawing
in Figure 9.7.

from pysketcher import *

class Vehicle0(Shape):
def __init__(self, w_1, R, L, H):

wheel1 = Circle(center=(w_1, R), radius=R)
wheel2 = wheel1.copy()
wheel2.translate((L,0))

under = Rectangle(lower_left_corner=(w_1-2*R, 2*R),
width=2*R + L + 2*R, height=H)

over = Rectangle(lower_left_corner=(w_1, 2*R + H),
width=2.5*R, height=1.25*H)

wheels = Composition(
{’wheel1’: wheel1, ’wheel2’: wheel2})

body = Composition(
{’under’: under, ’over’: over})

vehicle = Composition({’wheels’: wheels, ’body’: body})
xmax = w_1 + 2*L + 3*R
ground = Wall(x=[R, xmax], y=[0, 0], thickness=-0.3*R)

self.shapes = {’vehicle’: vehicle, ’ground’: ground}

Any subclass of Shape must define the shapes attribute, otherwise
the inherited draw method (and a lot of other methods too) will not
work.

The painting of the vehicle, as shown in the right part of Figure 9.10,
could in class Vehicle0 be offered by a method:

def colorful(self):
wheels = self.shapes[’vehicle’][’wheels’]
wheels.set_filled_curves(’blue’)
wheels.set_linewidth(6)
wheels.set_linecolor(’black’)
under = self.shapes[’vehicle’][’body’][’under’]
under.set_filled_curves(’red’)
over = self.shapes[’vehicle’][’body’][’over’]
over.set_filled_curves(pattern=’/’)
over.set_linewidth(14)

The usage of the class is simple: after having set up an appropriate
coordinate system as previously shown, we can do

vehicle = Vehicle0(w_1, R, L, H)
vehicle.draw()
drawing_tool.display()

and go on the make a painted version by

drawing_tool.erase()
vehicle.colorful()
vehicle.draw()
drawing_tool.display()

A complete code defining and using class Vehicle0 is found in the file
vehicle2.py.

528 9 Object-Oriented Programming

The pysketcher package contains a wide range of classes for vari-
ous geometrical objects, particularly those that are frequently used in
drawings of mechanical systems.

9.4.3 Adding Functionality via Recursion

The really powerful feature of our class hierarchy is that we can add
much functionality to the superclass Shape and to the “bottom” class
Curve, and then all other classes for various types of geometrical shapes
immediately get the new functionality. To explain the idea we may look
at the draw method, which all classes in the Shape hierarchy must have.
The inner workings of the draw method explain the secrets of how a
series of other useful operations on figures can be implemented.

Basic Principles of Recursion. Note that we work with two types of
hierarchies in the present documentation: one Python class hierarchy,
with Shape as superclass, and one object hierarchy of figure elements in
a specific figure. A subclass of Shape stores its figure in the self.shapes
dictionary. This dictionary represents the object hierarchy of figure el-
ements for that class. We want to make one draw call for an instance,
say our class Vehicle0, and then we want this call to be propagated to
all objects that are contained in self.shapes and all is nested subdic-
tionaries. How is this done?

The natural starting point is to call draw for each Shape object in
the self.shapes dictionary:

def draw(self):
for shape in self.shapes:

self.shapes[shape].draw()

This general method can be provided by class Shape and inherited in
subclasses like Vehicle0. Let v be a Vehicle0 instance. Seemingly, a call
v.draw() just calls

v.shapes[’vehicle’].draw()
v.shapes[’ground’].draw()

However, in the former call we call the draw method of a Composition

object whose self.shapes attributed has two elements: wheels and
body. Since class Composition inherits the same draw method, this
method will run through self.shapes and call wheels.draw() and
body.draw(). Now, the wheels object is also a Composition with the
same draw method, which will run through self.shapes, now contain-
ing the wheel1 and wheel2 objects. The wheel1 object is a Circle, so
calling wheel1.draw() calls the draw method in class Circle, but this
is the same draw method as shown above. This method will therefore

9.4 Class Hierarchy for Making Drawings 529

traverse the circle’s shapes dictionary, which we have seen consists of
one Curve element.

The Curve object holds the coordinates to be plotted so here draw

really needs to do something “physical”, namely send the coordinates to
the plotting program. The draw method is outlined in the short listing
of class Curve shown previously.

We can go to any of the other shape objects that appear in the figure
hierarchy and follow their draw calls in the similar way. Every time, a
draw call will invoke a new draw call, until we eventually hit a Curve

object in the “botton” of the figure hierarchy, and then that part of
the figure is really plotted (or more precisely, the coordinates are sent
to a plotting program).

When a method calls itself, such as draw does, the calls are known
as recursive and the programming principle is referred to as recursion.
This technique is very often used to traverse hierarchical structures like
the figure structures we work with here. Even though the hierarchy of
objects building up a figure are of different types, they all inherit the
same drawmethod and therefore exhibit the same behavior with respect
to drawing. Only the Curve object has a different draw method, which
does not lead to more recursion.

Explaining Recursion. Understanding recursion is usually a challenge.
To get a better idea of how recursion works, we have equipped class
Shape with a method recurse which just visits all the objects in the
shapes dictionary and prints out a message for each object. This feature
allows us to trace the execution and see exactly where we are in the
hierarchy and which objects that are visited.

The recurse method is very similar to draw:

def recurse(self, name, indent=0):
print message where we are (name is where we come from)
for shape in self.shapes:

print message about which object to visit
self.shapes[shape].recurse(indent+2, shape)

The indent parameter governs how much the message from this recurse
method is intended. We increase indent by 2 for every level in the
hierarchy, i.e., every row of objects in Figure 9.12. This indentation
makes it easy to see on the printout how far down in the hierarchy we
are.

A typical message written by recurse when name is ’body’ and the
shapes dictionary has the keys ’over’ and ’under’, will be

Composition: body.shapes has entries ’over’, ’under’
call body.shapes["over"].recurse("over", 6)

The number of leading blanks on each line corresponds to the value of
indent. The code printing out such messages looks like

530 9 Object-Oriented Programming

def recurse(self, name, indent=0):
space = ’ ’*indent
print space, ’%s: %s.shapes has entries’ % \

(self.__class__.__name__, name), \
str(list(self.shapes.keys()))[1:-1]

for shape in self.shapes:
print space,
print ’call %s.shapes["%s"].recurse("%s", %d)’ % \

(name, shape, shape, indent+2)
self.shapes[shape].recurse(shape, indent+2)

Let us follow a v.recurse(’vehicle’) call in detail, v being a
Vehicle0 instance. Before looking into the output from recurse, let
us get an overview of the figure hierarchy in the v object (as produced
by print v)

ground
wall

vehicle
body

over
rectangle

under
rectangle

wheels
wheel1

arc
wheel2

arc

The recurse method performs the same kind of traversal of the hier-
archy, but writes out and explains a lot more.

The data structure represented by v.shapes is known as a tree. As in
physical trees, there is a root, here the v.shapes dictionary. A graphical
illustration of the tree (upside down) is shown in Figure 9.12. From the
root there are one or more branches, here two: ground and vehicle. Fol-
lowing the vehicle branch, it has two new branches, body and wheels.
Relationships as in family trees are often used to describe the relations
in object trees too: we say that vehicle is the parent of body and that
body is a child of vehicle. The term node is also often used to de-
scribe an element in a tree. A node may have several other nodes as
descendants.

Recursion is the principal programming technique to traverse tree
structures. Any object in the tree can be viewed as a root of a subtree.
For example, wheels is the root of a subtree that branches into wheel1

and wheel2. So when processing an object in the tree, we imagine we
process the root and then recurse into a subtree, but the first object we
recurse into can be viewed as the root of the subtree, so the processing
procedure of the parent object can be repeated.

A recommended next step is to simulate the recurse method by
hand and carefully check that what happens in the visits to recurse

is consistent with the output listed below. Although tedious, this is a
major exercise that guaranteed will help to demystify recursion.

9.4 Class Hierarchy for Making Drawings 531

Fig. 9.12 Hierarchy of figure elements in an instance of class Vehicle0.

A part of the printout of v.recurse(’vehicle’) looks like

Vehicle0: vehicle.shapes has entries ’ground’, ’vehicle’
call vehicle.shapes["ground"].recurse("ground", 2)
Wall: ground.shapes has entries ’wall’
call ground.shapes["wall"].recurse("wall", 4)
reached "bottom" object Curve

call vehicle.shapes["vehicle"].recurse("vehicle", 2)
Composition: vehicle.shapes has entries ’body’, ’wheels’
call vehicle.shapes["body"].recurse("body", 4)
Composition: body.shapes has entries ’over’, ’under’
call body.shapes["over"].recurse("over", 6)
Rectangle: over.shapes has entries ’rectangle’
call over.shapes["rectangle"].recurse("rectangle", 8)
reached "bottom" object Curve

call body.shapes["under"].recurse("under", 6)
Rectangle: under.shapes has entries ’rectangle’
call under.shapes["rectangle"].recurse("rectangle", 8)
reached "bottom" object Curve

...

This example should clearly demonstrate the principle that we can start
at any object in the tree and do a recursive set of calls with that object
as root.

9.4.4 Scaling, Translating, and Rotating a Figure

With recursion, as explained in the previous section, we can within
minutes equip all classes in the Shape hierarchy, both present and future
ones, with the ability to scale the figure, translate it, or rotate it. This
added functionality requires only a few lines of code.

Scaling. We start with the simplest of the three geometric transfor-
mations, namely scaling. For a Curve instance containing a set of n

532 9 Object-Oriented Programming

coordinates (xi, yi) that make up a curve, scaling by a factor a means
that we multiply all the x and y coordinates by a:

xi ← axi, yi ← ayi, i = 0, . . . , n− 1.

Here we apply the arrow as an assignment operator. The corresponding
Python implementation in class Curve reads

class Curve:
...
def scale(self, factor):

self.x = factor*self.x
self.y = factor*self.y

Note here that self.x and self.y are Numerical Python arrays, so that
multiplication by a scalar number factor is a vectorized operation.

An even more efficient implementation is to make use of in-place
multiplication in the arrays,

class Curve:
...
def scale(self, factor):

self.x *= factor
self.y *= factor

as this saves the creation of temporary arrays like factor*self.x.
In an instance of a subclass of Shape, the meaning of a method scale

is to run through all objects in the dictionary shapes and ask each ob-
ject to scale itself. This is the same delegation of actions to subclass
instances as we do in the draw (or recurse) method. All objects, ex-
cept Curve instances, can share the same implementation of the scale

method. Therefore, we place the scale method in the superclass Shape
such that all subclasses inherit the method. Since scale and draw are
so similar, we can easily implement the scale method in class Shape by
copying and editing the draw method:

class Shape:
...
def scale(self, factor):

for shape in self.shapes:
self.shapes[shape].scale(factor)

This is all we have to do in order to equip all subclasses of Shape with
scaling functionality! Any piece of the figure will scale itself, in the
same manner as it can draw itself.

Translation. A set of coordinates (xi, yi) can be translated v0 units in
the x direction and v1 units in the y direction using the formulas

xi ← xi + v0, yi ← yi + v1, i = 0, . . . , n− 1.

9.4 Class Hierarchy for Making Drawings 533

The natural specification of the translation is in terms of the vector
v = (v0, v1). The corresponding Python implementation in class Curve

becomes

class Curve:
...
def translate(self, v):

self.x += v[0]
self.y += v[1]

The translation operation for a shape object is very similar to the
scaling and drawing operations. This means that we can implement a
common method translate in the superclass Shape. The code is parallel
to the scale method:

class Shape:
....
def translate(self, v):

for shape in self.shapes:
self.shapes[shape].translate(v)

Rotation. Rotating a figure is more complicated than scaling and trans-
lating. A counter clockwise rotation of θ degrees for a set of coordinates
(xi, yi) is given by

x̄i ← xi cos θ − yi sin θ,

ȳi ← xi sin θ + yi cos θ.

This rotation is performed around the origin. If we want the figure to
be rotated with respect to a general point (x, y), we need to extend the
formulas above:

x̄i ← x+ (xi − x) cos θ − (yi − y) sin θ,

ȳi ← y + (xi − x) sin θ + (yi − y) cos θ.

The Python implementation in class Curve, assuming that θ is given in
degrees and not in radians, becomes

def rotate(self, angle, center):
angle = radians(angle)
x, y = center
c = cos(angle); s = sin(angle)
xnew = x + (self.x - x)*c - (self.y - y)*s
ynew = y + (self.x - x)*s + (self.y - y)*c
self.x = xnew
self.y = ynew

The rotate method in class Shape follows the principle of the draw,
scale, and translate methods.

We have already seen the rotate method in action when animating
the rolling wheel at the end of Chapter 9.4.1.

534 9 Object-Oriented Programming

9.5 Classes for DNA Analysis

We shall here exemplify the use of classes for performing DNA analysis
as explained in Chapters 3.3.1, 6.6.1, 6.6.2, 6.6.3, 6.6.4, 6.6.5, and 8.3.4.
Basically, we create a class Gene to represent a DNA sequence (string)
and a class Region to represent a subsequence (substring), typically an
exon or intron.

9.5.1 Class for Regions

The class for representing a region of a DNA string is quite simple:

class Region:
def __init__(self, dna, start, end):

self._region = dna[start:end]

def get_region(self):
return self._region

def __len__(self):
return len(self._region)

def __eq__(self, other):
"""Check if two Region instances are equal."""
return self._region == other._region

def __add__(self, other):
"""Add Region instances: self + other"""
return self._region + other._region

def __iadd__(self, other):
"""Increment Region instance: self += other"""
self._region += other._region
return self

Besides storing the substring and giving access to it through
get_region, we have also included the possibility to

• say len(r) if r is a Region instance
• check if two Region instances are equal
• write r1 + r2 for two instances r1 and r2 of type Region

• perform r1 += r2

The latter two operations are convenient for making one large string
out of all exon or intron regions.

9.5.2 Class for Genes

The class for gene will be longer and more complex than class Region.
We already have a bunch of functions performing various types of anal-
ysis. The idea of the Gene class is that these functions are methods in the
class operating on the DNA string and the exon regions stored in the
class. Rather than recoding all the functions as methods in the class we

9.5 Classes for DNA Analysis 535

shall just let the class “wrap” the functions. That is, the class methods
call up the functions we already have. This approach has two advan-
tages: users can either choose the function-based or the class-based
interface, and the programmer can reuse all the ready-made functions
when implementing the class-based interface.

The selection of functions include

• generate_string for generating a random string from some alphabet
• download and read_dnafile (version read_dnafile_v1) for download-
ing data from the Internet and reading from file

• read_exon_regions (version read_exon_regions_v2) for reading exon
regions from file

• tofile_with_line_sep (version tofile_with_line_sep_v2) for writ-
ing strings to file

• read_genetic_code (version read_genetic_code_v2) for loading the
mapping from triplet codes to 1-letter symbols for amino acids

• get_base_frequencies (version get_base_frequencies_v2) for find-
ing frequencies of each base

• format_frequencies for formatting base frequencies with two deci-
mals

• create_mRNA for computing an mRNA string from DNA and exon
regions

• mutate for mutating a base at a random position
• create_markov_chain, transition, and mutate_via_markov_chain for
mutating a base at a random position according to randomly gen-
erated transition probabilities

• create_protein_fixed for proper creation of a protein sequence
(string)

The set of plain functions for DNA analysis is found in the file
dna_functions.py, while dna_classes.py contains the implementations
of classes Gene and Region.

Basic Features of class Gene. Class Gene is supposed to hold the DNA
sequence and the associated exon regions. A simple constructor expects
the exon regions to be specified as a list of (start, end) tuples indicating
the start and end of each region:

class Gene:
def __init__(self, dna, exon_regions):

self._dna = dna

self._exon_regions = exon_regions
self._exons = []
for start, end in exon_regions:

self._exons.append(Region(dna, start, end))

Compute the introns (regions between the exons)
self._introns = []
prev_end = 0
for start, end in exon_regions:

536 9 Object-Oriented Programming

self._introns.append(Region(dna, prev_end, start))
prev_end = end

self._introns.append(Region(dna, end, len(dna)))

The methods in class Gene are trivial to implement when we already
have the functionality in stand-alone functions. Here are a few examples
on methods:

from dna_functions import *

class Gene:
...

def write(self, filename, chars_per_line=70):
"""Write DNA sequence to file with name filename."""
tofile_with_line_sep(self._dna, filename, chars_per_line)

def count(self, base):
"""Return no of occurrences of base in DNA."""
return self._dna.count(base)

def get_base_frequencies(self):
"""Return dict of base frequencies in DNA."""
return get_base_frequencies(self._dna)

def format_base_frequencies(self):
"""Return base frequencies formatted with two decimals."""
return format_frequencies(self.get_base_frequencies())

Flexible Constructor. The constructor can be made more flexible. First,
the exon regions may not be known so we should allow None as value
and in fact use that as default value. Second, exon regions at the start
and/or end of the DNA string will lead to empty intron Region objects
so a proper test on nonzero length of the introns must be inserted.
Third, the data for the DNA string and the exon regions can either be
passed as arguments or downloaded and read from file. Two different
initializations of Gene objects are therefore

g1 = Gene(dna, exon_regions) # user has read data from file
g2 = Gene((urlbase, dna_file), (urlbase, exon_file)) # download

One can pass None for urlbase if the files are already at the computer.
The flexible constructor has, not surprisingly, much longer code than
the first version. The implementation illustrates well how the concept
of overloaded constructors in other languages, like C++ and Java, are
dealt with in Python (overloaded constructors take different types of
arguments to initialize an instance):

class Gene:
def __init__(self, dna, exon_regions):

"""
dna: string or (urlbase,filename) tuple
exon_regions: None, list of (start,end) tuples

or (urlbase,filename) tuple
In case of (urlbase,filename) tuple the file
is downloaded and read.
"""

9.5 Classes for DNA Analysis 537

if isinstance(dna, (list,tuple)) and \
len(dna) == 2 and isinstance(dna[0], str) and \
isinstance(dna[1], str):
download(urlbase=dna[0], filename=dna[1])
dna = read_dnafile(dna[1])

elif isinstance(dna, str):
pass # ok type (the other possibility)

else:
raise TypeError(

’dna=%s %s is not string or (urlbase,filename) ’\
’tuple’ % (dna, type(dna)))

self._dna = dna

er = exon_regions
if er is None:

self._exons = None
self._introns = None

else:
if isinstance(er, (list,tuple)) and \

len(er) == 2 and isinstance(er[0], str) and \
isinstance(er[1], str):
download(urlbase=er[0], filename=er[1])
exon_regions = read_exon_regions(er[1])

elif isinstance(er, (list,tuple)) and \
isinstance(er[0], (list,tuple)) and \
isinstance(er[0][0], int) and \
isinstance(er[0][1], int):
pass # ok type (the other possibility)

else:
raise TypeError(

’exon_regions=%s %s is not list of (int,int) ’
’or (urlbase,filename) tuple’ % (er, type(era)))

self._exon_regions = exon_regions
self._exons = []
for start, end in exon_regions:

self._exons.append(Region(dna, start, end))

Compute the introns (regions between the exons)
self._introns = []
prev_end = 0
for start, end in exon_regions:

if start - prev_end > 0:
self._introns.append(

Region(dna, prev_end, start))
prev_end = end

if len(dna) - end > 0:
self._introns.append(Region(dna, end, len(dna)))

Note that we perform quite detailed testing of the object type of the
data structures supplied as the dna and exon_regions arguments. This
can well be done to ensure safe use also when there is only one allowed
type per argument.

Other Methods. A create_mRNA method, returning the mRNA as a
string, can be coded as

def create_mRNA(self):
"""Return string for mRNA."""
if self._exons is not None:

return create_mRNA(self._dna, self._exon_regions)
else:

538 9 Object-Oriented Programming

raise ValueError(
’Cannot create mRNA for gene with no exon regions’)

Also here we rely on calling an already implemented function, but
include some testing whether asking for mRNA is appropriate.

Methods for creating a mutated gene are also included:

def mutate_pos(self, pos, base):
"""Return Gene with a mutation to base at position pos."""
dna = self._dna[:pos] + base + self._dna[pos+1:]
return Gene(dna, self._exon_regions)

def mutate_random(self, n=1):
"""
Return Gene with n mutations at a random position.
All mutations are equally probable.
"""
mutated_dna = self._dna
for i in range(n):

mutated_dna = mutate(mutated_dna)
return Gene(mutated_dna, self._exon_regions)

def mutate_via_markov_chain(markov_chain):
"""
Return Gene with a mutation at a random position.
Mutation into new base based on transition
probabilities in the markov_chain dict of dicts.
"""
mutated_dna = mutate_via_markov_chain(

self._dna, markov_chain)
return Gene(mutated_dna, self._exon_regions)

Some “get” methods that give access to the fundamental attributes
of the class can be included:

def get_dna(self):
return self._dna

def get_exons(self):
return self._exons

def get_introns(self):
return self._introns

Alternatively, one could access the attributes directly: gene._dna,
gene._exons, etc. In that case we should remove the leading underscore
as this underscore signals that these attributes are considered “pro-
tected”, i.e., not to be directly accessed by the user. The “protection”
in “get” functions is more mental than actual since we anyway give the
data structures in the hands of the user and she can do whatever she
wants (even delete them).

Special methods for the length of a gene, adding genes, checking if
two genes are identical, and printing of compact gene information are
relevant to add:

def __len__(self):
return len(self._dna)

9.5 Classes for DNA Analysis 539

def __add__(self, other):
"""self + other: append other to self (DNA string)."""
if self._exons is None and other._exons is None:

return Gene(self._dna + other._dna, None)
else:

raise ValueError(
’cannot do Gene + Gene with exon regions’)

def __iadd__(self, other):
"""self += other: append other to self (DNA string)."""
if self._exons is None and other._exons is None:

self._dna += other._dna
return self

else:
raise ValueError(

’cannot do Gene += Gene with exon regions’)

def __eq__(self, other):
"""Check if two Gene instances are equal."""
return self._dna == other._dna and \

self._exons == other._exons

def __str__(self):
"""Pretty print (condensed info)."""
s = ’Gene: ’ + self._dna[:6] + ’...’ + self._dna[-6:] + \

’, length=%d’ % len(self._dna)
if self._exons is not None:

s += ’, %d exon regions’ % len(self._exons)
return s

Here is an interactive session demonstrating how we can work with
class Gene objects:

>>> from dna_classes import Gene
>>> g1 = Gene(’ATCCGTAATTGCGCA’, [(2,4), (6,9)])
>>> print g1
Gene: ATCCGT...TGCGCA, length=15, 2 exon regions
>>> g2 = g1.mutate_random(10)
>>> print g2
Gene: ATCCGT...TGTGCT, length=15, 2 exon regions
>>> g1 == g2
False
>>> g1 += g2 # expect exception
Traceback (most recent call last):
...
ValueError: cannot do Gene += Gene with exon regions
>>> g1b = Gene(g1.get_dna(), None)
>>> g2b = Gene(g2.get_dna(), None)
>>> print g1b
Gene: ATCCGT...TGCGCA, length=15
>>> g3 = g1b + g2b
>>> g3.format_base_frequencies()
’A: 0.17, C: 0.23, T: 0.33, G: 0.27’

9.5.3 Subclasses

There are two fundamental types of genes: the most common type
which codes for proteins (indirectly via mRNA) and the type which
only codes for RNA (without being further processed to proteins). The
product of a gene, mRNA or protein, depends on the type of gene we
have. It is then natural to create two subclasses for the two types of

540 9 Object-Oriented Programming

gene and have a method get_product which returns the product of that
type of gene.

The get_product method can be declared in class Gene:

def get_product(self):
raise NotImplementedError(

’Subclass %s must implement get_product’ % \
self.__class__.__name__)

The exception here will be triggered by an instance (self) of any sub-
class that just inherits get_product from class Gene without implement-
ing a subclass version of this method.

The two subclasses of Gene may take this simple form:

class RNACodingGene(Gene):
def get_product(self):

return self.create_mRNA()

class ProteinCodingGene(Gene):
def __init__(self, dna, exon_positions):

Gene.__init__(self, dna, exon_positions)
urlbase = ’http://hplgit.github.com/bioinf-py/data/’
genetic_code_file = ’genetic_code.tsv’
download(urlbase, genetic_code_file)
code = read_genetic_code(genetic_code_file)
self.genetic_code = code

def get_product(self):
return create_protein_fixed(self.create_mRNA(),

self.genetic_code)

A demonstration of how to load the lactase gene and create the
lactase protein is done with

def _test():
urlbase = ’http://hplgit.github.com/bioinf-py/data/’
lactase_gene_file = ’lactase_gene.txt’
lactase_exon_file = ’lactase_exon.tsv’
lactase_gene = ProteinCodingGene(

(urlbase, lactase_gene_file),
(urlbase, lactase_exon_file))

protein = lactase_gene.get_product()
tofile_with_line_sep(protein, ’output’, ’lactase_protein.txt’)

Now, envision that the Lactase gene would instead have been an
RNA-coding gene. The only necessary changes would have been to
exchange ProteinCodingGene by RNACodingGene in the assignment to
lactase_gene, and one would get out a final RNA product instead of a
protein.

Acknowledgments. The bioinformatics examples in Chapters 3.3, 6.6,
8.3.4, and 9.5 were prepared by Geir Kjetil Sandve with help from
Sveinung Gundersen, Ksenia Khelik, Halfdan Rydbeck, and Kai Tren-
gereid.

9.6 Summary 541

9.6 Summary

9.6.1 Chapter Topics

A subclass inherits everything from its superclass, both attributes and
methods. The subclass can add new attributes, overload methods, and
thereby enrich or restrict functionality of the superclass.

Subclass Example. Consider class Gravity from Chapter 7.7.1 for rep-
resenting the gravity force GMm/r2 between two masses m and M
being a distance r apart. Suppose we want to make a class for the elec-
tric force between two charges q1 and q2, being a distance r apart in a
medium with permittivity ε0 is Gq1q2/r

2, where G−1 = 4πε0. We use
the approximate value G = 8.99 · 109 Nm2/C2 (C is the Coulomb unit
used to measure electric charges such as q1 and q2). Since the electric
force is similar to the gravity force, we can easily implement the elec-
tric force as a subclass of Gravity. The implementation just needs to
redefine the value of G!

class CoulombsLaw(Gravity):
def __init__(self, q1, q2):

Gravity.__init__(self, q1, q2)
self.G = 8.99E9

We can now call the inherited force(r) method to compute the electric
force and the visualize method to make a plot of the force:

c = CoulombsLaw(1E-6, -2E-6)
print ’Electric force:’, c.force(0.1)
c.visualize(0.01, 0.2)

However, the plot method inherited from class Gravity has an inappro-
priate title referring to “Gravity force” and the masses m and M . An
easy fix could be to have the plot title as an attribute set in the con-
structor. The subclass can then override the contents of this attribute,
as it overrides self.G. It is quite common to discover that a class needs
adjustments if it is to be used as superclass.

Subclassing in General. The typical sketch of creating a subclass goes
as follows:

class SuperClass:
def __init__(self, p, q):

self.p, self.q = p, q

def where(self):
print ’In superclass’, self.__class__.__name__

def compute(self, x):
self.where()
return self.p*x + self.q

542 9 Object-Oriented Programming

class SubClass(SuperClass):
def __init__(self, p, q, a):

SuperClass.__init__(self, p, q)
self.a = a

def where(self):
print ’In subclass’, self.__class__.__name__

def compute(self, x):
self.where()
return SuperClass.compute(self, x) + self.a*x**2

This example shows how a subclass extends a superclass with one at-
tribute (a). The subclass’ compute method calls the corresponding su-
perclass method, as well as the overloaded method where. Let us invoke
the compute method through superclass and subclass instances:

>>> super = SuperClass(1, 2)
>>> sub = SubClass(1, 2, 3)
>>> v1 = super.compute(0)
In superclass SuperClass
>>> v2 = sub.compute(0)
In subclass SubClass
In subclass SubClass

Observe that in the subclass sub, method compute calls self.where,
which translates to the where method in SubClass. Then the compute

method in SuperClass is invoked, and this method also makes a
self.where call, which is a call to SubClass’ where method (think of
what self is here, it is sub, so it is natural that we get where in the
subclass (sub.where) and not where in the superclass part of sub).

In this example, classes SuperClass and SubClass constitute a class
hierarchy. Class SubClass inherits the attributes p and q from its su-
perclass, and overrides the methods where and compute.

9.6.2 Example: Input Data Reader

The summarizing example of this chapter concerns a class hierarchy
for simplifying reading input data into programs. Input data may come
from several different sources: the command line, a file, or from a dia-
log with the user, either of input form or in a graphical user interface
(GUI). Therefore it makes sense to create a class hierarchy where sub-
classes are specialized to read from different sources and where the
common code is placed in a superclass. The resulting tool will make
it easy for you to let your programs read from many different input
sources by adding just a few lines.

Problem. Let us motivate the problem by a case where we want to
write a program for dumping n function values of f(x) to a file for
x ∈ [a, b]. The core part of the program typically reads

9.6 Summary 543

outfile = open(filename, ’w’)
import numpy as np
for x in np.linspace(a, b, n):

outfile.write(’%12g %12g\n’ % (x, f(x)))
outfile.close()

Our purpose is to read data into the variables a, b, n, filename, and f.
For the latter we want to specify a formula and use the StringFunction

tool (Chapter 4.1.4) to make the function f:

from scitools.StringFunction import StringFunction
f = StringFunction(formula)

How can we read a, b, n, formula, and filename conveniently into the
program?

The basic idea is that we place the input data in a dictionary, and
create a tool that can update this dictionary from sources like the
command line, a file, a GUI, etc. Our dictionary is then

p = dict(formula=’x+1’, a=0, b=1, n=2, filename=’tmp.dat’)

This dictionary specifies the names of the input parameters to the
program and the default values of these parameters.

Using the tool is a matter of feeding p into the constructor of a
subclass in the tools’ class hierarchy and extract the parameters into,
for example, distinct variables:

inp = Subclassname(p)
a, b, filename, formula, n = inp.get_all()

Depending on what we write as Subclassname, the five variables can be
read from the command line, the terminal window, a file, or a GUI. The
task now is to implement a class hierarchy to facilitate the described
flexible reading of input data.

Solution. We first create a very simple superclass ReadInput. Its main
purpose is to store the parameter dictionary as an attribute, provide a
method get to extract single values, and a method get_all to extract
all parameters into distinct variables:

class ReadInput:
def __init__(self, parameters):

self.p = parameters

def get(self, parameter_name):
return self.p[parameter_name]

def get_all(self):
return [self.p[name] for name in sorted(self.p)]

def __str__(self):
import pprint
return pprint.pformat(self.p)

544 9 Object-Oriented Programming

Note that we in the get_all method must sort the keys in self.p such
that the list of returned variables is well defined. In the calling program
we can then list variables in the same order as the alphabetic order of
the parameter names, for example:

a, b, filename, formula, n = inp.get_all()

The __str__ method applies the pprint module to get a pretty print
of all the parameter names and their values.

Class ReadInput cannot read from any source – subclasses are sup-
posed to do this. The forthcoming text describes various types of sub-
classes for various types of reading input.

Prompting the User. The perhaps simplest way of getting data into
a program is to use raw_input. We then prompt the user with a text
Give name: and get an appropriate object back (recall that strings must
be enclosed in quotes). The subclass PromptUser for doing this then
reads

class PromptUser(ReadInput):
def __init__(self, parameters):

ReadInput.__init__(self, parameters)
self._prompt_user()

def _prompt_user(self):
for name in self.p:

self.p[name] = eval(raw_input("Give " + name + ": "))

Note the underscore in _prompt_user: the underscore signifies that
this is a “private” method in the PromptUser class, not intended to be
called by users of the class.

There is a major difficulty with using eval on the input from the user.
When the input is intended to be a string object, such as a filename,
say tmp.inp, the program will perform the operation eval(tmp.inp),
which leads to an exception because tmp.inp is treated as a variable
inp in a module tmp and not as the string ’tmp.inp’. To solve this
problem, we use the str2obj function from the scitools.misc mod-
ule. This function will return the right Python object also in the case
where the argument should result in a string object (see Chapter 4.6.1
for some information about str2obj). The bottom line is that str2obj
acts as a safer eval(raw_input(...)) call. The key assignment in class
PromptUser is then changed to

self.p[name] = str2obj(raw_input("Give " + name + ": "))

Reading from File. We can also place name = value commands in a file
and load this information into the dictionary self.p. An example of a
file can be

9.6 Summary 545

formula = sin(x) + cos(x)
filename = tmp.dat
a = 0
b = 1

In this example we have omitted n, so we rely on its default value.
A problem is how to give the filename. The easy way out of this

problem is to read from standard input, and just redirect standard
input from a file when we run the program. For example, if the filename
is tmp.inp, we run the program as follows in a terminal window6

Terminal

Terminal> python myprog.py < tmp.inp

To interpret the contents of the file, we read line by line, split each line
with respect to =, use the left-hand side as the parameter name and
the right-hand side as the corresponding value. It is important to strip
away unnecessary blanks in the name and value. The complete class
now reads

class ReadInputFile(ReadInput):
def __init__(self, parameters):

ReadInput.__init__(self, parameters)
self._read_file()

def _read_file(self, infile=sys.stdin):
for line in infile:

if "=" in line:
name, value = line.split("=")
self.p[name.strip()] = str2obj(value.strip())

A nice feature with reading from standard input is that if we do not
redirect standard input to a file, the program will prompt the user in
the terminal window, where the user can give commands of the type
name = value for setting selected input data. A Ctrl-D is needed to
terminate the interactive session in the terminal window and continue
execution of the program.

Reading from the Command Line. For input from the command line
we assume that parameters and values are given as option-value pairs,
e.g., as in

--a 1 --b 10 --n 101 --formula "sin(x) + cos(x)"

We apply the argparse module (Chapter 4.2.4) to parse the command-
line arguments. The list of legal option names must be constructed
from the list of keys in the self.p dictionary. The complete class takes
the form

6 The redirection of standard input from a file does not work in IPython so we are in this

case forced to run the program in a terminal window.

546 9 Object-Oriented Programming

class ReadCommandLine(ReadInput):
def __init__(self, parameters):

self.sys_argv = sys.argv[1:] # copy
ReadInput.__init__(self, parameters)
self._read_command_line()

def _read_command_line(self):
parser = argparse.ArgumentParser()
Make argparse list of options
for name in self.p:

Default type: str
parser.add_argument(’--’+name, default=self.p[name])

args = parser.parse_args()
for name in self.p:

self.p[name] = str2obj(getattr(args, name))

We could specify the type of a parameter as type(self.p[name])

or self.p[name].__class__, but if a float parameter has been given
an integer default value, the type will be int and argparse will not
accept a decimal number as input. Our more general strategy is to
drop specifying the type, which implies that all parameters in the args

object become strings. We then use the str2obj function to convert
to the right type, a technique that is used throughout the ReadInput

module.

Reading from a GUI. We can with a little extra effort also make a
graphical user interface (GUI) for reading the input data. An example
of a user interface is displayed in Figure 9.13. Since the technicalities of
the implementation is beyond the scope of this book, we do not show
the subclass GUI that creates the GUI and loads the user input into the
self.p dictionary.

Fig. 9.13 Screen dump of a graphical user interface to read input data into a program
(class GUI in the ReadInput hierarchy).

More Flexibility in the Superclass. Some extra flexibility can easily be
added to the get method in the superclass. Say we want to extract a
variable number of parameters:

a, b, n = inp.get(’a’, ’b’, ’n’) # 3 variables
n = inp.get(’n’) # 1 variable

9.6 Summary 547

The key to this extension is to use a variable number of arguments as
explained in Appendix H.5.1:

class ReadInput:
...
def get(self, *parameter_names):

if len(parameter_names) == 1:
return self.p[parameter_names[0]]

else:
return [self.p[name] for name in parameter_names]

Demonstrating the Tool. Let us show how we can use the classes in the
ReadInput hierarchy. We apply the motivating example described ear-
lier. The name of the program is demo_ReadInput.py. As first command-
line argument it takes the name of the input source, given as the name
of a subclass in the ReadInput hierarchy. The code for loading input
data from any of the sources supported by the ReadInput hierarchy
goes as follows:

p = dict(formula=’x+1’, a=0, b=1, n=2, filename=’tmp.dat’)
from ReadInput import *
input_reader = eval(sys.argv[1]) # PromptUser, ReadInputFile, ...
del sys.argv[1] # otherwise argparse don’t like our extra option
inp = input_reader(p)
a, b, filename, formula, n = inp.get_all()
print inp

Note how convenient eval is to automatically create the right subclass
for reading input data.

Our first try on running this program applies the PromptUser class:

Terminal

demo_ReadInput.py PromptUser
Give a: 0
Give formula: sin(x) + cos(x)
Give b: 10
Give filename: function_data
Give n: 101
{’a’: 0,
’b’: 10,
’filename’: ’function_data’,
’formula’: ’sin(x) + cos(x)’,
’n’: 101}

The next example reads data from a file tmp.inp with the same
contents as shown under the Reading from File paragraph above7.

Terminal

demo_ReadInput.py ReadFileInput < tmp.inp
{’a’: 0, ’b’: 1, ’filename’: ’tmp.dat’,
’formula’: ’sin(x) + cos(x)’, ’n’: 2}

7 This command with redirection from file must be run from a standard terminal window,

not in an interactive IPython session.

548 9 Object-Oriented Programming

We can also drop the redirection of standard input to a file, and
instead run an interactive session in IPython or the terminal window:

Terminal

demo_ReadInput.py ReadFileInput
n = 101
filename = myfunction_data_file.dat
^D
{’a’: 0,
’b’: 1,
’filename’: ’myfunction_data_file.dat’,
’formula’: ’x+1’,
’n’: 101}

Note that Ctrl-D is needed to end the interactive session with the user
and continue program execution.

Command-line arguments can also be specified:

Terminal

demo_ReadInput.py ReadCommandLine \
--a -1 --b 1 --formula "sin(x) + cos(x)"

{’a’: -1, ’b’: 1, ’filename’: ’tmp.dat’,
’formula’: ’sin(x) + cos(x)’, ’n’: 2}

Finally, we can run the program with a GUI,

Terminal

demo_ReadInput.py GUI
{’a’: -1, ’b’: 10, ’filename’: ’tmp.dat’,
’formula’: ’x+1’, ’n’: 2}

The GUI is shown in Figure 9.13.
Fortunately, it is now quite obvious how to apply the ReadInput hi-

erarchy of classes in your own programs to simplify input. Especially
in applications with a large number of parameters one can initially
define these in a dictionary and then automatically create quite com-
prehensive user interfaces where the user can specify only some subset
of the parameters (if the default values for the rest of the parameters
are suitable).

9.7 Exercises

Exercise 9.1. Demonstrate the magic of inheritance.
Consider class Line from Chapter 9.1.1 and a subclass Parabola0

defined as

class Parabola0(Line):
pass

That is, class Parabola0 does not have any own code, but it inherits
from class Line. Demonstrate in a program or interactive session, using

9.7 Exercises 549

methods from Chapter 7.5.5, that an instance of class Parabola0 con-
tains everything (i.e., all attributes and methods) that an instance of
class Line contains. Name of program file: dir_subclass.py. �

Exercise 9.2. Inherit from classes in Ch. 9.1.
The task in this exercise is to make a class Cubic for cubic functions

c3x
3 + c2x

2 + c1x+ c0

with a call operator and a table method as in classes Line and Parabola

from Chapter 9.1. Implement class Cubic by inheriting from class
Parabola, and call up functionality in class Parabola in the same way
as class Parabola calls up functionality in class Line.

Make a similar class Poly4 for 4-th degree polynomials

c4x
4 + c3x

3 + c2x
2 + c1x+ c0

by inheriting from class Cubic. Insert print statements in all the
__call__ to help following the program flow. Evaluate cubic and a
4-th degree polynomial at a point, and observe the printouts from all
the superclasses. Name of program file: Cubic_Poly4.py. �

Exercise 9.3. Inherit more from classes in Ch. 9.1.
Implement a class for the function f(x) = A sin(wx) + ax2 + bx+ c.

The class should have a call operator for evaluating the function for
some argument x, and a constructor that takes the function parame-
ters A, w, a, b, and c as arguments. Also a table method as in classes
Line and Parabola should be present. Implement the class by deriv-
ing it from class Parabola and call up functionality already imple-
mented in class Parabola whenever possible. Name of program file:
sin_plus_quadratic.py. �

Exercise 9.4. Reverse the class hierarchy from Ch. 9.1.
Let class Polynomial from Chapter 7.3.7 be a superclass and imple-

ment class Parabola as a subclass. The constructor in class Parabola

should take the three coefficients in the parabola as separate argu-
ments. Try to reuse as much code as possible from the superclass in
the subclass. Implement class Line as a subclass specialization of class
Parabola.

Which class design do you prefer – class Line as a subclass of
Parabola and Polynomial, or Line as a superclass with extensions in
subclasses? Name of program file: Polynomial_hier.py. �

Exercise 9.5. Make circle a subclass of an ellipse.
Chapter 7.2.3 presents class Circle. Make a similar class Ellipse

for representing an ellipse. Then create a new class Circle that is a
subclass of Ellipse. Name of program file: Ellipse_Circle.py. �

550 9 Object-Oriented Programming

Exercise 9.6. Make super- and subclass for a point.
A point (x, y) in the plane can be represented by a class:

class Point:
def __init__(self, x, y):

self.x, self.y = x, y

def __str__(self):
return ’(%g, %g)’ % (self.x, self.y)

We can extend the Point class to also contain the representation of the
point in polar coordinates. To this end, create a subclass PolarPoint

whose constructor takes the polar representation of a point, (r, θ), as
arguments. Store r and θ as attributes and call the superclass con-
structor with the corresponding x and y values (recall the relations
x = r cos θ and y = r sin θ between Cartesian and polar coordinates).
Add a __str__ method in class PolarPoint which prints out r, θ, x, and
y. Verify the implementation by initializing three points and printing
these points. Name of program file: PolarPoint.py. �

Exercise 9.7. Modify a function class by subclassing.
Consider the VelocityProfile class from page 350 for computing

the function v(r;β, μ0, n,R) in formula (5.23) on page 252. Suppose we
want to have v explicitly as a function of r and n (this is necessary if
we want to illustrate how the velocity profile, the v(r) curve, varies as
n varies). We would then like to have a class VelocityProfile2 that is
initialized with β, μ0, and R, and that takes r and n as arguments in
the __call__ method. Implement such a class by inheriting from class
VelocityProfile and by calling the __init__ and value methods in the
superclass. It should be possible to try the class out with the following
statements:

v = VelocityProfile2(beta=0.06, mu0=0.02, R=2)
Evaluate v for various n values at r=0
for n in 0.1, 0.2, 1:

print v(0, n)

Name of program file: VelocityProfile2.py. �

Exercise 9.8. Explore the accuracy of difference formulas.
The purpose of this exercise is to investigate the accuracy of the

Backward1, Forward1, Forward3, Central2, Central4, Central6 methods
for the function8

v(x) =
1− ex/μ

1− e1/μ
.

To solve the exercise, modify the src/oo/Diff2_examples.py pro-
gram which produces tables of errors of difference approximations
as discussed at the end of Chapter 9.2.3. Test the approximation

8 This function is discussed more in detail in Exercise 5.40.

9.7 Exercises 551

methods for x = 0, 0.9 and μ = 1, 0.01. Plot the v(x) func-
tion for the two μ values using 1001 points. Name of program file:
boundary_layer_derivative.py. �

Exercise 9.9. Implement a subclass.
Make a subclass Sine1 of class FuncWithDerivatives from Chap-

ter 9.1.7 for the sinx function. Implement the function only, and rely on
the inherited df and ddf methods for computing the derivatives. Make
another subclass Sine2 for sinx where you also implement the df and
ddf methods using analytical expressions for the derivatives. Compare
Sine1 and Sine2 for computing the first- and second-order derivatives
of sinx at two x points. Name of program file: Sine12.py. �

Exercise 9.10. Make classes for numerical differentiation.
Carry out Exercise 7.13. Find the common code in the classes

Derivative, Backward, and Central. Move this code to a superclass,
and let the three mentioned classes be subclasses of this superclass.
Compare the resulting code with the hierarchy shown in Chapter 9.2.1.
Name of program file: numdiff_classes.py. �

Exercise 9.11. Implement a new subclass for differentiation.
A one-sided, three-point, second-order accurate formula for differen-

tiating a function f(x) has the form

f ′(x) ≈ f(x− 2h)− 4f(x− h) + 3f(x)

2h
. (9.17)

Implement this formula in a subclass Backward2 of class Diff from
Chapter 9.2. Compare Backward2 with Backward1 for g(t) = e−t for
t = 0 and h = 2−k for k = 0, 1, . . . , 14 (write out the errors in g′(t)).
Name of program file: Backward2.py. �

Exercise 9.12. Understand if a class can be used recursively.
Suppose you want to compute f ′′(x) of some mathematical function

f(x), and that you apply some class from Chapter 9.2 twice, e.g.,

ddf = Central2(Central2(f))

Will this work? Hint: Follow the program flow, and find out what the
resulting formula will be. Then see if this formula coincides with a
formula you know for approximating f ′′(x). �

Exercise 9.13. Represent people by a class hierarchy.
Classes are often used to model objects in the real world. We may

represent the data about a person in a program by a class Person, con-
taining the person’s name, address, phone number, date of birth, and
nationality. A method __str__ may print the person’s data. Implement
such a class Person.

552 9 Object-Oriented Programming

A worker is a person with a job. In a program, a worker is nat-
urally represented as class Worker derived from class Person, because
a worker is a person, i.e., we have an is-a relationship. Class Worker

extends class Person with additional data, say name of company, com-
pany address, and job phone number. The print functionality must be
modified accordingly. Implement this Worker class.

A scientist is a special kind of a worker. Class Scientist may there-
fore be derived from class Worker. Add data about the scientific dis-
cipline (physics, chemistry, mathematics, computer science, . . .). One
may also add the type of scientist: theoretical, experimental, or com-
putational. The value of such a type attribute should not be restricted
to just one category, since a scientist may be classified as, e.g., both
experimental and computational (i.e., you can represent the value as a
list or tuple). Implement class Scientist.

Researcher, postdoc, and professor are special cases of a scientist.
One can either create classes for these job positions, or one may add an
attribute (position) for this information in class Scientist. We adopt
the former strategy. When, e.g., a researcher is represented by a class
Researcher, no extra data or methods are needed. In Python we can
create such an “empty” class by writing pass (the empty statement)
as the class body:

class Researcher(Scientist):
pass

Finally, make a demo program where you create and print instances of
classes Person, Worker, Scientist, Researcher, Postdoc, and Professor.
Print out the attribute contents of each instance (use the dir function).

Remark. An alternative design is to introduce a class Teacher as a spe-
cial case of Worker and let Professor be both a Teacher and Scientist,
which is natural. This implies that class Professor has two superclasses,
Teacher and Scientist, or equivalently, class Professor inherits from
two superclasses. This is known as multiple inheritance and technically
achieved as follows in Python:

class Professor(Teacher, Scientist):
pass

It is a continuous debate in computer science whether multiple inher-
itance is a good idea or not. One obvious problem9 in the present ex-
ample is that class Professor inherits two names, one via Teacher and
one via Scientist (both these classes inherit from Person). Neither of
the two widely used languages Java and C# allow multiple inheritance.
Nor in this book will we pursue the idea of multiple inheritance further.
Name of program file: Person.py. �
9 It is usually not a technical problem, but more a conceptual problem when the world is

modeled by objects in a program.

9.7 Exercises 553

Exercise 9.14. Add a new class in a class hierarchy.
Add the Monte Carlo integration method from Chapter 8.5.1 as a

subclass in the Integrator hierarchy explained in Chapter 9.3. Im-
port the superclass Integrator from the integrate module in the
file with the new integration class. Test the Monte Carlo integration
class in a case with known analytical solution. Name of program file:
MCint_class.py. �

Exercise 9.15. Change the user interface of a class hierarchy.
All the classes in the Integrator hierarchy from Chapter 9.3 take the

integration limits a and b plus the number of integration points n as
input to the constructor. The integrate method takes the function to
integrate, f(x), as parameter. Another possibility is to feed f(x) to the
constructor and let integrate take a, b, and n as parameters. Make this
change to the integrate.py file with the Integrator hierarchy. Name
of program file: integrate2.py. �

Exercise 9.16. Compute convergence rates of numerical integration
methods.

Most numerical methods have a discretization parameter, call it n,
such that if n increases (or decreases), the method performs better.
Often, the relation between the error in the numerical approximation
(compared with the exact analytical result) can be written as

E = Cnr,

where E is the error, and C and r are constants.
Suppose you have performed an experiment with a numerical method

using discretization parameters n0, n1, . . . , nN . You have computed the
corresponding errors E0, E1, . . . , EN in a test problem with an analyt-
ical solution. One way to estimate r goes as follows. For two successive
experiments we have

Ei−1 = Cnr
i−1

and
Ei = Cnr

i .

Divide the first equation by the second to eliminate C, and then take
the logarithm to solve for r:

r =
ln(Ei−1/Ei)

ln(ni−1/ni)
.

We can compute r for all pairs of two successive experiments. Usually,
the “last r”, corresponding to i = N in the formula above, is the “best”
r value10. Knowing r, we can compute C as ENn−r

N .

10 This guideline is good if the method converges and round-off errors do not influence the

values of Ei. For very large/small n, the computation of r may be unreliable.

554 9 Object-Oriented Programming

Having stored the ni and Ei values in two lists n and E, the following
code snippet computes r and C:

from scitools.convergencerate import convergence_rate
C, r = convergence_rate(n, E)

Construct a test problem for integration where you know the an-
alytical result of the integral. Run different numerical methods (the
Midpoint method, the Trapezoidal method, Simpson’s method, Monte
Carlo integration) with the number of evaluation points n = 2k +1 for
k = 2, . . . , 11, compute corresponding errors, and use the code snippet
above to compute the r value for the different methods in questions.
The higher the absolute error of r is, the faster the method converges
to the exact result as n increases, and the better the method is. Which
is the best and which is the worst method?

Let the program file import methods from the integrate module
and the module with the Monte Carlo integration method from Exer-
cise 9.14. Name of program file: integrators_convergence.py. �
Exercise 9.17. Add common functionality in a class hierarchy.

Suppose you want to use classes in the Integrator hierarchy from
Chapter 9.3 to calculate integrals of the form

F (x) =

∫ x

a
f(t)dt.

Such functions F (x) can be efficiently computed by the method from
Exercise 7.28. Implement this computation of F (x) in an additional
method in the superclass Integrator. Test that the implementation is
correct for f(x) = 2x− 3 for all the implemented integration methods
(the Midpoint, Trapezoidal and Gauss-Legendre methods, as well as
Simpson’s rule, integrate a linear function exactly). Name of program
file: integrate_efficient.py. �
Exercise 9.18. Make a class hierarchy for root finding.

Given a general nonlinear equation f(x) = 0, we want to imple-
ment classes for solving such an equation, and organize the classes in a
class hierarchy. Make classes for three methods: Newton’s method (Ap-
pendix A.1.10), the Bisection method (Chapter 4.6.2), and the Secant
method (Exercise A.14).

It is not obvious how such a hierarchy should be organized. One idea
is to let the superclass store the f(x) function and its derivative f ′(x)
(if provided – if not, use a finite difference approximation for f ′(x)).
A method

def solve(start_values=[0], max_iter=100, tolerance=1E-6):
...

in the superclass can implement a general iteration loop. The
start_values argument is a list of starting values for the algorithm in

9.7 Exercises 555

question: one point for Newton, two for Secant, and an interval [a, b]
containing a root for Bisection. Let solve define a list self.x holding
all the computed approximations. The initial value of self.x is simply
start_values. For the Bisection method, one can use the convention
a, b, c = self.x[-3:], where [a, b] represents the most recently com-
puted interval and c is its midpoint. The solve method can return an
approximate root x, the corresponding f(x) value, a boolean indicator
that is True if |f(x)| is less than the tolerance parameter, and a list
of all the approximations and their f values (i.e., a list of (x, f(x))
tuples).

Do Exercise A.15 using the new class hierarchy. Name of program
file: Rootfinders.py. �

Exercise 9.19. Make a calculus calculator class.
Given a function f(x) defined on a domain [a, b], the purpose of

many mathematical exercises is to sketch the function curve y = f(x),
compute the derivative f ′(x), find local and global extreme points,

and compute the integral
∫ b
a f(x)dx. Make a class CalculusCalculator

which can perform all these actions for any function f(x) using nu-
merical differentiation and integration, and the method explained in
Exercise 7.42 or 7.43 for finding extrema.

Here is an interactive session with the class where we analyze f(x) =
x2e−0.2x sin(2πx) on [0, 6] with a grid (set of x coordinates) of 700
points:

>>> from CalculusCalculator import *
>>> def f(x):
... return x**2*exp(-0.2*x)*sin(2*pi*x)
...
>>> c = CalculusCalculator(f, 0, 6, resolution=700)
>>> c.plot() # plot f
>>> c.plot_derivative() # plot f’
>>> c.extreme_points()

All minima: 0.8052, 1.7736, 2.7636, 3.7584, 4.7556, 5.754, 0
All maxima: 0.3624, 1.284, 2.2668, 3.2604, 4.2564, 5.2548, 6
Global minimum: 5.754
Global maximum: 5.2548

>>> c.integral
-1.7353776102348935
>>> c.df(2.51) # c.df(x) is the derivative of f
-24.056988888465636
>>> c.set_differentiation_method(Central4)
>>> c.df(2.51)
-24.056988832723189
>>> c.set_integration_method(Simpson) # more accurate integration
>>> c.integral
-1.7353857856973565

Design the class such that the above session can be carried out.
Hint: Use classes from the Diff and Integrator hierarchies (Chap-

ters 9.2 and 9.3) for numerical differentiation and integration (with,
e.g., Central2 and Trapezoidal as default methods for differentiation

556 9 Object-Oriented Programming

and integration). The method set_differentiation_method takes a sub-
class name in the Diff hierarchy as argument, and makes an attribute
df that holds a subclass instance for computing derivatives. With
set_integration_method we can similarly set the integration method
as a subclass name in the Integrator hierarchy, and then compute the
integral

∫ b
a f(x)dx and store the value in the attribute integral. The

extreme_points method performs a print on a MinMax instance, which
is stored as an attribute in the calculator class. Name of program file:
CalculusCalculator.py. �

Exercise 9.20. Extend Exer. 9.19.
Extend class CalculusCalculator from Exercise 9.19 to offer com-

putations of inverse functions. A numerical way of computing inverse
functions is explained in Appendix A.1.11. Exercise 7.26 suggests an
improved implementation using classes. Use the InverseFunction im-
plementation from Exercise 7.26 in class CalculusCalculator. Name of
program file: CalculusCalculator2.py. �

Exercise 9.21. Make line drawing of a person; program.
A very simple sketch of a human being can be made of a circle for the

head, two lines for the arms, one vertical line, a triangle, or a rectangle
for the torso, and two lines for the legs. Make such a drawing in a
program, utilizing appropriate classes in the Shape hierarchy. Name of
program file: draw_person.py. �

Exercise 9.22. Make line drawing of a person; class.
Use the code from Exercise 9.21 to make a subclass of Shape that

draws a person. Supply the following arguments to the constructor: the
center point of the head and the radius R of the head. Let the arms
and the torso be of length 4R, and the legs of length 6R. The angle
between the legs can be fixed (say 30 degrees), while the angle of the
arms relative to the torso can be an argument to the constructor with
a suitable default value. Name of program file: Person.py. �

Exercise 9.23. Animate a person with waving hands.
Make a subclass of the class from Exercise 9.22 where the constructor

can take an argument describing the angle between the arms and the
torso. Use this new class to animate a person who waves her/his hands.
Name of program file: waving_person.py. �

Sequences and Difference Equations A

From mathematics you probably know the concept of a sequence, which
is nothing but a collection of numbers with a specific order. A general
sequence is written as

x0, x1, x2, . . . , xn,

One example is the sequence of all odd numbers:

1, 3, 5, 7, . . . , 2n+ 1,

For this sequence we have an explicit formula for the n-th term: 2n+1,
and n takes on the values 0, 1, 2, We can write this sequence more
compactly as (xn)

∞
n=0 with xn = 2n + 1. Other examples of infinite

sequences from mathematics are

1, 4, 9, 16, 25, . . . (xn)
∞
n=0, xn = (n+ 1)2, (A.1)

1,
1

2
,
1

3
,
1

4
, . . . (xn)

∞
n=0, xn =

1

n+ 1
. (A.2)

The former sequences are infinite, because they are generated from
all integers ≥ 0 and there are infinitely many such integers. Neverthe-
less, most sequences from real life applications are finite. If you put
an amount x0 of money in a bank, you will get an interest rate and
therefore have an amount x1 after one year, x2 after two years, and xN
after N years. This process results in a finite sequence of amounts

x0, x1, x2, . . . , xN , (xn)
N
n=0.

Usually we are interested in quite small N values (typically N ≤
20− 30). Anyway, the life of the bank is finite, so the sequence def-
initely has an end.

H.P. Langtangen, A Primer on Scientific Programming with Python,
Texts in Computational Science and Engineering 6,

DOI 10.1007/978-3-642-30293-0, c© Springer-Verlag Berlin Heidelberg 2012

557

http://dx.doi.org/10.1007/978-3-642-30293-0

558 A Sequences and Difference Equations

For some sequences it is not so easy to set up a general formula for
the n-th term. Instead, it is easier to express a relation between two or
more consecutive elements. One example where we can do both things
is the sequence of odd numbers. This sequence can alternatively be
generated by the formula

xn+1 = xn + 2. (A.3)

To start the sequence, we need an initial condition where the value of
the first element is specified:

x0 = 1.

Relations like (A.3) between consecutive elements in a sequence is called
recurrence relations or difference equations . Solving a difference equa-
tion can be quite challenging in mathematics, but it is almost trivial
to solve it on a computer. That is why difference equations are so well
suited for computer programming, and the present appendix is devoted
to this topic. Only programming concepts from Chapters 1–5 are used
in the material herein.

The program examples regarding difference equations are found in
the folder src/diffeq.

A.1 Mathematical Models Based on Difference Equations

The objective of science is to understand complex phenomena. The
phenomenon under consideration may be a part of nature, a group of
social individuals, the traffic situation in Los Angeles, and so forth. The
reason for addressing something in a scientific manner is that it appears
to be complex and hard to comprehend. A common scientific approach
to gain understanding is to create a model of the phenomenon, and
discuss the properties of the model instead of the phenomenon. The
basic idea is that the model is easier to understand, but still complex
enough to preserve the basic features of the problem at hand1. Modeling
is, indeed, a general idea with applications far beyond science. Suppose,
for instance, that you want to invite a friend to your home for the first
time. To assist your friend, you may send a map of your neighborhood.
Such a map is a model: It exposes the most important landmarks and
leave out billions of details that your friend can do very well without.
This is the essence of modeling: A good model should be as simple as
possible, but still rich enough to include the important structures you
are looking for2.

1 “Essentially, all models are wrong, but some are useful.” –George E. P. Box, statistician,

1919–.
2 “Everything should be made as simple as possible, but not simpler.” –Albert Einstein,

physicist, 1879–1955.

A.1 Mathematical Models Based on Difference Equations 559

Certainly, the tools we apply to model a certain phenomenon differ a
lot in various scientific disciplines. In the natural sciences, mathematics
has gained a unique position as the key tool for formulating models.
To establish a model, you need to understand the problem at hand
and describe it with mathematics. Usually, this process results in a set
of equations, i.e., the model consists of equations that must be solved
in order to see how realistically the model describes a phenomenon.
Difference equations represent one of the simplest yet most effective
type of equations arising in mathematical models. The mathematics is
simple and the programming is simple, thereby allowing us to focus
more on the modeling part. Below we will derive and solve difference
equations for diverse applications.

A.1.1 Interest Rates

Our first difference equation model concerns how much money an initial
amount x0 will grow to after n years in a bank with annual interest
rate p. You learned in school the formula

xn = x0

(
1 +

p

100

)n

. (A.4)

Unfortunately, this formula arises after some limiting assumptions, like
that of a constant interest rate over all the n years. Moreover, the
formula only gives us the amount after each year, not after some months
or days. It is much easier to compute with interest rates if we set up
a more fundamental model in terms of a difference equation and then
solve this equation on a computer.

The fundamental model for interest rates is that an amount xn−1 at
some point of time tn−1 increases its value with p percent to an amount
xn at a new point of time tn:

xn = xn−1 +
p

100
xn−1. (A.5)

If n counts years, p is the annual interest rate, and if p is constant, we
can with some arithmetics derive the following solution to (A.5):

xn =

(
1 +

p

100

)
xn−1 =

(
1 +

p

100

)2

xn−2 = · · · =
(
1 +

p

100

)n

x0.

Instead of first deriving a formula for xn and then program this for-
mula, we may attack the fundamental model (A.5) in a program
(growth_years.py) and compute x1, x2, and so on in a loop:

from scitools.std import *
x0 = 100 # initial amount
p = 5 # interest rate
N = 4 # number of years

560 A Sequences and Difference Equations

index_set = range(N+1)
x = zeros(len(index_set))

Compute solution
x[0] = x0
for n in index_set[1:]:

x[n] = x[n-1] + (p/100.0)*x[n-1]
print x
plot(index_set, x, ’ro’, xlabel=’years’, ylabel=’amount’)

The output of x is

[100. 105. 110.25 115.7625 121.550625]

Programmers of mathematical software who are trained in making pro-
grams more efficient, will notice that it is not necessary to store all the
xn values in an array or use a list with all the indices 0, 1, . . . , N . Just
one integer for the index and two floats for xn and xn−1 are strictly
necessary. This can save quite some memory for large values of N .
Exercise A.5 asks you to develop such a memory-efficient program.

Suppose now that we are interested in computing the growth of
money after N days instead. The interest rate per day is taken as
r = p/D if p is the annual interest rate and D is the number of days
in a year. The fundamental model is the same, but now n counts days
and p is replaced by r:

xn = xn−1 +
r

100
xn−1. (A.6)

A common method in international business is to choose D = 360, yet
let n count the exact number of days between two dates (see footnote on
page 161). Python has a module datetime for convenient calculations
with dates and times. To find the number of days between two dates,
we perform the following operations:

>>> import datetime
>>> date1 = datetime.date(2007, 8, 3) # Aug 3, 2007
>>> date2 = datetime.date(2008, 8, 4) # Aug 4, 2008
>>> diff = date2 - date1
>>> print diff.days
367

We can modify the previous program to compute with days instead of
years:

from scitools.std import *
x0 = 100 # initial amount
p = 5 # annual interest rate
r = p/360.0 # daily interest rate
import datetime
date1 = datetime.date(2007, 8, 3)
date2 = datetime.date(2011, 8, 3)
diff = date2 - date1
N = diff.days
index_set = range(N+1)
x = zeros(len(index_set))

Compute solution
x[0] = x0

A.1 Mathematical Models Based on Difference Equations 561

for n in index_set[1:]:
x[n] = x[n-1] + (r/100.0)*x[n-1]

print x
plot(index_set, x,’ro’, xlabel=’days’, ylabel=’amount’)

Running this program, called growth_days.py, prints out 122.5 as the
final amount.

It is quite easy to adjust the formula (A.4) to the case where the in-
terest is added every day instead of every year. However, the strength
of the model (A.6) and the associated program growth_days.py be-
comes apparent when r varies in time – and this is what happens in
real life. In the model we can just write r(n) to explicitly indicate the
dependence upon time. The corresponding time-dependent annual in-
terest rate is what is normally specified, and p(n) is usually a piecewise
constant function (the interest rate is changed at some specific dates
and remains constant between these days). The construction of a cor-
responding array p in a program, given the dates when p changes, can
be a bit tricky since we need to compute the number of days between
the dates of changes and index p properly. We do not dive into these
details now, but readers who want to compute p and who is ready for
some extra brain training and index puzzling can attack Exercise A.11.
For now we assume that an array p holds the time-dependent annual
interest rates for each day in the total time period of interest. The
growth_days.py program then needs a slight modification, typically,

p = zeros(len(index_set))
set up p (might be challenging!)
r = p/360.0 # daily interest rate
...
for n in index_set[1:]:

x[n] = x[n-1] + (r[n-1]/100.0)*x[n-1]

For the very simple (and not-so-relevant) case where p grows linearly
(i.e., daily changes) from 4 to 6 percent over the period of interest,
we have made a complete program in the file growth_days_timedep.py.
You can compare a simulation with linearly varying p between 4 and
6 and a simulation using the average p value 5 throughout the whole
time interval.

A difference equation with r(n) is quite difficult to solve mathemati-
cally, but the n-dependence in r is easy to deal with in the computerized
solution approach.

A.1.2 The Factorial as a Difference Equation

The difference equation

xn = nxn−1, x0 = 1 (A.7)

can quickly be solved recursively:

562 A Sequences and Difference Equations

xn = nxn−1

= n(n− 1)xn−2

= n(n− 1)(n− 2)xn−3

= n(n− 1)(n− 2) · · · 1.

The result xn is nothing but the factorial of n, denoted as n! (cf. Exer-
cise 3.19). Equation (A.7) then gives a standard recipe to compute n!.

A.1.3 Fibonacci Numbers

Every textbook with some material on sequences usually presents a
difference equation for generating the famous Fibonacci numbers3:

xn = xn−1 + xn−2, x0 = 1, x1 = 1, n = 2, 3, . . . (A.8)

This equation has a relation between three elements in the sequence,
not only two as in the other examples we have seen. We say that this
is a difference equation of second order, while the previous examples
involving two n levels are said to be difference equations of first or-
der. The precise characterization of (A.8) is a homogeneous difference
equation of second order. Such classification is not important when
computing the solution in a program, but for mathematical solution
methods by pen and paper, the classification helps to determine which
mathematical technique to use to solve the problem.

A straightforward program for generating Fibonacci numbers takes
the form (fibonacci1.py):

import sys
import numpy as np
N = int(sys.argv[1])
x = np.zeros(N+1, int)
x[0] = 1
x[1] = 1
for n in range(2, N+1):

x[n] = x[n-1] + x[n-2]
print n, x[n]

Since xn is an infinite sequence we could try to run the program for
very large N . This causes two problems: The storage requirements of
the x array may become too large for the computer, but long before
this happens, xn grows in size far beyond the largest integer that can
be represented by int elements in arrays (the problem appears already
for N = 50). A possibility is to use array elements of type int64, which
allows computation of twice as many numbers as with standard int

elements (see the program fibonacci1_int64.py). A better solution is
to use float elements in the x array, despite the fact that the numbers

3 Fibonacci arrived at this equation when modelling rabbit populations.

A.1 Mathematical Models Based on Difference Equations 563

xn are integers. With float96 elements we can compute up to N =
23600 (see the program fibinacci1_float.py).

The best solution goes as follows. We observe, as mentioned after the
growth_years.py program and also explained in Exercise A.5, that we
need only three variables to generate the sequence. We can therefore
work with just three standard int variables in Python:

import sys
N = int(sys.argv[1])
xnm1 = 1
xnm2 = 1
n = 2
while n <= N:

xn = xnm1 + xnm2
print’x_%d = %d’ % (n, xn)
xnm2 = xnm1
xnm1 = xn
n += 1

Here xnm1 denotes xn−1 and xnm2 denotes xn−2. To prepare for the
next pass in the loop, we must shuffle the xnm1 down to xnm2 and store
the new xn value in xnm1. The nice thing with int objects in Python
(contrary to int elements in NumPy arrays) is that they can hold
integers of arbitrary size4. We may try a run with N set to 250:

x_2 = 2
x_3 = 3
x_4 = 5
x_5 = 8
x_6 = 13
x_7 = 21
x_8 = 34
x_9 = 55
x_10 = 89
x_11 = 144
x_12 = 233
x_13 = 377
x_14 = 610
x_15 = 987
x_16 = 1597
...
x_249 = 7896325826131730509282738943634332893686268675876375
x_250 = 12776523572924732586037033894655031898659556447352249

In mathematics courses you learn how to derive a formula for the n-th
term in a Fibonacci sequence. This derivation is much more complicated
than writing a simple program to generate the sequence, but there is a
lot of interesting mathematics both in the derivation and the resulting
formula!

A.1.4 Growth of a Population

Let xn−1 be the number of individuals in a population at time tn−1. The
population can consists of humans, animals, cells, or whatever objects
where the number of births and deaths is proportional to the number
of individuals. Between time levels tn−1 and tn, bxn−1 individuals are

4 Note that int variables in other computer languages normally has a size limitation like

int elements in NumPy arrays.

564 A Sequences and Difference Equations

born, and dxn−1 individuals die, where b and d are constants. The net
growth of the population is then (b− d)xn. Introducing r = (b− d)100
for the net growth factor measured in percent, the new number of
individuals become

xn = xn−1 +
r

100
xn−1. (A.9)

This is the same difference equation as (A.5). It models growth of
populations quite well as long as there are optimal growing conditions
for each individual. If not, one can adjust the model as explained in
Appendix A.1.5.

To solve (A.9) we need to start out with a known size x0 of the
population. The b and d parameters depend on the time difference
tn − tn−1, i.e., the values of b and d are smaller if n counts years than
if n counts generations.

A.1.5 Logistic Growth

The model (A.9) for the growth of a population leads to exponential
increase in the number of individuals as implied by the solution (A.4).
The size of the population increases faster and faster as time n in-
creases, and xn → ∞ when n → ∞. In real life, however, there is
an upper limit M of the number of individuals that can exist in the
environment at the same time. Lack of space and food, competition be-
tween individuals, predators, and spreading of contagious diseases are
examples on factors that limit the growth. The number M is usually
called the carrying capacity of the environment, the maximum popu-
lation which is sustainable over time. With limited growth, the growth
factor r must depend on time:

xn = xn−1 +
r(n− 1)

100
xn−1. (A.10)

In the beginning of the growth process, there is enough resources and
the growth is exponential, but as xn approaches M , the growth stops
and r must tend to zero. A simple function r(n) with these properties
is

r(n) = �

(
1− xn

M

)
. (A.11)

For small n, xn � M and r(n) ≈ �, which is the growth rate with
unlimited resources. As n → M , r(n) → 0 as we want. The model
(A.11) is used for logistic growth. The corresponding logistic difference
equation becomes

xn = xn−1 +
�

100
xn−1

(
1− xn−1

M

)
. (A.12)

A.1 Mathematical Models Based on Difference Equations 565

Below is a program (growth_logistic.py) for simulating N = 200 time
intervals in a case where we start with x0 = 100 individuals, a carrying
capacity of M = 500, and initial growth of � = 4 percent in each time
interval:

from scitools.std import *
x0 = 100 # initial amount of individuals
M = 500 # carrying capacity
rho = 4 # initial growth rate in percent
N = 200 # number of time intervals
index_set = range(N+1)
x = zeros(len(index_set))

Compute solution
x[0] = x0
for n in index_set[1:]:

x[n] = x[n-1] + (rho/100.0)*x[n-1]*(1 - x[n-1]/float(M))
print x
plot(index_set, x, ’r’, xlabel=’time units’,

ylabel=’no of individuals’, hardcopy=’tmp.eps’)

Figure A.1 shows how the population stabilizes, i.e., that xn ap-
proaches M as N becomes large (of the same magnitude as M).

Fig. A.1 Logistic growth of a population (� = 4, M = 500, x0 = 100, N = 200).

If the equation stabilizes as n → ∞, it means that xn = xn−1 in this
limit. The equation then reduces to

xn = xn +
�

100
xn

(
1− xn

M

)
.

By inserting xn = M we see that this solution fulfills the equation. The
same solution technique (i.e., setting xn = xn−1) can be used to check
if xn in a difference equation approaches a limit or not.

Mathematical models like (A.12) are often easier to work with if
we scale the variables, as briefly describe in Chapter 5.8.2. Basically,
this means that we divide each variable by a characteristic size of that

566 A Sequences and Difference Equations

variable such that the value of the new variable is typically 1. In the
present case we can scale xn by M and introduce a new variable,

yn =
xn
M

.

Similarly, x0 is replaced by y0 = x0/M . Inserting xn = Myn in (A.12)
and dividing by M gives

yn = yn−1 + qyn−1(1− yn−1), (A.13)

where q = �/100 is introduced to save typing. Equation (A.13) is sim-
pler than (A.12) in that the solution lies approximately between5 y0
and 1, and there are only two dimensionless input parameters to care
about: q and y0. To solve (A.12) we need knowledge of three parame-
ters: x0, �, and M .

A.1.6 Payback of a Loan

A loan L is to be paid back over N months. The payback in a month
consists of the fraction L/N plus the interest increase of the loan. Let
the annual interest rate for the loan be p percent. The monthly interest
rate is then p

12 . The value of the loan after month n is xn, and the change
from xn−1 can be modeled as

xn = xn−1 +
p

12 · 100xn−1 −
(

p

12 · 100xn−1 +
L

N

)
, (A.14)

= xn−1 −
L

N
, (A.15)

for n = 1, . . . , N . The initial condition is x0 = L. A major difference
between (A.15) and (A.6) is that all terms in the latter are proportional
to xn or xn−1, while (A.15) also contains a constant term (L/N). We say
that (A.6) is homogeneous and linear, while (A.15) is inhomogeneous
(because of the constant term) and linear. The mathematical solution
of inhomogeneous equations are more difficult to find than the solution
of homogeneous equations, but in a program there is no big difference:
We just add the extra term −L/N in the formula for the difference
equation.

The solution of (A.15) is not particularly exciting6. What is more
interesting, is what we pay each month, yn. We can keep track of both
yn and xn in a variant of the previous model:

5 Values larger than 1 can occur, see Exercise A.23.
6 Use (A.15) repeatedly to derive the solution xn = L− nL/N .

A.1 Mathematical Models Based on Difference Equations 567

yn =
p

12 · 100xn−1 +
L

N
, (A.16)

xn = xn−1 +
p

12 · 100xn−1 − yn. (A.17)

Equations (A.16)–(A.17) is a system of difference equations. In a com-
puter code, we simply update yn first, and then we update xn, inside
a loop over n. Exercise A.6 asks you to do this.

A.1.7 The Integral as a Difference Equation

Suppose a function f(x) is defined as the integral

f(x) =

∫ x

a
g(t)dt. (A.18)

Our aim is to evaluate f(x) at a set of points x0 = a < x1 < · · · < xN .
The value f(xn) for any 0 ≤ n ≤ N can be obtained by using the
Trapezoidal rule for integration:

f(xn) =
n−1∑
k=0

1

2
(xk+1 − xk)

(
g(xk) + g(xk+1)

)
, (A.19)

which is nothing but the sum of the areas of the trapezoids up to the
point xn (Figure 5.14b on page 255 illustrates the idea.) We realize
that f(xn+1) is the sum above plus the area of the next trapezoid:

f(xn+1) = f(xn) +
1

2
(xn+1 − xn)

(
g(xn) + g(xn+1)

)
. (A.20)

This is a much more efficient formula than using (A.19) with n replaced
by n + 1, since we do not need to recompute the areas of the first n
trapezoids.

Formula (A.20) gives the idea of computing all the f(xn) values
through a difference equation. Define fn as f(xn) and consider x0 = a,
and x1, . . . , xN as given. We know that f0 = 0. Then

fn = fn−1 +
1

2
(xn − xn−1)

(
g(xn−1) + g(xn)

)
, (A.21)

for n = 1, 2, . . . , N . By introducing gn for g(xn) as an extra variable
in the difference equation, we can avoid recomputing g(xn) when we
compute fn+1:

gn = g(xn), (A.22)

fn = fn−1 +
1

2
(xn − xn−1)(gn−1 + gn), (A.23)

with initial conditions f0 = 0 and g0 = g(a).

568 A Sequences and Difference Equations

A function can take g, a, x, and N as input and return arrays x and
f for x0, . . . , xN and the corresponding integral values f0, . . . , fN :

def integral(g, a, x, N=20):
index_set = range(N+1)
x = np.linspace(a, x, N+1)
g_ = np.zeros_like(x)
f = np.zeros_like(x)
g_[0] = g(x[0])
f[0] = 0

for n in index_set[1:]:
g_[n] = g(x[n])
f[n] = f[n-1] + 0.5*(x[n] - x[n-1])*(g_[n-1] + g_[n])

return x, f

Note that g is used for the integrand function to call so we introduce
g_ to be the array holding sequence of g(x[n]) values.

Our first task, after having implemented a mathematical calculation,
is to verify the result. Here we can make use of the nice fact that the
Trapezoidal rule is exact for linear functions g(t):

def _verify():
"""
Check that the trapezoidal method implemented
via difference equations works perfectly with linear g.
"""
def g_test(t):

"""Linear integrand."""
return 2*t + 1

def f_test(x, a):
"""Exact integral of g_test."""
return x**2 + x - (a**2 + a)

a = 2
x, f = integral(g_test, a, x=10)
f_exact = f_test(x, a)
if not np.allclose(f_exact, f):

print ’ERROR in _verify’

A realistic application is to apply the integral function to some g(t)
where there is no formula for the analytical integral, e.g.,

g(t) =
1√
2π

exp
(
−t2

)
.

The code may look like

from numpy import sqrt, pi, exp
def g(t):

return 1./sqrt(2*pi)*exp(-t**2)

x, f = integral(g, a=-3, x=3, N=200)
integrand = g(x)
from scitools.std import plot
plot(x, f, ’r-’,

x, integrand, ’y-’,
legend=(’f’, ’g’),
legend_loc=’upper left’)

A.1 Mathematical Models Based on Difference Equations 569

Figure A.2 displays the integrand and the integral. All the code is
available in the file integral.py.

Fig. A.2 Integral of 1√
2π

exp (−t2) from −3 to x.

A.1.8 Taylor Series as a Difference Equation

Consider the following system of two difference equations

en = en−1 + an−1, (A.24)

an =
x

n
an−1, (A.25)

with initial conditions e0 = 0 and a0 = 1. We can start to nest the
solution:

e1 = 0 + a0 = 0 + 1 = 1,

a1 = x,

e2 = e1 + a1 = 1 + x,

a2 =
x

2
a1 =

x2

2
,

e3 = e2 + a2 = 1 + x+
x2

2
,

e4 = 1 + x+
x2

2
+

x3

3 · 2 ,

e5 = 1 + x+
x2

2
+

x3

3 · 2 +
x4

4 · 3 · 2 .

The observant reader who has heard about Taylor series (see Chap-
ter B.4) will recognize this as the Taylor series of ex:

570 A Sequences and Difference Equations

ex =

∞∑
n=0

xn

n!
. (A.26)

How do we derive a system like (A.24)–(A.25) for computing the
Taylor polynomial approximation to ex? The starting point is the sum∑∞

n=0
xn

n! . This sum is coded by adding new terms to an accumulation
variable in a loop. The mathematical counterpart to this code is a
difference equation

en+1 = en +
xn

n!
, e0 = 0, n = 0, 1, 2, . . . (A.27)

or equivalently (just replace n by n− 1):

en = en−1 +
xn−1

n− 1!
, e0 = 0, n = 1, 2, 3, (A.28)

Now comes the important observation: the term xn/n! contains many
of the computations we already performed for the previous term
xn−1/(n− 1)! because

xn

n!
=

x · x · · ·x
n(n− 1)(n− 2) · · · 1 ,

xn−1

(n− 1)!
=

x · x · · ·x
(n− 1)(n− 2)(n− 3) · · · 1 .

Let an = xn/n!. We see that we can go from an−1 to an by multiplying
an−1 by x/n:

x

n
an−1 =

x

n

xn−1

(n− 1)!
=

xn

n!
= an, (A.29)

which is nothing but (A.25). We also realize that a0 = 1 is the initial
condition for this difference equation. In other words, (A.24) sums the
Taylor polynomial, and (A.25) updates each term in the sum.

The system (A.24)–(A.25) is very easy to implement in a pro-
gram and constitutes an efficient way to compute (A.26). The function
exp_diffeq does the work7:

def exp_diffeq(x, N):
n = 1
an_prev = 1.0 # a_0
en_prev = 0.0 # e_0
while n <= N:

en = en_prev + an_prev
an = x/n*an_prev
en_prev = en
an_prev = an
n += 1

return en

7 Observe that we do not store the sequences in arrays, but make use of the fact that only

the most recent sequence element is needed to calculate a new element.

A.1 Mathematical Models Based on Difference Equations 571

This function along with a direct evaluation of the Taylor series for ex

and a comparison with the exact result for various N values can be
found in the file exp_Taylor_series_diffeq.py.

A.1.9 Making a Living from a Fortune

Suppose you want to live on a fortune F . You have invested the money
in a safe way that gives an annual interest of p percent. Every year you
plan to consume an amount cn, where n counts years. The development
of your fortune xn from one year to the other can then be modeled by

xn = xn−1 +
p

100
xn−1 − cn−1, x0 = F. (A.30)

A simple example is to keep c constant, say q percent of the interest
the first year:

xn = xn−1 +
p

100
xn−1 −

pq

104
F, x0 = F. (A.31)

A more realistic model is to assume some inflation of I percent per
year. You will then like to increase cn by the inflation. We can extend
the model in two ways. The simplest and clearest way, in the author’s
opinion, is to track the evolution of two sequences xn and cn:

xn = xn−1 +
p

100
xn−1 − cn−1, x0 = F, c0 =

pq

104
F, (A.32)

cn = cn−1 +
I

100
cn−1. (A.33)

This is a system of two difference equations with two unknowns. The
solution method is, nevertheless, not much more complicated than the
method for a difference equation in one unknown, since we can first
compute xn from (A.32) and then update the cn value from (A.33).
You are encouraged to write the program (see Exercise A.7).

Another way of making a difference equation for the case with infla-
tion, is to use an explicit formula for cn−1, i.e., solve (A.32) and end
up with a formula like (A.4). Then we can insert the explicit formula

cn−1 =

(
1 +

I

100

)n−1 pq

104
F

in (A.30), resulting in only one difference equation to solve.

A.1.10 Newton’s Method

The difference equation

xn = xn−1 −
f(xn−1)

f ′(xn−1)
, x0 given, (A.34)

572 A Sequences and Difference Equations

generates a sequence xn where, if the sequence converges (i.e., if
xn − xn−1 → 0), xn approaches a root of f(x). That is, xn →
x, where x solves the equation f(x) = 0. Equation (A.34) is the
famous Newton’s method for solving nonlinear algebraic equations
f(x) = 0. When f(x) is not linear, i.e., f(x) is not on the form
ax + b with constant a and b, (A.34) becomes a nonlinear dif-
ference equation. This complicates analytical treatment of differ-
ence equations, but poses no extra difficulties for numerical solu-
tion.

We can quickly sketch the derivation of (A.34). Suppose we want to
solve the equation

f(x) = 0

and that we already have an approximate solution xn−1. If f(x) were
linear, f(x) = ax+b, it would be very easy to solve f(x) = 0: x = −b/a.
The idea is therefore to approximate f(x) in the vicinity of x = xn−1

by a linear function, i.e., a straight line f(x) ≈ f̃(x) = ax+ b. This line
should have the same slope as f(x), i.e., a = f ′(xn−1), and both the
line and f should have the same value at x = xn−1. From this condition
one can find b = f(xn−1) − xn−1f

′(xn−1). The approximate function
(line) is then

f̃(x)f(xn−1) + f ′(xn−1)(x− xn−1). (A.35)

This expression is just the two first terms of a Taylor series approxima-
tion to f(x) at x = xn−1. It is now easy to solve f̃(x) = 0 with respect
to x, and we get

x = xn−1 −
f(xn−1)

f ′(xn−1)
. (A.36)

Since f̃ is only an approximation to f , x in (A.36) is only an approxima-
tion to a root of f(x) = 0. Hopefully, the approximation is better than
xn−1 so we set xn = x as the next term in a sequence that we hope
converges to the correct root. However, convergence depends highly
on the shape of f(x), and there is no guarantee that the method will
work.

The previous programs for solving difference equations have typically
calculated a sequence xn up to n = N , where N is given. When using
(A.34) to find roots of nonlinear equations, we do not know a suitable
N in advance that leads to an xn where f(xn) is sufficiently close to
zero. We therefore have to keep on increasing n until f(xn) < ε for
some small ε. Of course, the sequence diverges, we will keep on forever,
so there must be some maximum allowable limit on n, which we may
take as N .

It can be convenient to have the solution of (A.34) as a function for
easy reuse. Here is a first rough implementation:

A.1 Mathematical Models Based on Difference Equations 573

def Newton(f, x, dfdx, epsilon=1.0E-7, N=100):
n = 0
while abs(f(x)) > epsilon and n <= N:

x = x - f(x)/dfdx(x)
n += 1

return x, n, f(x)

This function might well work, but f(x)/dfdx(x) can imply integer
division, so we should ensure that the numerator or denumerator is of
float type. There are also two function evaluations of f(x) in every
pass in the loop (one in the loop body and one in the while condition).
We can get away with only one evaluation if we store the f(x) in a local
variable. In the small examples with f(x) in the present course, twice
as many function evaluations of f as necessary does not matter, but the
same Newton function can in fact be used for much more complicated
functions, and in those cases twice as much work can be noticeable.
As a programmer, you should therefore learn to optimize the code by
removing unnecessary computations.

Another, more serious, problem is the possibility dividing by zero.
Almost as serious, is dividing by a very small number that creates a
large value, which might cause Newton’s method to diverge. Therefore,
we should test for small values of f ′(x) and write a warning or raise an
exception.

Another improvement is to add a boolean argument store to indicate
whether we want the (x, f(x)) values during the iterations to be stored
in a list or not. These intermediate values can be handy if we want to
print out or plot the convergence behavior of Newton’s method.

An improved Newton function can now be coded as

def Newton(f, x, dfdx, epsilon=1.0E-7, N=100, store=False):
f_value = f(x)
n = 0
if store: info = [(x, f_value)]
while abs(f_value) > epsilon and n <= N:

dfdx_value = float(dfdx(x))
if abs(dfdx_value) < 1E-14:

raise ValueError("Newton: f’(%g)=%g" % (x, dfdx_value))

x = x - f_value/dfdx_value

n += 1
f_value = f(x)
if store: info.append((x, f_value))

if store:
return x, info

else:
return x, n, f_value

Note that to use the Newton function, we need to calculate the deriva-
tive f ′(x) and implement it as a Python function and provide it as the
dfdx argument. Also note that what we return depends on whether we
store (x, f(x)) information during the iterations or not.

574 A Sequences and Difference Equations

It is quite common to test if dfdx(x) is zero in an implementation of
Newton’s method, but this is not strictly necessary in Python since an
exception ZeroDivisionError is always raised when dividing by zero.

We can apply the Newton function to solve the equation8

e−0.1x2

sin(π2x) = 0:

from math import sin, cos, exp, pi
import sys
from Newton import Newton

def g(x):
return exp(-0.1*x**2)*sin(pi/2*x)

def dg(x):
return -2*0.1*x*exp(-0.1*x**2)*sin(pi/2*x) + \

pi/2*exp(-0.1*x**2)*cos(pi/2*x)

x0 = float(sys.argv[1])
x, info = Newton(g, x0, dg, store=True)
print ’root:’, x
for i in range(len(info)):

print ’Iteration %3d: f(%g)=%g’ % \
(i, info[i][0], info[i][1])

The Newton function and this program can be found in the file
Newton.py. Running this program with an initial x value of 1.7 results
in the output

root: 1.999999999768449
Iteration 0: f(1.7)=0.340044
Iteration 1: f(1.99215)=0.00828786
Iteration 2: f(1.99998)=2.53347e-05
Iteration 3: f(2)=2.43808e-10

The convergence is fast towards the solution x = 2. The error is of the
order 10−10 even though we stop the iterations when f(x) ≤ 10−7.

Trying a start value of 3 we would expect the method to find the
root x = 2 or x = 4, but now we get

root: 42.49723316011362
Iteration 0: f(3)=-0.40657
Iteration 1: f(4.66667)=0.0981146
Iteration 2: f(42.4972)=-2.59037e-79

We have definitely solved f(x) = 0 in the sense that |f(x)| ≤ ε, where
ε is a small value (here ε ∼ 10−79). However, the solution x ≈ 42.5 is
not close to the solution (x = 42 and x = 44 are the solutions closest
to the computed x). Can you use your knowledge of how the Newton
method works and figure out why we get such strange behavior?

The demo program Newton_movie.py can be used to investigate the
strange behavior. This program takes five command-line arguments:
a formula for f(x), a formula for f ′(x) (or the word numeric, which
indicates a numerical approximation of f ′(x)), a guess at the root, and

8 Fortunately you realize that the exponential function can never be zero, so the solutions
of the equation must be the zeros of the sine function, i.e., π

2
x = iπ for all integers i =

. . . ,−2, 1, 0, 1, 2, This gives x = 2i as the solutions.

A.1 Mathematical Models Based on Difference Equations 575

the minimum and maximum x values in the plots. We try the following
case with the program:

Terminal

Newton_movie.py’exp(-0.1*x**2)*sin(pi/2*x)’ numeric 3 -3 43

As seen, we start with x = 3 as the initial guess. In the first step of
the method, we compute a new value of the root, now x = 4.66667. As
we see in Figure A.3, this root is near an extreme point of f(x) so that
the derivative is small, and the resulting straight line approximation to
f(x) at this root becomes quite flat. The result is a new guess at the
root: x42.5. This root is far away from the last root, but the second
problem is that f(x) is quickly damped as we move to increasing x
values, and at x = 42.5 f is small enough to fulfill the convergence
criterion. Any guess at the root out in this region would satisfy that
criterion.

You can run the Newton_movie.py program with other values of the
initial root and observe that the method usually finds the nearest roots.

Fig. A.3 Failure of Newton’s method to solve e−0.1x2
sin(π

2
x) = 0. The plot corresponds

to the second root found (starting with x = 3).

A.1.11 The Inverse of a Function

Given a function f(x), the inverse function of f , say we call it g(x),
has the property that if we apply g to the value f(x), we get x back:

g
(
f(x)

)
= x.

Similarly, if we apply f to the value g(x), we get x:

f
(
g(x)

)
= x. (A.37)

576 A Sequences and Difference Equations

By hand, you substitute g(x) by (say) y in (A.37) and solve (A.37)
with respect to y to find some x expression for the inverse function.
For example, given f(x) = x2−1, we must solve y2−1 = x with respect
to y. To ensure a unique solution for y, the x values have to be limited
to an interval where f(x) is monotone, say x ∈ [0, 1] in the present
example. Solving for y gives y =

√
1 + x, therefore g(x) =

√
1 + x. It

is easy to check that f(g(x)) = (
√
1 + x)2 − 1 = x.

Numerically, we can use the “definition” (A.37) of the inverse func-
tion g at one point at a time. Suppose we have a sequence of points x0 <
x1 < · · · < xN along the x axis such that f is monotone in [x0, xN]:
f(x0) > f(x1) > · · · > f(xN) or f(x0) < f(x1) < · · · < f(xN). For
each point xi, we have

f
(
g(xi)

)
= xi.

The value g(xi) is unknown, so let us call it γ. The equation

f(γ) = xi (A.38)

can be solved be respect γ. However, (A.38) is in general nonlinear if f
is a nonlinear function of x. We must then use, e.g., Newton’s method
to solve (A.38). Newton’s method works for an equation phrased as
“f(x) = 0”, which in our case is f(γ) − xi = 0, i.e., we seek the roots
of the function F (γ) ≡ f(γ) − xi. Also the derivative F ′(γ) is needed
in Newton’s method. For simplicity we may use an approximate finite
difference:

dF

dγ
≈ F (γ + h)− F (γ − h)

2h
.

As start value γ0, we can use the previously computed g value: gi−1.
We introduce the short notation γ = Newton(F, γ0) to indicate the
solution of F (γ) = 0 with initial guess γ0.

The computation of all the g0, . . . , gN values can now be expressed
by

gi = Newton(F, gi−1), i = 1, . . . , N, (A.39)

and for the first point we may use x0 as start value (for instance):

g0 = Newton(F, x0). (A.40)

Equations (A.39)–(A.40) constitute a difference equation for gi, since
given gi−1, we can compute the next element of the sequence by (A.39).
Because (A.39) is a nonlinear equation in the new value gi, and (A.39)
is therefore an example of a nonlinear difference equation.

The following program computes the inverse function g(x) of f(x) at
some discrete points x0, . . . , xN . Our sample function is f(x) = x2−1:

from Newton import Newton
from scitools.std import *

def f(x):

A.2 Programming with Sound 577

return x**2 - 1

def F(gamma):
return f(gamma) - xi

def dFdx(gamma):
return (F(gamma+h) - F(gamma-h))/(2*h)

h = 1E-6
x = linspace(0.01, 3, 21)
g = zeros(len(x))

for i in range(len(x)):
xi = x[i]

Compute start value (use last g[i-1] if possible)
if i == 0:

gamma0 = x[0]
else:

gamma0 = g[i-1]

gamma, n, F_value = Newton(F, gamma0, dFdx)
g[i] = gamma

plot(x, f(x), ’r-’, x, g, ’b-’,
title=’f1’, legend=(’original’, ’inverse’))

Note that with f(x) = x2 − 1, f ′(0) = 0, so Newton’s method di-
vides by zero and breaks down unless with let x0 > 0, so here we
set x0 = 0.01. The f function can easily be edited to let the program
compute the inverse of another function. The F function can remain
the same since it applies a general finite difference to approximate the
derivative of the f(x) function. The complete program is found in the
file inverse_function.py. A better implementation is suggested in Ex-
ercise 7.26.

A.2 Programming with Sound

Sound on a computer is nothing but a sequence of numbers. As an
example, consider the famous A tone at 440 Hz. Physically, this is an
oscillation of a tuning fork, loudspeaker, string or another mechanical
medium that makes the surrounding air also oscillate and transport
the sound as a compression wave. This wave may hit our ears and
through complicated physiological processes be transformed to an elec-
trical signal that the brain can recognize as sound. Mathematically, the
oscillations are described by a sine function of time:

s(t) = A sin(2πft), (A.41)

where A is the amplitude or strength of the sound and f is the frequency
(440 Hz for the A in our example). In a computer, s(t) is represented
at discrete points of time. CD quality means 44100 samples per second.
Other sample rates are also possible, so we introduce r as the sample

578 A Sequences and Difference Equations

rate. An f Hz tone lasting for m seconds with sample rate r can then
be computed as the sequence

sn = A sin

(
2πf

n

r

)
, n = 0, 1, . . . ,m · r. (A.42)

With Numerical Python this computation is straightforward and very
efficient. Introducing some more explanatory variable names than r, A,
and m, we can write a function for generating a note:

import numpy
def note(frequency, length, amplitude=1, sample_rate=44100):

time_points = numpy.linspace(0, length, length*sample_rate)
data = numpy.sin(2*numpy.pi*frequency*time_points)
data = amplitude*data
return data

A.2.1 Writing Sound to File

The note function above generates an array of float data representing
a note. The sound card in the computer cannot play these data, because
the card assumes that the information about the oscillations appears
as a sequence of two-byte integers. With an array’s astype method we
can easily convert our data to two-byte integers instead of floats:

data = data.astype(numpy.int16)

That is, the name of the two-byte integer data type in numpy is int16

(two bytes are 16 bits). The maximum value of a two-byte integer
is 215 − 1, so this is also the maximum amplitude. Assuming that
amplitude in the note function is a relative measure of intensity, such
that the value lies between 0 and 1, we must adjust this amplitude to
the scale of two-byte integers:

max_amplitude = 2**15 - 1
data = max_amplitude*data

The data array of int16 numbers can be written to a file and played
as an ordinary file in CD quality. Such a file is known as a wave file
or simply a WAV file since the extension is .wav. Python has a module
wave for creating such files. Given an array of sound, data, we have in
SciTools a module sound with a function write for writing the data to
a WAV file (using functionality from the wave module):

import scitools.sound
scitools.sound.write(data,’Atone.wav’)

You can now use your favorite music player to play the Atone.wav file,
or you can play it from within a Python program using

A.2 Programming with Sound 579

scitools.sound.play(’Atone.wav’)

The write function can take more arguments and write, e.g., a stereo
file with two channels, but we do not dive into these details here.

A.2.2 Reading Sound from File

Given a sound signal in a WAV file, we can easily read this signal into an
array and mathematically manipulate the data in the array to change
the flavor of the sound, e.g., add echo, treble, or bass. The recipe for
reading a WAV file with name filename is

data = scitools.sound.read(filename)

The data array has elements of type int16. Often we want to compute
with this array, and then we need elements of float type, obtained by
the conversion

data = data.astype(float)

The write function automatically transforms the element type back to
int16 if we have not done this explicitly.

One operation that we can easily do is adding an echo. Mathemat-
ically this means that we add a damped delayed sound, where the
original sound has weight β and the delayed part has weight 1 − β,
such that the overall amplitude is not altered. Let d be the delay in
seconds. With a sampling rate r the number of indices in the delay
becomes dr, which we denote by b. Given an original sound sequence
sn, the sound with echo is the sequence

en = βsn + (1− β)sn−b. (A.43)

We cannot start n at 0 since e0 = s0−b = s−b which is a value outside
the sound data. Therefore we define en = sn for n = 0, 1, . . . , b, and add
the echo thereafter. A simple loop can do this (again we use descriptive
variable names instead of the mathematical symbols introduced):

def add_echo(data, beta=0.8, delay=0.002, sample_rate=44100):
newdata = data.copy()
shift = int(delay*sample_rate) # b (math symbol)
for i in range(shift, len(data)):

newdata[i] = beta*data[i] + (1-beta)*data[i-shift]
return newdata

The problem with this function is that it runs slowly, especially when we
have sound clips lasting several seconds (recall that for CD quality we
need 44100 numbers per second). It is therefore necessary to vectorize
the implementation of the difference equation for adding echo. The
update is then based on adding slices:

580 A Sequences and Difference Equations

newdata[shift:] = beta*data[shift:] + \
(1-beta)*data[:len(data)-shift]

A.2.3 Playing Many Notes

How do we generate a melody mathematically in a computer program?
With the note function we can generate a note with a certain amplitude,
frequency, and duration. The note is represented as an array. Putting
sound arrays for different notes after each other will make up a melody.
If we have several sound arrays data1, data2, data3, . . . , we can make
a new array consisting of the elements in the first array followed by the
elements of the next array followed by the elements in the next array
and so forth:

data = numpy.concatenate((data1, data2, data3, ...))

Here is an example of creating a little melody (start of “Nothing
Else Matters” by Metallica) using constant (max) amplitude of all the
notes:

E1 = note(164.81, .5)
G = note(392, .5)
B = note(493.88, .5)
E2 = note(659.26, .5)
intro = numpy.concatenate((E1, G, B, E2, B, G))
high1_long = note(987.77, 1)
high1_short = note(987.77, .5)
high2 = note(1046.50, .5)
high3 = note(880, .5)
high4_long = note(659.26, 1)
high4_medium = note(659.26, .5)
high4_short = note(659.26, .25)
high5 = note(739.99, .25)
pause_long = note(0, .5)
pause_short = note(0, .25)
song = numpy.concatenate(
(intro, intro, high1_long, pause_long, high1_long,
pause_long, pause_long,
high1_short, high2, high1_short, high3, high1_short,
high3, high4_short, pause_short, high4_long, pause_short,
high4_medium, high5, high4_short))

song *= max_amplitude
scitools.sound.play(song)
scitools.sound.write(song, ’tmp.wav’)

We could send song to the add_echo function to get some echo, and
we could also vary the amplitudes to get more dynamics into the
song. You can find the generation of notes above as the function
Nothing_Else_Matters(echo=False) in the scitools.sound module.

A.2.4 Music of a Sequence

Problem. The purpose of this example is to listen to the sound gen-
erated by two mathematical sequences. The first one is given by an

A.2 Programming with Sound 581

explicit formula, constructed to oscillate around 0 with decreasing am-
plitude:

xn = e−4n/N sin(8πn/N). (A.44)

The other sequence is generated by the difference equation (A.13) for
logistic growth, repeated here for convenience:

xn = xn−1 + qxn−1(1− xn−1), x = x0. (A.45)

We let x0 = 0.01 and q = 2. This leads to fast initial growth toward the
limit 1, and then oscillations around this limit (this problem is studied
in Exercise A.23).

The absolute value of the sequence elements xn are of size between
0 and 1, approximately. We want to transform these sequence elements
to tones, using the techniques of Appendix A.2. First we convert xn to
a frequency the human ear can hear. The transformation

yn = 440 + 200xn (A.46)

will make a standard A reference tone out of xn = 0, and for the max-
imum value of xn around 1 we get a tone of 640 Hz. Elements of the
sequence generated by (A.44) lie between −1 and 1, so the correspond-
ing frequencies lie between 240 Hz and 640 Hz. The task now is to make
a program that can generate and play the sounds.

Solution. Tones can be generated by the note function from the
scitools.sound module. We collect all tones corresponding to all the
yn frequencies in a list tones. Letting N denote the number of sequence
elements, the relevant code segment reads

from scitools.sound import *
freqs = 440 + x*200
tones = []
duration = 30.0/N # 30 sec sound in total
for n in range(N+1):

tones.append(max_amplitude*note(freqs[n], duration, 1))
data = concatenate(tones)
write(data, filename)
data = read(filename)
play(filename)

It is illustrating to plot the sequences too,

plot(range(N+1), freqs,’ro’)

To generate the sequences (A.44) and (A.45), we make two func-
tions, oscillations and logistic, respectively. These functions take
the number of sequence elements (N) as input and return the sequence
stored in an array.

In another function make_sound we compute the sequence, transform
the elements to frequencies, generate tones, write the tones to file, and
play the sound file.

582 A Sequences and Difference Equations

As always, we collect the functions in a module and include a test
block where we can read the choice of sequence and the sequence length
from the command line. The complete module file look as follows:

from scitools.sound import *
from scitools.std import *

def oscillations(N):
x = zeros(N+1)
for n in range(N+1):

x[n] = exp(-4*n/float(N))*sin(8*pi*n/float(N))
return x

def logistic(N):
x = zeros(N+1)
x[0] = 0.01
q = 2
for n in range(1, N+1):

x[n] = x[n-1] + q*x[n-1]*(1 - x[n-1])
return x

def make_sound(N, seqtype):
filename = ’tmp.wav’
x = eval(seqtype)(N)
Convert x values to frequences around 440
freqs = 440 + x*200
plot(range(N+1), freqs, ’ro’)
Generate tones
tones = []
duration = 30.0/N # 30 sec sound in total
for n in range(N+1):

tones.append(max_amplitude*note(freqs[n], duration, 1))
data = concatenate(tones)
write(data, filename)
data = read(filename)
play(filename)

if __name__ == ’__main__’:
try:

seqtype = sys.argv[1]
N = int(sys.argv[2])

except IndexError:
print ’Usage: %s oscillations|logistic N’ % sys.argv[0]
sys.exit(1)

make_sound(N, seqtype)

This code should be quite easy to read at the present stage in the book.
However, there is one statement that deserves a comment:

x = eval(seqtype)(N)

The seqtype argument reflects the type of sequence and is a string that
the user provides on the command line. The values of the string equal
the function names oscillations and logistic. With eval(seqtype)

we turn the string into a function name. For example, if seqtype is
’logistic’, performing an eval(seqtype)(N) is the same as if we had
written logistic(N). This technique allows the user of the program to
choose a function call inside the code. Without eval we would need to
explicitly test on values:

A.3 Exercises 583

if seqtype ==’logistic’:
x = logistic(N)

elif seqtype ==’oscillations’:
x = oscillations(N)

This is not much extra code to write in the present example, but if we
have a large number of functions generating sequences, we can save a
lot of boring if-else code by using the eval construction.

The next step, as a reader who have understood the problem and
the implementation above, is to run the program for two cases: the
oscillations sequence with N = 40 and the logistic sequence with
N = 100. By altering the q parameter to lower values, you get other
sounds, typically quite boring sounds for non-oscillating logistic growth
(q < 1). You can also experiment with other transformations of the
form (A.46), e.g., increasing the frequency variation from 200 to 400.

A.3 Exercises

Exercise A.1. Determine the limit of a sequence.
Given the sequence

an =
7 + 1/n

3− 1/n2
,

make a program that computes and prints out an for n = 1, 2, . . . , N .
Read N from the command line. Does an approach a finite limit when
n → ∞? Name of program file: sequence_limit1.py. �

Exercise A.2. Determine the limit of a sequence.
Solve Exercise A.1 when the sequence of interest is given by

Dn =
sin(2−n)

2−n
.

Name of program file: sequence_limit2.py. �

Exercise A.3. Experience convergence problems.
Given the sequence

Dn =
f(x+ h)− f(x)

h
, h = 2−n (A.47)

make a function D(f, x, N) that takes a function f(x), a value x, and
the number N of terms in the sequence as arguments, and returns an
array with the Dn values for n = 0, 1, . . . , N − 1. Make a call to the D

function with f(x) = sinx, x = 0, and N = 80. Plot the evolution of
the computed Dn values, using small circles for the data points.

Make another call to D where x = π and plot this sequence in a
separate figure. What would be your expected limit? Why do the com-

584 A Sequences and Difference Equations

putations go wrong for large N? (Hint: Print out the numerator and
denominator in Dn.) Name of program file: sequence_limits3.py. �

Exercise A.4. Compute π via sequences.
The following sequences all converge to π:

(an)
∞
n=1, an = 4

n∑
k=1

(−1)k+1

2k − 1
,

(bn)
∞
n=1, bn =

(
6

n∑
k=1

k−2

)1/2

,

(cn)
∞
n=1, cn =

(
90

n∑
k=1

k−4

)1/4

,

(dn)
∞
n=1, dn =

6√
3

n∑
k=0

(−1)k

3k(2k + 1)
,

(en)
∞
n=1, en = 16

n∑
k=0

(−1)k

52k+1(2k + 1)
− 4

n∑
k=0

(−1)k

2392k+1(2k + 1)
.

Make a function for each sequence that returns an array with the el-
ements in the sequence. Plot all the sequences, and find the one that
converges fastest toward the limit π. Name of program file: pi.py. �

Exercise A.5. Reduce memory usage of difference equations.
Consider the program growth_years.py from Appendix A.1.1. Since

xn depends on xn−1 only, we do not need to store all the N + 1 xn
values. We actually only need to store xn and its previous value xn−1.
Modify the program to use two variables for xn and not an array. Also
avoid the index_set list and use an integer counter for n and a while

instead. (Of course, without the arrays it is not possible to plot the
development of xn, so you have to remove the plot call.) Name of
program file: growth_years_efficient.py. �

Exercise A.6. Compute the development of a loan.
Solve (A.16)–(A.17) for n = 1, 2, . . . , N in a Python function. Name

of program file: loan.py. �

Exercise A.7. Solve a system of difference equations.
Solve (A.32)–(A.33) by generating the xn and cn sequences in

a Python function. Let the function return the computed se-
quences as arrays. Plot the xn sequence. Name of program file:
fortune_and_inflation1.py. �

Exercise A.8. Extend the model (A.32)–(A.33).
In the model (A.32)–(A.33) the new fortune is the old one, plus the

interest, minus the consumption. During year n, xn is normally also

A.3 Exercises 585

reduced with t percent tax on the earnings xn−1 − xn−2 in year n− 1.
Extend the model with an appropriate tax term, modify the program
from Exercise A.7, and plot xn with tax (t = 28) and without tax
(t = 0). Name of program file: fortune_and_inflation2.py. �

Exercise A.9. Experiment with the program from Exer. A.8.
Suppose you expect to live for N years and can accept that the for-

tune xn vanishes after N years. Experiment with the program from
Exercise A.8 for how large the initial c0 can be in this case. Choose
some appropriate values for p, q, I, and t. Name of program file:
fortune_and_inflation3.py. �

Exercise A.10. Change index in a difference equation.
A mathematically equivalent equation to (A.5) is

xi+1 = xi +
p

100
xi, (A.48)

since the name of the index can be chosen arbitrarily. Suppose someone
has made the following program for solving (A.48) by a slight editing
of the program growth1.py:

from scitools.std import *
x0 = 100 # initial amount
p = 5 # interest rate
N = 4 # number of years
index_set = range(N+1)
x = zeros(len(index_set))

Compute solution
x[0] = x0
for i in index_set[1:]:

x[i+1] = x[i] + (p/100.0)*x[i]
print x
plot(index_set, x, ’ro’, xlabel=’years’, ylabel=’amount’)

This program does not work. Make a correct version, but keep the
difference equations in its present form with the indices i+1 and i.
Name of program file: growth1_index_ip1.py. �

Exercise A.11. Construct time points from dates.
A certain quantity p (which may be an interest rate) is piecewise

constant and undergoes changes at some specific dates, e.g.,

p changes to

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

4.5 on Jan 4, 2009
4.75 on March 21, 2009
6.0 on April 1, 2009
5.0 on June 30, 2009
4.5 on Nov 1, 2009
2.0 on April 1, 2010

(A.49)

Given a start date d1 and an end date d2, fill an array p with the right
p values, where the array index counts days. Use the datetime module

586 A Sequences and Difference Equations

to compute the number of days between dates. Name of program file:
dates2days.py. �
Exercise A.12. Solve nonlinear equations by Newton’s method.

Import the Newton function from the Newton.py file from Ap-
pendix A.1.10 to solve the following nonlinear algebraic equations:

sinx = 0, (A.50)

x = sinx, (A.51)

x5 = sinx, (A.52)

x4 sinx = 0, (A.53)

x4 = 0, (A.54)

x10 = 0, (A.55)

tanhx = x10. (A.56)

Implement the f(x) and f ′(x) functions, required by Newton’s method,
for each of the nonlinear equations. Collect the names of the f(x) and
f ′(x) in a list, and make a for loop over this list to call the Newton

function for each equation. Read the starting point x0 from the com-
mand line. Print out the evolution of the roots (based on the info list)
for each equation. You will need to carefully plot the various f(x) func-
tions to understand how Newton’s method will behave in each case for
different starting values. Find a starting value x0 value for each equa-
tion so that Newton’s method will converge toward the root x = 0.
Name of program file: Newton_examples.py. �
Exercise A.13. Visualize the convergence of Newton’s method.

Let x0, x1, . . . , xN be the sequence of roots generated by New-
ton’s method applied to a nonlinear algebraic equation f(x) =
0 (cf. Appendix A.1.10). In this exercise, the purpose is to plot
the sequences (xn)

N
n=0 and (|f(xn)|)Nn=0. Make a general function

Newton_plot(f, x, dfdx, epsilon=1E-7) for this purpose. The argu-
ments f and dfdx are Python functions representing the f(x) function
in the equation and its derivative f ′(x), respectively. Newton’s method
is run until |f(xN)| ≤ ε, and the ε value is stored in the epsilon ar-
gument. The Newton_plot function should make two separate plots of
(xn)

N
n=0 and (|f(xn)|)Nn=0 on the screen and also save these plots to

PNG files. Because of the potentially wide scale of values that |f(xn)|
may exhibit, it may be wise to use a logarithmic scale on the y axis.
(Hint: You can save quite some coding by calling the improved Newton

function from Appendix A.1.10, which is available in the Newtonmodule
in src/diffeq/Newton.py.)

Demonstrate the function on the equation x6 sinπx = 0, with
ε = 10−13. Try different starting values for Newton’s method: x0 =
−2.6,−1.2, 1.5, 1.7, 0.6. Compare the results with the exact solutions
x = . . . ,−2− 1, 0, 1, 2, Name of program file: Newton2.py. �

A.3 Exercises 587

Exercise A.14. Implement the Secant method.
Newton’s method (A.34) for solving f(x) = 0 requires the derivative

of the function f(x). Sometimes this is difficult or inconvenient. The
derivative can be approximated using the last two approximations to
the root, xn−2 and xn−1:

f ′(xn−1) ≈
f(xn−1)− f(xn−2)

xn−1 − xn−2
.

Using this approximation in (A.34) leads to the Secant method:

xn = xn−1 −
f(xn−1)(xn−1 − xn−2)

f(xn−1)− f(xn−2)
, x0, x1 given. (A.57)

Here n = 2, 3, Make a program that applies the Secant method to
solve x5 = sinx. Name of program file: Secant.py. �

Exercise A.15. Test different methods for root finding.
Make a program for solving f(x) = 0 by Newton’s method (Ap-

pendix A.1.10), the Bisection method (Chapter 4.6.2), and the Secant
method (Exercise A.14). For each method, the sequence of root ap-
proximations should be written out (nicely formatted) on the screen.
Read f(x), f ′(x), a, b, x0, and x1 from the command line. Newton’s
method starts with x0, the Bisection method starts with the interval
[a, b], whereas the Secant method starts with x0 and x1.

Run the program for each of the equations listed in Exercise A.12.
You should first plot the f(x) functions as suggested in that exercise so
you know how to choose x0, x1, a, and b in each case. Name of program
file: root_finder_examples.py. �

Exercise A.16. Make difference equations for the Midpoint rule.
Use the ideas of Appendix A.1.7 to make a similar system of

difference equations and corresponding implementation for the Mid-
point integration rule from Exercise 3.8. Name of program file:
diffeq_midpoint.py. �

Exercise A.17. Compute the arc length of a curve.
Sometimes one wants to measure the length of a curve y = f(x) for

x ∈ [a, b]. The arc length from f(a) to some point f(x) is denoted by
s(x) and defined through an integral

s(x) =

∫ x

a

√
1 +

[
f ′(ξ)

]2
dξ. (A.58)

We can compute s(x) via difference equations as explained in Ap-
pendix A.1.7. Make a Python function arclength(f, a, b, n) that re-
turns an array s with s(x) values for n uniformly spaced coordinates x
in [a, b]. Here f(x) is the Python implementation of the function that

588 A Sequences and Difference Equations

defines the curve we want to compute the arc length of. How can you
test that the arclength function works correctly? Test the function on

f(x) =

∫ x

−2
=

1√
2π

e−4t2dt, x ∈ [−2, 2].

Compute f(x) and plot it together with s(x). Name of program file:
arclength.py. �

Exercise A.18. Find difference equations for computing sinx.
The purpose of this exercise is to derive and implement difference

equations for computing a Taylor polynomial approximation to sinx,
using the same ideas as in (A.24)–(A.25) for a Taylor polynomial ap-
proximation to ex in Appendix A.1.8.

The Taylor series for sinx is presented in Exercise 5.21, Equa-
tion (5.21) on page 248. To compute S(x;n) efficiently, we try to com-
pute a new term from the last computed term. Let S(x;n) =

∑n
j=0 aj ,

where the expression for a term aj follows from the formula (5.21). De-
rive the following relation between two consecutive terms in the series,

aj = − x2

(2j + 1)2j
aj−1. (A.59)

Introduce sj = S(x; j − 1) and define s0 = 0. We use sj to accumulate
terms in the sum. For the first term we have a0 = x. Formulate a system
of two difference equations for sj and aj in the spirit of (A.24)–(A.25).
Implement this system in a function sine_Taylor(x, n), which returns
sn+1 and |an+1|. The latter is the first neglected term in the sum (since
sn+1 =

∑n
j=0 aj) and may act as a rough measure of the size of the

error in the approximation.
Verify the implementation by computing the difference equations

for n = 2 by hand (or in a separate program) and comparing with
the output from the sine_Taylor function. Also make a table of sn for
various x and n values to verify that the accuracy of a Taylor poly-
nomial improves as n increases and x decreases. Be aware of the fact
that sine_Taylor(x, n) can give extremely inaccurate approximations
to sinx if x is not sufficiently small and n sufficiently large. Name of
program file: sin_Taylor_series_diffeq.py. �

Exercise A.19. Find difference equations for computing cosx.
Carry out the steps in Exercise A.18, but do it for the Taylor se-

ries of cosx instead of sinx (look up the Taylor series for cosx in a
mathematics textbook or search on the Internet). Name of program
file: cos_Taylor_series_diffeq.py. �

Exercise A.20. Make a guitar-like sound.
Given start values x0, x1, . . . , xp, the following difference equation is

known to create guitar-like sound:

A.3 Exercises 589

xn =
1

2
(xn−p + xn−p−1), n = p+ 1, . . . , N. (A.60)

With a sampling rate r, the frequency of this sound is given by r/p.
Make a program with a function solve(x, p) which returns the solu-
tion array x of (A.60). To initialize the array x[0:p+1] we look at two
methods, which can be implemented in two alternative functions:

1. x0 = 1, x1 = x2 = · · · = xp = 0
2. x0, . . . , xp are uniformly distributed random numbers in [−1, 1]

Import max_amplitude, write, and play from the scitools.sound mod-
ule. Choose a sampling rate r and set p = r/440 to create a 440 Hz tone
(A). Create an array x1 of zeros with length 3r such that the tone will
last for 3 seconds. Initialize x1 according to method 1 above and solve
(A.60). Multiply the x1 array by max_amplitude. Repeat this process
for an array x2 of length 2r, but use method 2 for the initial values
and choose p such that the tone is 392 Hz (G). Concatenate x1 and x2,
call write and then play to play the sound. As you will experience, this
sound is amazingly similar to the sound of a guitar string, first playing
A for 3 seconds and then playing G for 2 seconds. (The method (A.60)
is called the Karplus-Strong algorithm and was discovered in 1979 by a
researcher, Kevin Karplus, and his student Alexander Strong, at Stan-
ford University.) Name of program file: guitar_sound.py. �

Exercise A.21. Damp the bass in a sound file.
Given a sequence x0, . . . , xN−1, the following filter transforms the

sequence to a new sequence y0, . . . , yN−1:

yn =

⎧⎨
⎩

xn, n = 0
−1

4(xn−1 − 2xn + xn+1), 1 ≤ n ≤ N − 2
xn, n = N − 1

(A.61)

If xn represents sound, yn is the same sound but with the bass damped.
Load some sound file (e.g., the one from Exercise A.20) or call

x = scitools.sound.Nothing_Else_Matters(echo=True)

to get a sound sequence. Apply the filter (A.61) and play the result-
ing sound. Plot the first 300 values in the xn and yn signals to see
graphically what the filter does with the signal. Name of program file:
damp_bass.py. �

Exercise A.22. Damp the treble in a sound file.
Solve Exercise A.21 to get some experience with coding a filter and

trying it out on a sound. The purpose of this exercise is to explore some
other filters that reduce the treble instead of the bass. Smoothing the
sound signal will in general damp the treble, and smoothing is typically
obtained by letting the values in the new filtered sound sequence be an
average of the neighboring values in the original sequence.

590 A Sequences and Difference Equations

The simplest smoothing filter can apply a standard average of three
neighboring values:

yn =

⎧⎨
⎩

xn, n = 0
1
3(xn−1 + xn + xn+1), 1 ≤ n ≤ N − 2
xn, n = N − 1

(A.62)

Two other filters put less emphasis on the surrounding values:

yn =

⎧⎨
⎩

xn, n = 0
1
4(xn−1 + 2xn + xn+1), 1 ≤ n ≤ N − 2
xn, n = N − 1

(A.63)

yn =

⎧⎨
⎩

xn, n = 0, 1
1
16(xn−2 + 4xn−1 + 6xn + 4xn+1 + xn+2), 2 ≤ n ≤ N − 3
xn, n = N − 2, N − 1

(A.64)
Apply all these three filters to a sound file and listen to the result.
Plot the first 300 values in the xn and yn signals for each of the three
filters to see graphically what the filter does with the signal. Name of
program file: damp_treble.py. �

Exercise A.23. Demonstrate oscillatory solutions of (A.13).
Modify the growth_logistic.py program from Appendix A.1.5 to

solve the equation (A.13) on page 566. Read the input parameters y0,
q, and N from the command line.

Equation (A.13) has the solution yn = 1 as n → ∞. Demonstrate,
by running the program, that this is the case when y0 = 0.3, q = 1,
and N = 50.

For larger q values, yn does not approach a constant limit, but yn
oscillates instead around the limiting value. Such oscillations are some-
times observed in wildlife populations. Demonstrate oscillatory solu-
tions when q is changed to 2 and 3.

It could happen that yn stabilizes at a constant level for larger N .
Demonstrate that this is not the case by running the program with
N = 1000. Name of program file: growth_logistic2.py. �

Exercise A.24. Improve the program from Exer. A.23.
It is tedious to run a program like the one from Exercise A.23 re-

peatedly for a wide range of input parameters. A better approach is
to let the computer do the manual work. Modify the program from
Exercise A.23 such that the computation of yn and the plot is made
in a function. Let the title in the plot contain the parameters y0 and q
(N is easily visible from the x axis). Also let the name of the plot file
reflect the values of y0, q, and N . Then make loops over y0 and q to
perform the following more comprehensive set of experiments:

• y0 = 0.01, 0.3

A.3 Exercises 591

• q = 0.1, 1, 1.5, 1.8, 2, 2.5, 3
• N = 50

How does the initial condition (the value y0) seem to influence the
solution?

The keyword argument show=False can be used in the plot call if
you do not want all the plot windows to appear on the screen. Name
of program file: growth_logistic3.py. �

Exercise A.25. Generate an HTML report.
Extend the program made in Exercise A.24 with a report containing

all the plots. The report can be written in HTML and displayed by a
web browser. The plots must then be generated in PNG format. The
source of the HTML file will typically look as follows:

<html>
<body>
<p>
<p>
<p>
<p>
...
<p>
</html>
</body>

Let the program write out the HTML text, either to the screen or to a
file (cf. Chapter 6.5). When writing to the screen, redirect the output
to a file,

Terminal

growth_logistic4.py > report.html

The file report.html can be loaded into a web browser.
You may let the function making the plots return the name of the

plotfile such that this string can be inserted in the HTML file. Name
of program file: growth_logistic4.py. �

Exercise A.26. Simulate the price of wheat.
The demand for wheat in year t is given by

Dt = apt + b,

where a < 0, > 0, and pt is the price of wheat. Let the supply of wheat
be

St = Apt−1 +B + ln(1 + pt−1),

where A and B are given constants. We assume that the price pt adjusts
such that all the produced wheat is sold. That is, Dt = St.

For A = 1, a = −3, b = 5, B = 0, find from numerical computations,
a stable price such that the production of wheat from year to year is
constant. That is, find p such that ap+ b = Ap+B + ln(1 + p).

Assume that in a very dry year the production of wheat is much less
than planned. Given that price this year, p0, is 4.5 and Dt = St, com-

592 A Sequences and Difference Equations

pute in a program how the prices p1, p2, . . . , pN develop. This implies
solving the difference equation

apt + b = Apt−1 +B + ln(1 + pt−1).

From the pt values, compute St and plot the points (pt, St) for t =
0, 1, 2, . . . , N . How do the prices move when N → ∞? Name of program
file: wheat.py. �

Introduction to Discrete Calculus B

This Appendix is Authored by Aslak Tveito

In this chapter we will discuss how to differentiate and integrate func-
tions on a computer. To do that, we have to care about how to treat
mathematical functions on a computer. Handling mathematical func-
tions on computers is not entirely straightforward: A function f(x)
contains and infinite amount of information (function values at an in-
finite number of x values on an interval), while the computer can only
store a finite1 amount of data. Think about the cosx function. There
are typically two ways we can work with this function on a computer.
One way is to run an algorithm, like that in Exercise 3.30 on page 130,
or we simply call math.cos(x) (which runs a similar type of algorithm),
to compute an approximation to cosx for a given x, using a finite num-
ber of calculations. The other way is to store cosx values in a table for a
finite number of x values2 and use the table in a smart way to compute
cosx values. This latter way, known as a discrete representation of a
function, is in focus in the present chapter. With a discrete function
representation, we can easily integrate and differentiate the function
too. Read on to see how we can do that.

The folder src/discalc contains all the program example files re-
ferred to in this chapter.

B.1 Discrete Functions

Physical quantities, such as temperature, density, and velocity, are usu-
ally defined as continuous functions of space and time. However, as

1 Allow yourself a moment or two to think about the terms “finite” and “infinite”; infinity
is not an easy term, but it is not infinitely difficult. Or is it?
2 Of course, we need to run an algorithm to populate the table with cos x numbers.

H.P. Langtangen, A Primer on Scientific Programming with Python,
Texts in Computational Science and Engineering 6,

DOI 10.1007/978-3-642-30293-0, c© Springer-Verlag Berlin Heidelberg 2012

593

http://dx.doi.org/10.1007/978-3-642-30293-0

594 B Introduction to Discrete Calculus

mentioned in above, discrete versions of the functions are more conve-
nient on computers. We will illustrate the concept of discrete functions
through some introductory examples. In fact, we used discrete functions
in Chapter 5 to plot curves: We defined a finite set of coordinates x and
stored the corresponding function values f(x) in an array. A plotting
program would then draw straight lines between the function values.
A discrete representation of a continuous function is, from a program-
ming point of view, nothing but storing a finite set of coordinates and
function values in an array. Nevertheless, we will in this chapter be
more formal and describe discrete functions by precise mathematical
terms.

B.1.1 The Sine Function

Suppose we want to generate a plot of the sine function for values of
x between 0 and π. To this end, we define a set of x-values and an
associated set of values of the sine function. More precisely, we define
n+ 1 points by

xi = ih for i = 0, 1, . . . , n (B.1)

where h = π/n and n � 1 is an integer. The associated function values
are defined as

si = sin(xi) for i = 0, 1, . . . , n. (B.2)

Mathematically, we have a sequence of coordinates (xi)
n
i=0 and of func-

tion values (si)
n
i=0 (see the start of Appendix A for an explanation of

the notation and the sequence concept). Often we “merge” the two se-
quences to one sequence of points: (xi, si)

n
i=0. Sometimes we also use

a shorter notation, just xi, si, or (xi, si) if the exact limits are not of
importance. The set of coordinates (xi)

n
i=0 constitutes a mesh or a

grid. The individual coordinates xi are known as nodes in the mesh
(or grid). The discrete representation of the sine function on [0, π] con-
sists of the mesh and the corresponding sequence of function values
(si)

n
i=0 at the nodes. The parameter n is often referred to as the mesh

resolution.
In a program, we represent the mesh by a coordinate array, say x, and

the function values by another array, say s. To plot the sine function
we can simply write

from scitools.std import *

n = int(sys.argv[1])

x = linspace(0, pi, n+1)
s = sin(x)
plot(x, s, legend=’sin(x), n=%d’ % n, hardcopy=’tmp.eps’)

Figure B.1 shows the resulting plot for n = 5, 10, 20 and 100. As
pointed out in Chapter 5, the curve looks smoother the more points

B.1 Discrete Functions 595

we use, and since sin(x) is a smooth function, the plots in Figures B.1a
and B.1b do not look sufficiently good. However, we can with our eyes
hardly distinguish the plot with 100 points from the one with 20 points,
so 20 points seem sufficient in this example.

Fig. B.1 Plots of sin(x) with various n.

There are no tests on the validity of the input data (n) in the previous
program. A program including these tests reads3:

#!/usr/bin/env python
from scitools.std import *

try:
n = int(sys.argv[1])

except:
print "usage: %s n" %sys.argv[0]
sys.exit(1)

x = linspace(0, pi, n+1)
s = sin(x)
plot(x, s, legend=’sin(x), n=%d’ % n, hardcopy=’tmp.eps’)

Such tests are important parts of a good programming philosophy.
However, for the programs displayed in this and the next chapter, we
skip such tests in order to make the programs more compact and read-
able as part of the rest of the text and to enable focus on the mathe-
matics in the programs. In the versions of these programs in the files

3 For an explanation of the first line of this program, see Appendix H.1.

596 B Introduction to Discrete Calculus

that can be downloaded you will, hopefully, always find a test on input
data.

B.1.2 Interpolation

Suppose we have a discrete representation of the sine function:
(xi, si)

n
i=0. At the nodes we have the exact sine values si, but what

about the points in between these nodes? Finding function values be-
tween the nodes is called interpolation, or we can say that we interpolate
a discrete function.

A graphical interpolation procedure could be to look at one of the
plots in Figure B.1 to find the function value corresponding to a point
x between the nodes. Since the plot is a straight line from node value
to node value, this means that a function value between two nodes is
found from a straight line approximation4 to the underlying continuous
function. We formulate this procedure precisely in terms of mathemat-
ics in the next paragraph.

Assume that we know that a given x∗ lies in the interval from x = xk
to xk+1, where the integer k is given. In the interval xk � x < xk+1, we
define the linear function that passes through (xk, sk) and (xk+1, sk+1):

Sk(x) = sk +
sk+1 − sk
xk+1 − xk

(x− xk). (B.3)

That is, Sk(x) coincides with sin(x) at xk and xk+1, and between these
nodes, Sk(x) is linear. We say that Sk(x) interpolates the discrete func-
tion (xi, si)

n
i=0 on the interval [xk, xk+1].

B.1.3 Evaluating the Approximation

Given the values (xi, si)
n
i=0 and the formula (B.3), we want to compute

an approximation of the sine function for any x in the interval from
x = 0 to x = π. In order to do that, we have to compute k for a given
value of x. More precisely, for a given x we have to find k such that
xk � x � xk+1. We can do that by defining

k =
x/h�

where the function
z� denotes the largest integer that is smaller than z.
In Python,
z� is computed by int(z). The program below takes x and
n as input and computes the approximation of sin(x). The program

4 Strictly speaking, we also assume that the function to be interpolated is rather smooth.

It is easy to see that if the function is very wild, i.e., the values of the function changes very
rapidly, this procedure may fail even for very large values of n. Chapter 5.4.2 provides an

example.

B.1 Discrete Functions 597

prints the approximation S(x) and the exact5 value of sin(x) so we can
look at the development of the error when n is increased.

from numpy import *
import sys

xp = eval(sys.argv[1])
n = int(sys.argv[2])

def S_k(k):
return s[k] + \

((s[k+1] - s[k])/(x[k+1] - x[k]))*(xp - x[k])
h = pi/n
x = linspace(0, pi, n+1)
s = sin(x)
k = int(xp/h)

print ’Approximation of sin(%s): ’ % xp, S_k(k)
print ’Exact value of sin(%s): ’ % xp, sin(xp)
print ’Eror in approximation: ’, sin(xp) - S_k(k)

To study the approximation, we put x =
√
2 and use the program

eval_sine.py for n = 5, 10 and 20.

Terminal

eval_sine.py’sqrt(2)’ 5
Approximation of sin(1.41421356237): 0.951056516295
Exact value of sin(1.41421356237): 0.987765945993
Eror in approximation: 0.0367094296976

Terminal

eval_sine.py’sqrt(2)’ 10
Approximation of sin(1.41421356237): 0.975605666221
Exact value of sin(1.41421356237): 0.987765945993
Eror in approximation: 0.0121602797718

Terminal

eval_sine.py’sqrt(2)’ 20
Approximation of sin(1.41421356237): 0.987727284363
Exact value of sin(1.41421356237): 0.987765945993
Eror in approximation: 3.86616296923e-05

Note that the error is reduced as the n increases.

B.1.4 Generalization

In general, we can create a discrete version of a continuous function as
follows. Suppose a continuous function f(x) is defined on an interval

5 The value is not really exact – it is the value of sin(x) provided by the computer,
math.sin(x), and this value is calculated from an algorithm that only yields an approxi-

mation to sin(x). Exercise 3.30 provides an example of the type of algorithm in question.

598 B Introduction to Discrete Calculus

ranging from x = a to x = b, and let n � 1, be a given integer. Define
the distance between nodes,

h =
b− a

n
,

and the nodes
xi = a+ ih for i = 0, 1, . . . , n. (B.4)

The discrete function values are given by

yi = f(xi) for i = 0, 1, . . . , n. (B.5)

Now, (xi, yi)
n
i=0 is the discrete version of the continuous function f(x).

The program discrete_func.py takes f, a, b and n as input, computes
the discrete version of f , and then applies the discrete version to make
a plot of f .

def discrete_func(f, a, b, n):
x = linspace(a, b, n+1)
y = zeros(len(x))
for i in xrange(len(x)):

y[i] = func(x[i])
return x, y

from scitools.std import *

f_formula = sys.argv[1]
a = eval(sys.argv[2])
b = eval(sys.argv[3])
n = int(sys.argv[4])
f = StringFunction(f_formula)

x, y = discrete_func(f, a, b, n)
plot(x, y)

We can equally well make a vectorized version of the discrete_func

function:

def discrete_func(f, a, b, n):
x = linspace(a, b, n+1)
y = f(x)
return x, y

However, for the StringFunction tool to work properly in vectorized
mode, we need to follow the recipe in Chapter 5.5.1:

f = StringFunction(f_formula)
f.vectorize(globals())

The corresponding vectorized program is found in the file
discrete_func_vec.py.

B.2 Differentiation Becomes Finite Differences 599

B.2 Differentiation Becomes Finite Differences

You have heard about derivatives. Probably, the following formulas are
well known to you:

d

dx
sin(x) = cos(x),

d

dx
ln(x) =

1

x
,

d

dx
xm = mxm−1.

But why is differentiation so important? The reason is quite simple:
The derivative is a mathematical expression of change. And change is,
of course, essential in modeling various phenomena. If we know the
state of a system, and we know the laws of change, then we can, in
principle, compute the future of that system. Appendix C treats this
topic in detail. Appendix A also computes the future of systems, based
on modeling changes, but without using differentiation. In Appendix C
you will see that reducing the step size in the difference equations in
Appendix A results in derivatives instead of pure differences. However,
differentiation of continuous functions is somewhat hard on a computer,
so we often end up replacing the derivatives by differences. This idea
is quite general, and every time we use a discrete representation of a
function, differentiation becomes differences, or finite differences as we
usually say.

The mathematical definition of differentiation reads

f ′(x) = lim
ε→0

f(x+ ε)− f(x)

ε
.

You have probably seen this definition many times, but have you under-
stood what it means and do you think the formula has a great practical
value? Although the definition requires that we pass to the limit, we
obtain quite good approximations of the derivative by using a fixed
positive value of ε. More precisely, for a small ε > 0, we have

f ′(x) ≈ f(x+ ε)− f(x)

ε
.

The fraction on the right-hand side is a finite difference approximation
to the derivative of f at the point x. Instead of using ε it is more
common to introduce h = ε in finite differences, i.e., we like to write

f ′(x) ≈ f(x+ h)− f(x)

h
. (B.6)

600 B Introduction to Discrete Calculus

B.2.1 Differentiating the Sine Function

In order to get a feeling for how good the approximation (B.6) to the
derivative really is, we explore an example. Consider f(x) = sin(x) and
the associated derivative f ′(x) = cos(x). If we put x = 1, we have

f ′(1) = cos(1) ≈ 0.540,

and by putting h = 1/100 in (B.6) we get

f ′(1) ≈ f(1 + 1/100)− f(1)

1/100
=

sin(1.01)− sin(1)

0.01
≈ 0.536.

The program forward_diff.py, shown below, computes the deriva-
tive of f(x) using the approximation (B.6), where x and h are input
parameters.

def diff(f, x, h):
return (f(x+h) - f(x))/float(h)

from math import *
import sys

x = eval(sys.argv[1])
h = eval(sys.argv[2])

approx_deriv = diff(sin, x, h)
exact = cos(x)
print ’The approximated value is: ’, approx_deriv
print ’The correct value is: ’, exact
print ’The error is: ’, exact - approx_deriv

Running the program for x = 1 and h = 1/1000 gives

Terminal

forward_diff.py 1 0.001
The approximated value is: 0.53988148036
The correct value is: 0.540302305868
The error is: 0.000420825507813

B.2.2 Differences on a Mesh

Frequently, we will need finite difference approximations to a discrete
function defined on a mesh. Suppose we have a discrete representation
of the sine function: (xi, si)

n
i=0, as introduced in Chapter B.1.1. We want

to use (B.6) to compute approximations to the derivative of the sine
function at the nodes in the mesh. Since we only have function values
at the nodes, the h in (B.6) must be the difference between nodes, i.e.,
h = xi+1−xi. At node xi we then have the following approximation of
the derivative:

zi =
si+1 − si

h
, (B.7)

B.2 Differentiation Becomes Finite Differences 601

for i = 0, 1, . . . , n − 1. Note that we have not defined an approximate
derivative at the end point x = xn. We cannot apply (B.7) directly
since sn+1 is undefined (outside the mesh). However, the derivative of
a function can also be defined as

f ′(x) = lim
ε→0

f(x)− f(x− ε)

ε
,

which motivates the following approximation for a given h > 0,

f ′(x) ≈ f(x)− f(x− h)

h
. (B.8)

This alternative approximation to the derivative is referred to as a
backward difference formula, whereas the expression (B.6) is known
as a forward difference formula. The names are natural: The forward
formula goes forward, i.e., in the direction of increasing x and i to col-
lect information about the change of the function, while the backward
formula goes backwards, i.e., toward smaller x and i value to fetch
function information.

At the end point we can apply the backward formula and thus define

zn =
sn − sn−1

h
. (B.9)

We now have an approximation to the derivative at all the nodes.
A plain specialized program for computing the derivative of the
sine function on a mesh and comparing this discrete derivative with
the exact derivative is displayed below (the name of the file is
diff_sine_plot1.py).

from scitools.std import *

n = int(sys.argv[1])

h = pi/n
x = linspace(0, pi, n+1)
s = sin(x)
z = zeros(len(s))
for i in xrange(len(z)-1):

z[i] = (s[i+1] - s[i])/h
Special formula for end point_
z[-1] = (s[-1] - s[-2])/h
plot(x, z)

xfine = linspace(0, pi, 1001) # for more accurate plot
exact = cos(xfine)
hold()
plot(xfine, exact)
legend(’Approximate function’,’Correct function’)
title(’Approximate and discrete functions, n=%d’ % n)

In Figure B.2 we see the resulting graphs for n = 5, 10, 20 and 100.
Again, we note that the error is reduced as n increases.

602 B Introduction to Discrete Calculus

Fig. B.2 Plots for exact and approximate derivatives of sin(x) with varying values of the
resolution n.

B.2.3 Generalization

The discrete version of a continuous function f(x) defined on an interval
[a, b] is given by (xi, yi)

n
i=0 where

xi = a+ ih,

and
yi = f(xi)

for i = 0, 1, . . . , n. Here, n � 1 is a given integer, and the spacing
between the nodes is given by

h =
b− a

n
.

A discrete approximation of the derivative of f is given by (xi, zi)
n
i=0

where

zi =
yi+1 − yi

h

i = 0, 1, . . . , n− 1, and

zn =
yn − yn−1

h
.

B.3 Integration Becomes Summation 603

The collection (xi, zi)
n
i=0 is the discrete derivative of the discrete version

(xi, fi)
n
i=0 of the continuous function f(x). The program below, found

in the file diff_func.py, takes f, a, b and n as input and computes the
discrete derivative of f on the mesh implied by a, b, and h, and then a
plot of f and the discrete derivative is made.

def diff(f, a, b, n):
x = linspace(a, b, n+1)
y = zeros(len(x))
z = zeros(len(x))
h = (b-a)/float(n)
for i in xrange(len(x)):

y[i] = func(x[i])
for i in xrange(len(x)-1):

z[i] = (y[i+1] - y[i])/h
z[n] = (y[n] - y[n-1])/h
return y, z

from scitools.std import *
f_formula = sys.argv[1]
a = eval(sys.argv[2])
b = eval(sys.argv[3])
n = int(sys.argv[4])

f = StringFunction(f_formula)
y, z = diff(f, a, b, n)
plot(x, y, ’r-’, x, z, ’b-’,

legend=(’function’, ’derivative’))

B.3 Integration Becomes Summation

Some functions can be integrated analytically. You may remember6 the
following cases, ∫

xmdx =
1

m+ 1
xm+1 for m �= −1,

∫
sin(x)dx = − cos(x),

∫
x

1 + x2
dx =

1

2
ln
(
x2 + 1

)
.

These are examples of so-called indefinite integrals. If the function can
be integrated analytically, it is straightforward to evaluate an associ-
ated definite integral. For example, we have7

6 Actually, we congratulate you if you remember the third one!
7 Recall, in general, that [

f(x)
]b
a
= f(b)− f(a).

604 B Introduction to Discrete Calculus

∫ 1

0
xmdx =

[
1

m+ 1
xm+1

]1
0

=
1

m+ 1
,

∫ π

0
sin(x)dx =

[
− cos(x)

]π
0
= 2,

∫ 1

0

x

1 + x2
dx =

[
1

2
ln
(
x2 + 1

)]1
0

=
1

2
ln 2.

But lots of functions cannot be integrated analytically and therefore
definite integrals must be computed using some sort of numerical ap-
proximation. Above, we introduced the discrete version of a function,
and we will now use this construction to compute an approximation of
a definite integral.

B.3.1 Dividing into Subintervals

Let us start by considering the problem of computing the integral of
sin(x) from x = 0 to x = π. This is not the most exciting or challenging
mathematical problem you can think of, but it is good practice to start
with a problem you know well when you want to learn a new method.
In Chapter B.1.1 we introduce a discrete function (xi, si)

n
i=0 where

h = π/n, si = sin(xi) and xi = ih for i = 0, 1, . . . , n. Furthermore, in
the interval xk � x < xk+1, we defined the linear function

Sk(x) = sk +
sk+1 − sk
xk+1 − xk

(x− xk).

We want to compute an approximation of the integral of the function
sin(x) from x = 0 to x = π. The integral

∫ π

0
sin(x)dx

can be divided into subintegrals defined on the intervals xk � x < xk+1,
leading to the following sum of integrals:

∫ π

0
sin(x)dx =

n−1∑
k=0

∫ xk+1

xk

sin(x)dx.

To get a feeling for this split of the integral, let us spell the sum out in
the case of only four subintervals. Then n = 4, h = π/4,

x0 = 0,

x1 = π/4,

x2 = π/2,

B.3 Integration Becomes Summation 605

x3 = 3π/4

x4 = π.

The interval from 0 to π is divided into four intervals of equal length,
and we can divide the integral similarly,

∫ π

0
sin(x)dx =

∫ x1

x0

sin(x)dx+

∫ x2

x1

sin(x)dx

+

∫ x3

x2

sin(x)dx+

∫ x4

x3

sin(x)dx. (B.10)

So far we have changed nothing – the integral can be split in this way
– with no approximation at all. But we have reduced the problem of
approximating the integral

∫ π

0
sin(x)dx

down to approximating integrals on the subintervals, i.e. we need ap-
proximations of all the following integrals

∫ x1

x0

sin(x)dx,

∫ x2

x1

sin(x)dx,

∫ x3

x2

sin(x)dx,

∫ x4

x3

sin(x)dx.

The idea is that the function to be integrated changes less over the
subintervals than over the whole domain [0, π] and it might be rea-
sonable to approximate the sine by a straight line, Sk(x), over each
subinterval. The integration over a subinterval will then be very easy.

B.3.2 Integration on Subintervals

The task now is to approximate integrals on the form
∫ xk+1

xk

sin(x)dx.

Since
sin(x) ≈ Sk(x)

on the interval (xk, xk+1), we have

∫ xk+1

xk

sin(x)dx ≈
∫ xk+1

xk

Sk(x)dx.

In Figure B.3 we have graphed Sk(x) and sin(x) on the interval
(xk, xk+1) for k = 1 in the case of n = 4. We note that the integral of
S1(x) on this interval equals the area of a trapezoid, and thus we have

606 B Introduction to Discrete Calculus

Fig. B.3 Sk(x) and sin(x) on the interval (xk, xk+1) for k = 1 and n = 4.

∫ x2

x1

S1(x)dx =
1

2

(
S1(x2) + S1(x1)

)
(x2 − x1),

so ∫ x2

x1

S1(x)dx =
h

2
(s2 + s1),

and in general we have
∫ xk+1

xk

sin(x)dx ≈ 1

2
(sk+1 + sk)(xk+1 − xk)

=
h

2
(sk+1 + sk).

B.3.3 Adding the Subintervals

By adding the contributions from each subinterval, we get

∫ π

0
sin(x)dx =

n−1∑
k=0

∫ xk+1

xk

sin(x)dx

≈
n−1∑
k=0

h

2
(sk+1 + sk),

so ∫ π

0
sin(x)dx ≈ h

2

n−1∑
k=0

(sk+1 + sk). (B.11)

In the case of n = 4, we have

B.3 Integration Becomes Summation 607

∫ π

0
sin(x)dx ≈ h

2

[
(s1 + s0) + (s2 + s1) + (s3 + s2) + (s4 + s3)

]

=
h

2

[
s0 + 2(s1+s2+s3) + s4

]
.

One can show that (B.11) can be alternatively expressed as8

∫ π

0
sin(x)dx ≈ h

2

[
s0 + 2

n−1∑
k=1

sk + sn

]
. (B.12)

This approximation formula is referred to as the Trapezoidal rule of
numerical integration. Using the more general program trapezoidal.py,
presented in the next section, on integrating

∫ π
0 sin(x)dx with n =

5, 10, 20 and 100 yields the numbers 1.5644, 1.8864, 1.9713, and 1.9998
respectively. These numbers are to be compared to the exact value 2.
As usual, the approximation becomes better the more points (n) we
use.

B.3.4 Generalization

An approximation of the integral

∫ b

a
f(x)dx

can be computed using the discrete version of a continuous function
f(x) defined on an interval [a, b]. We recall that the discrete version of
f is given by (xi, yi)

n
i=0 where

xi = a+ ih, and yi = f(xi)

for i = 0, 1, . . . , n. Here, n � 1 is a given integer and h = (b − a)/n.
The Trapezoidal rule can now be written as

∫ b

a
f(x)dx ≈ h

2

[
y0 + 2

n−1∑
k=1

yk + yn

]
.

The program trapezoidal.py implements the Trapezoidal rule for a
general function f .

def trapezoidal(f, a, b, n):
h = (b-a)/float(n)
I = f(a) + f(b)
for k in xrange(1, n, 1):

x = a + k*h
I += 2*f(x)

8 There are fewer arithmetic operations associated with (B.12) than with (B.11), so the

former will lead to faster code.

608 B Introduction to Discrete Calculus

I *= h/2
return I

from math import *
from scitools.StringFunction import StringFunction
import sys

def test(argv=sys.argv):
f_formula = argv[1]
a = eval(argv[2])
b = eval(argv[3])
n = int(argv[4])

f = StringFunction(f_formula)
I = trapezoidal(f, a, b, n)
print ’Approximation of the integral: ’, I

if __name__ == ’__main__’:
test()

We have made the file as module such that you can easily import the
trapezoidal function in another program. Let us do that: We make a
table of how the approximation and the associated error of an integral
are reduced as n is increased. For this purpose, we want to integrate∫ t2
t1

g(t)dt, where

g(t) = −ae−at sin(πwt) + πwe−at cos(πwt).

The exact integral G(t) =
∫
g(t)dt equals

G(t) = e−at sin(πwt).

Here, a and w are real numbers that we set to 1/2 and 1, respectively,
in the program. The integration limits are chosen as t1 = 0 and t2 = 4.
The integral then equals zero. The program and its output appear
below.

from trapezoidal import trapezoidal
from math import exp, sin, cos, pi

def g(t):
return -a*exp(-a*t)*sin(pi*w*t) + pi*w*exp(-a*t)*cos(pi*w*t)

def G(t): # integral of g(t)
return exp(-a*t)*sin(pi*w*t)

a = 0.5
w = 1.0
t1 = 0
t2 = 4
exact = G(t2) - G(t1)
for n in 2, 4, 8, 16, 32, 64, 128, 256, 512:

approx = trapezoidal(g, t1, t2, n)
print ’n=%3d approximation=%12.5e error=%12.5e’ % \

(n, approx, exact-approx)

n= 2 approximation= 5.87822e+00 error=-5.87822e+00
n= 4 approximation= 3.32652e-01 error=-3.32652e-01
n= 8 approximation= 6.15345e-02 error=-6.15345e-02

B.4 Taylor Series 609

n= 16 approximation= 1.44376e-02 error=-1.44376e-02
n= 32 approximation= 3.55482e-03 error=-3.55482e-03
n= 64 approximation= 8.85362e-04 error=-8.85362e-04
n=128 approximation= 2.21132e-04 error=-2.21132e-04
n=256 approximation= 5.52701e-05 error=-5.52701e-05
n=512 approximation= 1.38167e-05 error=-1.38167e-05

We see that the error is reduced as we increase n. In fact, as n is doubled
we realize that the error is roughly reduced by a factor of 4, at least
when n > 8. This is an important property of the Trapezoidal rule,
and checking that a program reproduces this property is an important
check of the validity of the implementation.

B.4 Taylor Series

The single most important mathematical tool in computational science
is the Taylor series. It is used to derive new methods and also for the
analysis of the accuracy of approximations. We will use the series many
times in this text. Right here, we just introduce it and present a few
applications.

B.4.1 Approximating Functions Close to One Point

Suppose you know the value of a function f at some point x0, and you
are interested in the value of f close to x. More precisely, suppose we
know f(x0) and we want an approximation of f(x0 + h) where h is a
small number. If the function is smooth and h is really small, our first
approximation reads

f(x0 + h) ≈ f(x0). (B.13)

That approximation is, of course, not very accurate. In order to derive
a more accurate approximation, we have to know more about f at x0.
Suppose that we know the value of f(x0) and f ′(x0), then we can find
a better approximation of f(x0 + h) by recalling that

f ′(x0) ≈
f(x0 + h)− f(x0)

h
.

Hence, we have
f(x0 + h) ≈ f(x0) + hf ′(x0). (B.14)

B.4.2 Approximating the Exponential Function

Let us be a bit more specific and consider the case of

f(x) = ex

around
x0 = 0.

610 B Introduction to Discrete Calculus

Since f ′(x) = ex, we have f ′(0) = 1, and then it follows from (B.14)
that

eh ≈ 1 + h.

The little program below (found in taylor1.py) prints eh and 1+h for
a range of h values.

from math import exp
for h in 1, 0.5, 1/20.0, 1/100.0, 1/1000.0:

print’h=%8.6f exp(h)=%11.5e 1+h=%g’ % (h, exp(h), 1+h)

h=1.000000 exp(h)=2.71828e+00 1+h=2
h=0.500000 exp(h)=1.64872e+00 1+h=1.5
h=0.050000 exp(h)=1.05127e+00 1+h=1.05
h=0.010000 exp(h)=1.01005e+00 1+h=1.01
h=0.001000 exp(h)=1.00100e+00 1+h=1.001

As expected, 1 + h is a good approximation to eh the smaller h is.

B.4.3 More Accurate Expansions

The approximations given by (B.13) and (B.14) are referred to as Tay-
lor series. You can read much more about Taylor series in any Calculus
book. More specifically, (B.13) and (B.14) are known as the zeroth- and
first-order Taylor series, respectively. The second-order Taylor series is
given by

f(x0 + h) ≈ f(x0) + hf ′(x0) +
h2

2
f ′′(x0), (B.15)

the third-order series is given by

f(x0 + h) ≈ f(x0) + hf ′(x0) +
h2

2
f ′′(x0) +

h3

6
f ′′′(x0), (B.16)

and the fourth-order series reads

f(x0 + h) ≈ f(x0) + hf ′(x0) +
h2

2
f ′′(x0) +

h3

6
f ′′′(x0) +

h4

24
f ′′′′(x0).

(B.17)
In general, the n-th order Taylor series is given by

f(x0 + h) ≈
n∑

k=0

hk

k!
f (k)(x0), (B.18)

where we recall that f (k) denotes the k-th derivative of f , and

k! = 1 · 2 · 3 · 4 · · · (k − 1) · k

is the factorial (cf. Exercise 3.19). By again considering f(x) = ex and
x0 = 0, we have

f(x0) = f ′(x0) = f ′′(x0) = f ′′′(x0) = f ′′′′(x0) = 1

B.4 Taylor Series 611

which gives the following Taylor series:

eh ≈ 1, zeroth-order,

eh ≈ 1 + h, first-order,

eh ≈ 1 + h+
1

2
h2, second-order,

eh ≈ 1 + h+
1

2
h2 +

1

6
h3, third-order,

eh ≈ 1 + h+
1

2
h2 +

1

6
h3 +

1

24
h4, fourth-order.

The program below, called taylor2.py, prints the error of these ap-
proximations for a given value of h (note that we can easily build up a
Taylor series in a list by adding a new term to the last computed term
in the list).

from math import exp
import sys
h = float(sys.argv[1])

Taylor_series = []
Taylor_series.append(1)
Taylor_series.append(Taylor_series[-1] + h)
Taylor_series.append(Taylor_series[-1] + (1/2.0)*h**2)
Taylor_series.append(Taylor_series[-1] + (1/6.0)*h**3)
Taylor_series.append(Taylor_series[-1] + (1/24.0)*h**4)

print’h =’, h
for order in range(len(Taylor_series)):

print’order=%d, error=%g’ % \
(order, exp(h) - Taylor_series[order])

By running the program with h = 0.2, we have the following output:

h = 0.2
order=0, error=0.221403
order=1, error=0.0214028
order=2, error=0.00140276
order=3, error=6.94248e-05
order=4, error=2.75816e-06

We see how much the approximation is improved by adding more terms.
For h = 3 all these approximations are useless:

h = 3.0
order=0, error=19.0855
order=1, error=16.0855
order=2, error=11.5855
order=3, error=7.08554
order=4, error=3.71054

However, by adding more terms we can get accurate results for
any h. The method from Appendix A.1.8 computes the Taylor se-
ries for ex with n terms in general. Running the associated program
exp_Taylor_series_diffeq.py for various values of h shows how much
is gained by adding more terms to the Taylor series. For h = 3,
e3 = 20.086 and we have

612 B Introduction to Discrete Calculus

n+ 1 Taylor series

2 4
4 13
8 19.846
16 20.086

For h = 50, e50 = 5.1847 · 1021 and we have

n+ 1 Taylor series

2 51
4 2.2134 · 104
8 1.7960 · 108
16 3.2964 · 1013
32 1.3928 · 1019
64 5.0196 · 1021
128 5.1847 · 1021

Here, the evolution of the series as more terms are added is quite dra-

matic (and impressive!).

B.4.4 Accuracy of the Approximation

Recall that the Taylor series is given by

f(x0 + h) ≈
n∑

k=0

hk

k!
f (k)(x0). (B.19)

This can be rewritten as an equality by introducing an error term,

f(x0 + h) =
n∑

k=0

hk

k!
f (k)(x0) +O

(
hn+1

)
. (B.20)

Let’s look a bit closer at this for f(x) = ex. In the case of n = 1, we
have

eh = 1 + h+O
(
h2

)
. (B.21)

This means that there is a constant c that does not depend on h such
that ∣∣eh − (1 + h)

∣∣ � ch2, (B.22)

so the error is reduced quadratically in h. This means that if we com-
pute the fraction

q1h =
|eh − (1 + h)|

h2
,

we expect it to be bounded as h is reduced. The program
taylor_err1.py prints q1h for h = 1/10, 1/20, 1/100 and 1/1000.

B.4 Taylor Series 613

from numpy import exp, abs

def q_h(h):
return abs(exp(h) - (1+h))/h**2

print " h q_h"
for h in 0.1, 0.05, 0.01, 0.001:

print "%5.3f %f" %(h, q_h(h))

We can run the program and watch the output:

Terminal

taylor_err1.py
h q_h

0.100 0.517092
0.050 0.508439
0.010 0.501671
0.001 0.500167

We observe that qh ≈ 1/2 and it is definitely bounded independent
of h. We can now rewrite all the approximations of eh defined above in
term of equalities:

eh = 1 +O(h), zeroth-order,

eh = 1 + h+O
(
h2

)
, first-order,

eh = 1 + h+
1

2
h2 +O

(
h3

)
, second-order,

eh = 1 + h+
1

2
h2 +

1

6
h3 +O

(
h4

)
, third-order,

eh = 1 + h+
1

2
h2 +

1

6
h3 +

1

24
h4 +O

(
h5

)
, fourth-order.

The program taylor_err2.py prints

q0h =
|eh − 1|

h
,

q1h =
|eh − (1 + h)|

h2
,

q2h =
|eh − (1 + h+ h2

2)|
h3

,

q3h =
|eh − (1 + h+ h2

2 + h3

6)|
h4

,

q4h =
|eh − (1 + h+ h2

2 + h3

6 + h4

24)|
h5

,

for h = 1/5, 1/10, 1/20 and 1/100.

from numpy import exp, abs

def q_0(h):
return abs(exp(h) - 1) / h

def q_1(h):

614 B Introduction to Discrete Calculus

return abs(exp(h) - (1 + h)) / h**2
def q_2(h):

return abs(exp(h) - (1 + h + (1/2.0)*h**2)) / h**3
def q_3(h):

return abs(exp(h) - (1 + h + (1/2.0)*h**2 + \
(1/6.0)*h**3)) / h**4

def q_4(h):
return abs(exp(h) - (1 + h + (1/2.0)*h**2 + (1/6.0)*h**3 + \

(1/24.0)*h**4)) / h**5
hlist = [0.2, 0.1, 0.05, 0.01]
print "%-05s %-09s %-09s %-09s %-09s %-09s" \

%("h", "q_0", "q_1", "q_2", "q_3", "q_4")
for h in hlist:

print "%.02f %04f %04f %04f %04f %04f" \
%(h, q_0(h), q_1(h), q_2(h), q_3(h), q_4(h))

By using the program, we get the following table:
h q_0 q_1 q_2 q_3 q_4
0.20 1.107014 0.535069 0.175345 0.043391 0.008619
0.10 1.051709 0.517092 0.170918 0.042514 0.008474
0.05 1.025422 0.508439 0.168771 0.042087 0.008403
0.01 1.005017 0.501671 0.167084 0.041750 0.008344

Again we observe that the error of the approximation behaves as indi-
cated in (B.20).

B.4.5 Derivatives Revisited

We observed above that

f ′(x) ≈ f(x+ h)− f(x)

h
.

By using the Taylor series, we can obtain this approximation directly,
and also get an indication of the error of the approximation. From
(B.20) it follows that

f(x+ h) = f(x) + hf ′(x) +O
(
h2

)
,

and thus

f ′(x) =
f(x+ h)− f(x)

h
+O(h), (B.23)

so the error is proportional to h. We can investigate if this is the
case through some computer experiments. Take f(x) = ln(x), so that
f ′(x) = 1/x. The program diff_ln_err.py prints h and

1

h

∣∣∣∣f ′(x)− f(x+ h)− f(x)

h

∣∣∣∣ (B.24)

at x = 10 for a range of h values.

def error(h):
return (1.0/h)*abs(df(x) - (f(x+h)-f(x))/h)

from math import log as ln

B.4 Taylor Series 615

def f(x):
return ln(x)

def df(x):
return 1.0/x

x = 10
hlist = []
for h in 0.2, 0.1, 0.05, 0.01, 0.001:

print "%.4f %4f" % (h, error(h))

From the output

0.2000 0.004934
0.1000 0.004967
0.0500 0.004983
0.0100 0.004997
0.0010 0.005000

we observe that the quantity in (B.24) is constant (≈ 0.5) independent
of h, which indicates that the error is proportional to h.

B.4.6 More Accurate Difference Approximations

We can also use the Taylor series to derive more accurate approxima-
tions of the derivatives. From (B.20), we have

f(x+ h) ≈ f(x) + hf ′(x) +
h2

2
f ′′(x) +O

(
h3

)
. (B.25)

By using −h instead of h, we get

f(x− h) ≈ f(x)− hf ′(x) +
h2

2
f ′′(x) +O

(
h3

)
. (B.26)

By subtracting (B.26) from (B.25), we have

f(x+ h)− f(x− h) = 2hf ′(x) +O
(
h3

)
,

and consequently

f ′(x) =
f(x+ h)− f(x− h)

2h
+O

(
h2

)
. (B.27)

Note that the error is now O(h2) whereas the error term of (B.23)
is O(h). In order to see if the error is actually reduced, let us compare
the following two approximations

f ′(x) ≈ f(x+ h)− f(x)

h
and f ′(x) ≈ f(x+ h)− f(x− h)

2h

by applying them to the discrete version of sin(x) on the interval (0, π).
As usual, we let n � 1 be a given integer, and define the mesh

xi = ih for i = 0, 1, . . . , n,

616 B Introduction to Discrete Calculus

where h = π/n. At the nodes, we have the functional values

si = sin(xi) for i = 0, 1, . . . , n,

and at the inner nodes we define the first (F) and second (S) order
approximations of the derivatives given by

dFi =
si+1 − si

h
,

and

dSi =
si+1 − si−1

2h
,

respectively for i = 1, 2, . . . , n−1. These values should be compared to
the exact derivative given by

di = cos(xi) for i = 1, 2, . . . , n− 1.

The following program, found in diff_1st2nd_order.py, plots the dis-
crete functions (xi, di)

n−1
i=1 , (xi, d

F
i)

n−1
i=1 , and (xi, d

S
i)

n−1
i=1 for a given n.

Note that the first three functions in this program are completely gen-
eral in that they can be used for any f(x) on any mesh. The special
case of f(x) = sin(x) and comparing first- and second-order formulas
is implemented in the example function. This latter function is called
in the test block of the file. That is, the file is a module and we can
reuse the first three functions in other programs (in particular, we can
use the third function in the next example).

def first_order(f, x, h):
return (f(x+h) - f(x))/h

def second_order(f, x, h):
return (f(x+h) - f(x-h))/(2*h)

def derivative_on_mesh(formula, f, a, b, n):
"""
Differentiate f(x) at all internal points in a mesh
on [a,b] with n+1 equally spaced points.
The differentiation formula is given by formula(f, x, h).
"""
h = (b-a)/float(n)
x = linspace(a, b, n+1)
df = zeros(len(x))
for i in xrange(1, len(x)-1):

df[i] = formula(f, x[i], h)
Return x and values at internal points only
return x[1:-1], df[1:-1]

def example(n):
a = 0; b = pi;
x, dF = derivative_on_mesh(first_order, sin, a, b, n)
x, dS = derivative_on_mesh(second_order, sin, a, b, n)
Accurate plot of the exact derivative at internal points
h = (b-a)/float(n)
xfine = linspace(a+h, b-h, 1001)
exact = cos(xfine)
plot(x, dF, ’r-’, x, dS, ’b-’, xfine, exact, ’y-’,

B.4 Taylor Series 617

legend=(’First-order derivative’,
’Second-order derivative’,
’Correct function’),

title=’Approximate and correct discrete ’\
’functions, n=%d’ % n)

Main program
from scitools.std import *
try:

n = int(sys.argv[1])
except:

print "usage: %s n" %sys.argv[0]
sys.exit(1)

example(n)

Fig. B.4 Plots of exact and approximate derivatives with various number of mesh points n.

The result of running the program with four different n values is
presented in Figure B.4. Observe that dSi is a better approximation to
di than dFi , and note that both approximations become very good as
n is getting large.

B.4.7 Second-Order Derivatives

We have seen that the Taylor series can be used to derive approxima-
tions of the derivative. But what about higher order derivatives? Next
we shall look at second order derivatives. From (B.20) we have

f(x0 + h) = f(x0) + hf ′(x0) +
h2

2
f ′′(x0) +

h3

6
f ′′′(x0) +O

(
h4

)
,

618 B Introduction to Discrete Calculus

and by using −h, we have

f(x0 − h) = f(x0)− hf ′(x0) +
h2

2
f ′′(x0)−

h3

6
f ′′′(x0) +O

(
h4

)
.

By adding these equations, we have

f(x0 + h) + f(x0 − h) = 2f(x0) + h2f ′′(x0) +O
(
h4

)
,

and thus

f ′′(x0) =
f(x0 − h)− 2f(x0) + f(x0 + h)

h2
+O

(
h2

)
. (B.28)

For a discrete function (xi, yi)
n
i=0, yi = f(xi), we can define the follow-

ing approximation of the second derivative,

di =
yi−1 − 2yi + yi+1

h2
. (B.29)

We can make a function, found in the file diff2nd.py, that evaluates
(B.29) on a mesh. As an example, we apply the function to

f(x) = sin
(
ex
)
,

where the exact second-order derivative is given by

f ′′(x) = ex cos
(
ex
)
−

(
sin

(
ex
))
e2x.

from diff_1st2nd_order import derivative_on_mesh
from scitools.std import *

def diff2nd(f, x, h):
return (f(x+h) - 2*f(x) + f(x-h))/(h**2)

def example(n):
a = 0; b = pi

def f(x):
return sin(exp(x))

def exact_d2f(x):
e_x = exp(x)
return e_x*cos(e_x) - sin(e_x)*exp(2*x)

x, d2f = derivative_on_mesh(diff2nd, f, a, b, n)
h = (b-a)/float(n)
xfine = linspace(a+h, b-h, 1001) # fine mesh for comparison
exact = exact_d2f(xfine)
plot(x, d2f, ’r-’, xfine, exact, ’b-’,

legend=(’Approximate derivative’,
’Correct function’),

title=’Approximate and correct second order ’\
’derivatives, n=%d’ % n,

hardcopy=’tmp.eps’)

n = int(sys.argv[1])

example(n)

B.5 Exercises 619

In Figure B.5 we compare the exact and the approximate derivatives for
n = 10, 20, 50, and 100. As usual, the error decreases when n becomes
larger, but note here that the error is very large for small values of n.

Fig. B.5 Plots of exact and approximate second-order derivatives with various mesh res-

olution n.

B.5 Exercises

Exercise B.1. Interpolate a discrete function.
In a Python function, represent the mathematical function

f(x) = exp
(
−x2

)
cos(2πx)

on a mesh consisting of q + 1 equally spaced points on [−1, 1], and
return 1) the interpolated function value at x = −0.45 and 2) the error
in the interpolated value. Call the function and write out the error for
q = 2, 4, 8, 16. Name of program file: interpolate_exp_cos.py �

Exercise B.2. Study a function for different parameter values.
Develop a program that creates a plot of the function f(x) =

sin(1
x+ε) for x in the unit interval, where ε > 0 is a given input param-

eter. Use n+ 1 nodes in the plot.

620 B Introduction to Discrete Calculus

(a) Test the program using n = 10 and ε = 1/5.
(b) Refine the program such that it plots the function for two values of

n; say n and n+ 10.
(c) How large do you have to choose n in order for the difference be-

tween these two functions to be less than 0.1? Hint: Each function
gives an array. Create a while loop and use the max function of the
arrays to retrieve the maximum value and compare these.

(d) Let ε = 1/10, and repeat (c).
(e) Let ε = 1/20, and repeat (c).
(f) Try to find a formula for how large n needs to be for a given value

of ε such that increasing n further does not change the plot so much
that it is visible on the screen. Note that there is no exact answer
to this question.

Name of program file: plot_sin_eps.py �

Exercise B.3. Study a function and its derivative.
Consider the function

f(x) = sin

(
1

x+ ε

)

for x ranging from 0 to 1, and the derivative

f ′(x) =
− cos(1

x+ε)

(x+ ε)2
.

Here, ε is a given input parameter.

(a) Develop a program that creates a plot of the derivative of f = f(x)
based on a finite difference approximation using n computational
nodes. The program should also graph the exact derivative given
by f ′ = f ′(x) above.

(b) Test the program using n = 10 and ε = 1/5.
(c) How large do you have to choose n in order for the difference be-

tween these two functions to be less than 0.1? Hint: Each function
gives an array. Create a while loop and use the max function of the
arrays to retrieve the maximum value and compare these.

(d) Let ε = 1/10, and repeat (c).
(e) Let ε = 1/20, and repeat (c).
(f) Try determine experimentally how large n needs to be for a given

value of ε such that increasing n further does not change the plot
so much that you can view it on the screen. Note, again, that there
is no exact solution to this problem.

Name of program file: sin_deriv.py �

Exercise B.4. Use the Trapezoidal method.
The purpose of this exercise is to test the program trapezoidal.py.

B.5 Exercises 621

(a) Let

a =

∫ 1

0
e4xdx =

1

4
e4 − 1

4
.

Compute the integral using the program trapezoidal.py and, for a
given n, let a(n) denote the result. Try to find, experimentally, how
large you have to choose n in order for

∣∣a− a(n)
∣∣ � ε

where ε = 1/100.
(b) Repeat (a) with ε = 1/1000.
(c) Repeat (a) with ε = 1/10000.
(d) Try to figure out, in general, how large n has to be in order for

∣∣a− a(n)
∣∣ � ε

for a given value of ε.

Name of program file: trapezoidal_test_exp.py �

Exercise B.5. Compute a sequence of integrals.

(a) Let

bk =

∫ 1

0
xkdx =

1

k + 1
,

and let bk(n) denote the result of using the program trapezoidal.py

to compute
∫ 1
0 xkdx. For k = 4, 6 and 8, try to figure out, by doing

numerical experiments, how large n needs to be in order for bk(n)
to satisfy ∣∣bk − bk(n)

∣∣ � 0.0001.

Note that n will depend on k. Hint: Run the program for each k,
look at the output, and calculate |bk − bk(n)| manually.

(b) Try to generalize the result in (a) to arbitrary k � 2.
(c) Generate a plot of xk on the unit interval for k = 2, 4, 6, 8, and 10,

and try to figure out if the results obtained in (a) and (b) are rea-
sonable taking into account that the program trapezoidal.py was
developed using a piecewise linear approximation of the function.

Name of program file: trapezoidal_test_power.py �

Exercise B.6. Use the Trapezoidal method.
The purpose of this exercise is to compute an approximation of the

integral9

I =

∫ ∞

−∞
e−x2

dx

using the Trapezoidal method.

9 You may consult your Calculus book to verify that the exact solution is
√
π.

622 B Introduction to Discrete Calculus

(a) Plot the function e−x2

for x ranging from −10 to 10 and use the
plot to argue that

∫ ∞

−∞
e−x2

dx = 2

∫ ∞

0
e−x2

dx.

(b) Let T (n,L) be the approximation of the integral

2

∫ L

0
e−x2

dx

computed by the Trapezoidal method using n computational points.
Develop a program that computes the value of T for a given n
and L.

(c) Extend the program developed in (b) to write out values of T (n,L)
in a table with rows corresponding to n = 100, 200, . . . , 500 and
columns corresponding to L = 2, 4, 6, 8, 10.

(d) Extend the program to also print a table of the errors in T (n,L) for
the same n and L values as in (c). The exact value of the integral
is

√
π.

Comment. Numerical integration of integrals with finite limits requires
a choice of n, while with infinite limits we also need to truncate the
domain, i.e., choose L in the present example. The accuracy depends
on both n and L. Name of program file: integrate_exp.py �

Exercise B.7. Compute trigonometric integrals.
The purpose of this exercise is to demonstrate a property of trigono-

metric functions that you will meet in later courses. In this exercise,
you may compute the integrals using the program trapezoidal.py with
n = 100.

(a) Consider the integrals

Ip,q = 2

∫ 1

0
sin(pπx) sin(qπx)dx

and fill in values of the integral Ip,q in a table with rows correspond-
ing to q = 0, 1, . . . , 4 and columns corresponding to p = 0, 1, . . . , 4.

(b) Repeat (a) for the integrals

Ip,q = 2

∫ 1

0
cos(pπx) cos(qπx)dx.

(c) Repeat (a) for the integrals

Ip,q = 2

∫ 1

0
cos(pπx) sin(qπx)dx.

Name of program file: ortho_trig_funcs.py �

B.5 Exercises 623

Exercise B.8. Plot functions and their derivatives.

(a) Use the program diff_func.py to plot approximations of the deriva-
tive for the following functions defined on the interval ranging from
x = 1/1000 to x = 1:

f(x) = ln

(
x+

1

100

)
,

g(x) = cos
(
e10x

)
,

h(x) = xx.

(b) Extend the program such that both the discrete approximation and
the correct (analytical) derivative can be plotted. The analytical
derivative should be evaluated in the same computational points as
the numerical approximation. Test the program by comparing the
discrete and analytical derivative of x3.

(c) Use the program developed in (b) to compare the analytical and
discrete derivatives of the functions given in (a). How large do you
have to choose n in each case in order for the plots to become in-
distinguishable on your screen. Note that the analytical derivatives
are given by:

f ′(x) =
1

x+ 1
100

,

g′(x) = −10e10x sin
(
e10x

)
,

h′(x) = (lnx)xx + xxx−1.

Name of program file: diff_functions.py �

Exercise B.9. Use the Trapezoidal method.
Develop an efficient program that creates a plot of the function

f(x) =
1

2
+

1√
π

∫ x

0
e−t2dt

for x ∈ [0, 10]. The integral should be approximated using the Trape-
zoidal method and use as few function evaluations of e−t2 as possible.
Name of program file: plot_integral.py �

http://www.springer.com
http://www.springer.com/mycopy

Introduction to Differential Equations C

This Appendix is Authored by Aslak Tveito

Differential equations have proven to be an immensely successful instru-
ment for modeling phenomena in science and technology. It is hardly
an exaggeration to say that differential equations are used to define
mathematical models in virtually all parts of the natural sciences. In
this chapter, we will take the first steps towards learning how to deal
with differential equations on a computer. This is a core issue in Com-
putational Science and reaches far beyond what we can cover in this
text. However, the ideas you will see here are reused in lots of advanced
applications, so this chapter will hopefully provide useful introduction
to a topic that you will probably encounter many times later.

We will show you how to build programs for solving differential equa-
tions. More precisely, we will show how a differential equation can be
formulated in a discrete manner suitable for analysis on a computer,
and how to implement programs to compute the discrete solutions. The
simplest differential equations can be solved analytically in the sense
that you can write down an explicit formula for the solutions. However,
differential equations arising in practical applications are usually rather
complicated and thus have to be solved numerically on a computer.
Therefore we focus on implementing numerical methods to solve the
equations. Appendix E describes more advanced implementation tech-
niques aimed at making an easy-to-use toolbox for solving differential
equations. Exercises in the present appendix and Appendix E aim at
solving a variety of differential equations arising in various disciplines
of science.

As with all the other chapters, the source code can be found in
src, in this case in the subdirectory ode1. The short form ODE (plu-
ral: ODEs) is commonly used as abbreviation for ordinary differential
equation, which is the type of differential equation that we address

H.P. Langtangen, A Primer on Scientific Programming with Python,
Texts in Computational Science and Engineering 6,

DOI 10.1007/978-3-642-30293-0, c© Springer-Verlag Berlin Heidelberg 2012

625

http://dx.doi.org/10.1007/978-3-642-30293-0

626 C Introduction to Differential Equations

in this appendix. Actually, differential equations are divided into two
groups: ordinary differential equations and partial differential equa-
tions. Ordinary differential equations contain derivatives with respect
to one variable (usually t in our examples), whereas partial differential
equations contain derivatives with respect to more than one variable,
typically with respect to space and time. A typical ordinary differential
equation is

u′(t) = u(t),

and a typical partial differential equation is

∂u

∂t
=

∂2u

∂x2
+

∂2u

∂y2
.

The latter is known as the heat or diffusion equation.

C.1 The Simplest Case

Consider the problem of solving the following equation

u′(t) = t3. (C.1)

The solution can be computed directly by integrating (C.1), which gives

u(t) =
1

4
t4 + C,

where C is an arbitrary constant. To obtain a unique solution, we need
an extra condition to determine C. Specifying u(t1) for some time point
t1 represents a possible extra condition. It is common to view (C.1) as
an equation for the function u(t) for t ∈ [0, T], and the extra condition
is usually that the start value u(0) is known. This is called the initial
condition. Say

u(0) = 1. (C.2)

In general, the solution of the differential equation (C.1) subject to the
initial condition C.2 is1

u(t) = u(0) +

∫ t

0
u′(τ)dτ

= 1 +

∫ t

0
τ3dτ

= 1 +
1

4
t4.

Let us go back and check: Does u(t) = 1 + 1
4 t

4 really satisfy the two

1 If you are confused by the use of t and τ , don’t get too upset; you see: “In mathematics you
don’t understand things. You just get used to them.” –John von Neumann, mathematician,

1903–1957.

C.1 The Simplest Case 627

requirements listed in (C.1) and (C.2)? Obviously, u(0) = 1, and u′(t) =
t3, so the solution is correct.

More generally, we consider the equation

u′(t) = f(t) (C.3)

together with the initial condition

u(0) = u0. (C.4)

Here we assume that f(t) is a given function, and that u0 is a given
number. Then, by reasoning as above, we have

u(t) = u0 +

∫ T

0
f(τ)dτ. (C.5)

By using the methods introduced in Appendix B, we can find a discrete
version of u by approximating the integral. Generally, an approximation
of the integral ∫ T

0
f(τ)dτ

can be computed using the discrete version of a continuous function
f(τ) defined on an interval [0, t]. The discrete version of f is given by
(τi, yi)

n
i=0 where

τi = ih, and yi = f(τi)

for i = 0, 1, . . . , n. Here n � 1 is a given integer and h = T/n. The
Trapezoidal rule can now be written as

∫ T

0
f(τ)dτ ≈ h

2

[
y0 + 2

n−1∑
k=1

yk + yn

]
. (C.6)

By using this approximation, we find that an approximate solution of
(C.3)–(C.4) is given by

u(t) ≈ u0 +
h

2

[
y0 + 2

n−1∑
k=1

yk + yn

]
.

The program integrate_ode.py computes a numerical solution of
(C.3)–(C.4), where the function f , the time t, the initial condition
u0, and the number of time-steps n are inputs to the program.

def integrate(T, n, u0):
h = T/float(n)
t = linspace(0, T, n+1)
I = f(t[0])
for k in iseq(1, n-1, 1):

I += 2*f(t[k])
I += f(t[-1])
I *= (h/2)

628 C Introduction to Differential Equations

I += u0
return I

from scitools.std import *
f_formula = sys.argv[1]
T = eval(sys.argv[2])
u0 = eval(sys.argv[3])
n = int(sys.argv[4])

f = StringFunction(f_formula, independent_variables=’t’)
print "Numerical solution of u’(t)=t**3: ", integrate(T, n, u0)

We apply the program for computing the solution of

u′(t) = tet
2

,

u(0) = 0,

at time T = 2 using n = 10, 20, 50 and 100:

Terminal

integrate_ode.py’t*exp(t**2)’ 2 0 10
Numerical solution of u’(t)=t**3: 28.4066160877

Terminal

integrate_ode.py’t*exp(t**2)’ 2 0 20
Numerical solution of u’(t)=t**3: 27.2059977451

Terminal

integrate_ode.py’t*exp(t**2)’ 2 0 50
Numerical solution of u’(t)=t**3: 26.86441489

Terminal

integrate_ode.py’t*exp(t**2)’ 2 0 100
Numerical solution of u’(t)=t**3: 26.8154183399

The exact solution is given by 1
2e

22 − 1
2 ≈ 26.799, so we see that the

approximate solution becomes better as n is increased, as expected.

C.2 Exponential Growth

The example above was really not much of a differential equation, be-
cause the solution was obtained by straightforward integration. Equa-
tions of the form

u′(t) = f(t) (C.7)

arise in situations where we can explicitly specify the derivative of
the unknown function u. Usually, the derivative is specified in terms

C.2 Exponential Growth 629

of the solution itself. Consider, for instance, population growth under
idealized conditions as modeled in Appendix A.1.4. We introduce the
symbol vi for the number of individuals at time τi (vi corresponds to
xn in Appendix A.1.4). The basic model for the evolution of vi is (A.9):

vi = (1 + r)vi−1, i = 1, 2, . . . , and v0 known. (C.8)

As mentioned in Appendix A.1.4, r depends on the time difference
Δτ = τi − τi−1: the larger Δτ is, the larger r is. It is therefore natural
to introduce a growth rate α that is independent of Δτ : α = r/Δτ .
The number α is then fixed regardless of how long jumps in time we
take in the difference equation for vi. In fact, α equals the growth in
percent, divided by 100, over a time interval of unit length.

The difference equation now reads

vi = vi−1 + αΔτ vi−1.

Rearranging this equation we get

vi − vi−1

Δτ
= αvi−1. (C.9)

Assume now that we shrink the time step Δτ to a small value. The left-
hand side of (C.9) is then an approximation to the time-derivative of a
function v(τ) expressing the number of individuals in the population at
time τ . In the limit Δτ → 0, the left-hand side becomes the derivative
exactly, and the equation reads

v′(τ) = αv(τ). (C.10)

As for the underlying difference equation, we need a start value v(0) =
v0. We have seen that reducing the time step in a difference equation
to zero, we get a differential equation.

Many like to scale an equation like (C.10) such that all variables
are without physical dimensions and their maximum absolute value is
typically of the order of unity. In the present model, this means that
we introduce new dimensionless variables

u =
v

v0
, t =

τ

α

and derive an equation for u(t). Inserting v = v0u and τ = αt in (C.10)
gives the prototype equation for population growth:

u′(t) = u(t) (C.11)

with the initial condition
u(0) = 1. (C.12)

630 C Introduction to Differential Equations

When we have computed the dimensionless u(t), we can find the func-
tion v(τ) as

v(τ) = v0u(τ/α).

We shall consider practical applications of population growth equations
later, but let’s start by looking at the idealized case (C.11).

Analytical Solution. Our differential equation can be written in the
form

du

dt
= u,

which can be rewritten as
du

u
= dt,

and then integration on both sides yields

ln(u) = t+ c,

where c is a constant that has to be determined by using the initial
condition. Putting t = 0, we have

ln
(
u(0)

)
= c,

hence
c = ln(1) = 0,

and then
ln(u) = t,

so we have the solution
u(t) = et. (C.13)

Let us now check that this function really solves (C.7, C.11). Obviously,
u(0) = e0 = 1, so (C.11) is fine. Furthermore

u′(t) = et = u(t),

thus (C.7) also holds.

Numerical Solution. We have seen that we can find a formula for the
solution of the equation of exponential growth. So the problem is solved,
and it is trivial to write a program to graph the solution. We will,
however, go one step further and develop a numerical solution strategy
for this problem. We don’t really need such a method for this problem
since the solution is available in terms of a formula, but as mentioned
earlier, it is good practice to develop methods for problems where we
know the solution; then we are more confident when we are confronted
with more challenging problems.

Suppose we want to compute a numerical approximation of the so-
lution of

C.2 Exponential Growth 631

u′(t) = u(t) (C.14)

equipped with the initial condition

u(0) = 1. (C.15)

We want to compute approximations from time t = 0 to time t = 1.
Let n � 1 be a given integer, and define

Δt = 1/n. (C.16)

Furthermore, let uk denote an approximation of u(tk) where

tk = kΔt (C.17)

for k = 0, 1, . . . , n. The key step in developing a numerical method for
this differential equation is to invoke the Taylor series as applied to the
exact solution,

u(tk+1) = u(tk) +Δtu′(tk) +O
(
Δt2

)
, (C.18)

which implies that

u′(tk) ≈
u(tk+1)− u(tk)

Δt
. (C.19)

By using (C.14), we get

u(tk+1)− u(tk)

Δt
≈ u(tk). (C.20)

Recall now that u(tk) is the exact solution at time tk, and that uk is
the approximate solution at the same point in time. We now want to
determine uk for all k � 0. Obviously, we start by defining

u0 = u(0) = 1.

Since we want uk ≈ u(tk), we require that uk satisfy the following
equality

uk+1 − uk
Δt

= uk (C.21)

motivated by (C.20). It follows that

uk+1 = (1 +Δt)uk. (C.22)

Since u0 is known, we can compute u1, u2 and so on by using the formula
above. The formula is implemented2 in the program exp_growth.py.

2 Actually, we do not need the method and we do not need the program. It follows from
(C.22) that

uk = (1 +Δt)ku0

632 C Introduction to Differential Equations

def compute_u(u0, T, n):
"""Solve u’(t)=u(t), u(0)=u0 for t in [0,T] with n steps."""
u = u0
dt = T/float(n)
for k in range(0, n, 1):

u = (1+dt)*u
return u # u(T)

import sys
n = int(sys.argv[1])

Special test case: u’(t)=u, u(0)=1, t in [0,1]
T = 1; u0 = 1
print ’u(1) =’, compute_u(u0, T, n)

Observe that we do not store the u values: We just overwrite a float

object u by its new value. This saves a lot of storage if n is large.
Running the program for n = 5, 10, 20 and 100, we get the approxi-

mations 2.4883, 2.5937, 2.6533, and 2.7048. The exact solution at time
t = 1 is given by u(1) = e1 ≈ 2.7183, so again the approximations
become better as n is increased.

An alternative program, where we plot u(t) and therefore store all
the uk and tk = kΔt values, is shown below.

def compute_u(u0, T, n):
"""Solve u’(t)=u(t), u(0)=u0 for t in [0,T] with n steps."""
t = linspace(0, T, n+1)
t[0] = 0
u = zeros(n+1)
u[0] = u0
dt = T/float(n)
for k in range(0, n, 1):

u[k+1] = (1+dt)*u[k]
t[k+1] = t[k] + dt

return u, t

from scitools.std import *
n = int(sys.argv[1])

Special test case: u’(t)=u, u(0)=1, t in [0,1]
T = 1; u0 = 1
u, t = compute_u(u0, T, n)
plot(t, u)
tfine = linspace(0, T, 1001) # for accurate plot
v = exp(tfine) # correct solution
hold(’on’)
plot(tfine, v)
legend([’Approximate solution’, ’Correct function’])
title(’Approximate and correct discrete functions, n=%d’ % n)
savefig(’tmp.eps’)

Using the program for n = 5, 10, 20, and 100, results in the plots in Fig-
ure C.1. The convergence towards the exponential function is evident
from these plots.

for k = 0, 1, . . . , n which can be evaluated on a pocket calculator or even on your cellular
phone. But again, we show examples where everything is as simple as possible (but not

simpler!) in order to prepare your mind for more complex matters ahead.

C.3 Logistic Growth 633

Fig. C.1 Plots of exact and approximate solutions of u′(t) = u(t) with varying number of
time steps in [0, 1].

C.3 Logistic Growth

Exponential growth can be modelled by the following equation

u′(t) = αu(t)

where a > 0 is a given constant. If the initial condition is given by

u(0) = u0

the solution is given by
u(t) = u0e

αt.

Since a > 0, the solution becomes very large as t increases. For a short
time, such growth of a population may be realistic, but over a longer
time, the growth of a population is restricted due to limitations of the
environment, as discussed in Appendix A.1.5. Introducing a logistic
growth term as in (A.12) we get the differential equation

u′(t) = αu(t)

(
1− u(t)

R

)
, (C.23)

where α is the growth-rate, and R is the carrying capacity (which
corresponds to M in Appendix A.1.5). Note that R is typically very

634 C Introduction to Differential Equations

large, so if u(0) is small, we have

u(t)

R
≈ 0

for small values of t, and thus we have exponential growth for small t;

u′(t) ≈ au(t).

But as t increases, and u grows, the term u(t)/R will become important
and limit the growth.

A numerical scheme for the logistic equation (C.23) is given by

uk+1 − uk
Δt

= αuk

(
1− uk

R

)
,

which we can solve with respect to the unknown uk+1:

uk+1 = uk +Δtαuk

(
1− uk

R

)
. (C.24)

This is the form of the equation that is suited for implementation.

C.4 A Simple Pendulum

So far we have considered scalar ordinary differential equations, i.e.,
equations with one single function u(t) as unknown. Now we shall deal
with systems of ordinary differential equations, where in general n un-
known functions are coupled in a system of n equations. Our introduc-
tory example will be a system of two equations having two unknown
functions u(t) and v(t). The example concerns the motion of a pendu-
lum, see Figure C.2. A sphere with mass m is attached to a massless
rod of length L and oscillates back and forth due to gravity. Newton’s
second law of motion applied to this physical system gives rise the
differential equation

θ′′(t) + α sin(θ) = 0 (C.25)

where θ = θ(t) is the angle the rod makes with the vertical, measured
in radians, and α = g/L (g is the acceleration of gravity). The un-
known function to solve for is θ, and knowing θ, we can quite easily
compute the position of the sphere, its velocity, and its acceleration,
as well as the tension force in the rod. Since the highest derivative in
(C.25) is of second order, we refer to (C.25) as a second-order differ-
ential equations. Our previous examples in this chapter involved only
first-order derivatives, and therefore they are known as first-order dif-
ferential equations .

Equation (C.25) can be solved by the same numerical method as we
use in Appendix D.1.2, because (C.25) is very similar to Equation D.8,

C.4 A Simple Pendulum 635

Fig. C.2 A pendulum with m = mass, L = length of massless rod and θ = θ(t) = angle.

which is the topic of Appendix D. The only difference is that D.8 has
extra terms, which can be skipped, while the kS term in D.8 must be
extended to α sin(S) to make D.8 identical to (C.25). This extension
is easily performed. However, here we shall not solve the second-order
equation (C.25) as it stands. We shall instead rewrite it as a system
of two first-order equations so that we can use numerical methods for
first-order equations to solve it.

To transform a second-order equation to a system of two first-order
equations, we introduce a new variable for the first-order derivative (the
angular velocity of the sphere): v(t) = θ′(t). Using v and θ in (C.25)
yields

v′(t) + α sin(θ) = 0.

In addition, we have the relation

v = θ′(t)

between v and θ. This means that (C.25) is equivalent to the following
system of two coupled first-order differential equations:

θ′(t) = v(t), (C.26)

v′(t) = −α sin(θ). (C.27)

As for scalar differential equations, we need initial conditions, now two
conditions because we have two unknown functions:

θ(0) = θ0,

v(0) = v0.

Here we assume the initial angle θ0 and the initial angular velocity v0
to be given.

It is common to group the unknowns and the initial conditions in
2-vectors: (θ(t), v(t)) and (θ0, v0). One may then view (C.26)–(C.27) as
a vector equation, whose first component equation is (C.26), and the
second component equation is (C.27). In Python software, this vector

636 C Introduction to Differential Equations

notation makes solution methods for scalar equations (almost) immedi-
ately available for vector equations, i.e., systems of ordinary differential
equations.

In order to derive a numerical method for the system (C.26)–(C.27),
we proceed as we did above for one equation with one unknown func-
tion. Say we want to compute the solution from t = 0 to t = T where
T > 0 is given. Let n � 1 be a given integer and define the time step

Δt = T/n.

Furthermore, we let (θk, vk) denote approximations of the exact solu-
tion (θ(tk), v(tk)) for k = 0, 1, . . . , n. A Forward Euler type of method
will now read

θk+1 − θk
Δt

= vk, (C.28)

vk+1 − vk
Δt

= −α sin(θk). (C.29)

This scheme can be rewritten in a form more suitable for implementa-
tion:

θk+1 = θk +Δt vk, (C.30)

vk+1 = vk − αΔt sin(θk). (C.31)

The next program, pendulum.py, implements this method in the func-
tion pendulum. The input parameters to the model, θ0, v0, the final
time T , and the number of time-steps n, must be given on the com-
mand line.

def pendulum(T, n, theta0, v0, alpha):
"""Return the motion (theta, v, t) of a pendulum."""
dt = T/float(n)
t = linspace(0, T, n+1)
v = zeros(n+1)
theta = zeros(n+1)
v[0] = v0
theta[0] = theta0
for k in range(n):

theta[k+1] = theta[k] + dt*v[k]
v[k+1] = v[k] - alpha*dt*sin(theta[k+1])

return theta, v, t

from scitools.std import *
n = int(sys.argv[1])
T = eval(sys.argv[2])
v0 = eval(sys.argv[3])
theta0 = eval(sys.argv[4])
alpha = eval(sys.argv[5])

theta, v, t = pendulum(T, n, theta0, v0)
plot(t, v, xlabel=’t’, ylabel=’velocity’)
figure()
plot(t, theta, xlabel=’t’, ylabel=’velocity’)

C.5 A Model for the Spread of a Disease 637

By running the program with the input data θ0 = π/6, v0 = 0, α = 5,
T = 10 and n = 1000, we get the results shown in Figure C.3. The
angle θ = θ(t) is displayed in the left panel and the velocity is given in
the right panel.

Fig. C.3 Motion of a pendulum: (a) the angle θ(t), and (b) the angular velocity θ′.

C.5 A Model for the Spread of a Disease

Mathematical models are used intensively to analyze the spread of in-
fectious diseases3. In the simplest case, we may consider a population,
that is supposed to be constant, consisting of two groups; the suscepti-
bles (S) who can catch the disease, and the infectives (I) who have the
disease and are able to transmit it. A system of differential equations
modelling the evolution of S and I is given by

S′ = −rSI, (C.32)

I ′ = rSI − aI. (C.33)

Here r and a are given constants reflecting the characteristics of the
epidemic. The initial conditions are given by

S(0) = S0,

I(0) = I0,

where the initial state (S0, I0) is assumed to be known.
Suppose we want to compute numerical solutions of this system from

time t = 0 to t = T . Then, by reasoning as above, we introduce the
time step

Δt = T/n

3 The interested reader may consult the excellent book [10] on Mathematical Biology by

J.D. Murray for an introduction to such models.

638 C Introduction to Differential Equations

and the approximations (Sk, Ik) of the solution (S(tk), I(tk)). An ex-
plicit Forward Euler method for the system takes the following form,

Sk+1 − Sk

Δt
= −rSkIk,

Ik+1 − Ik
Δt

= rSkIk − aIk,

which can be rewritten on computational form

Sk+1 = Sk −ΔtrSkIk,

Ik+1 = Ik +Δt(rSkIk − aIk).

This scheme is implemented in the program exp_epidemic.py where
r, a, S0, I0, n and T are input data given on the command line. The
function epidemic computes the solution (S, I) to the differential equa-
tion system. This pair of time-dependent functions is then plotted in
two separate plots.

def epidemic(T, n, S0, I0, r, a):
dt = T/float(n)
t = linspace(0, T, n+1)
S = zeros(n+1)
I = zeros(n+1)
S[0] = S0
I[0] = I0
for k in range(n):

S[k+1] = S[k] - dt*r*S[k]*I[k]
I[k+1] = I[k] + dt*(r*S[k]*I[k] - a*I[k])

return S, I, t

from scitools.std import *
n = int(sys.argv[1])
T = eval(sys.argv[2])
S0 = eval(sys.argv[3])
I0 = eval(sys.argv[4])
r = eval(sys.argv[5])
a = eval(sys.argv[6])

S, I, t = epidemic(T, n, S0, I0, r, a)
plot(t, S, xlabel=’t’, ylabel=’Susceptibles’)
plot(t, I, xlabel=’t’, ylabel=’Infectives’)

We want to apply the program to a specific case where an influenza
epidemic hit a British boarding school with a total of 763 boys4. The
epidemic lasted from 21st January to 4th February in 1978. We let
t = 0 denote 21st of January and we define T = 14 days. We put
S0 = 762 and I0 = 1 which means that one person was ill at t = 0.
In the Figure C.4 we see the numerical results using r = 2.18 × 10−3,
a = 0.44, n = 1000. Also, we have plotted actual the measurements,
and we note that the simulations fit the real data quite well.

4 The data are from Murray [10], and Murray found the data in the British Medical Journal,

March 4, 1978.

C.6 Exercises 639

Fig. C.4 Graphs of (a) susceptibles and (b) infectives for an influenza in a British boarding

school in 1978.

C.6 Exercises

Exercise C.1. Solve a nonhomogeneous linear ODE.
Solve the ODE problem

u′ = 2u− 1, u(0) = 2, t ∈ [0, 6]

using the Forward Euler method. ChooseΔt = 0.25. Plot the numerical
solution together with the exact solution u(t) = 1

2 + 3
2e

2t. Name of
program file: nonhomogeneous_linear_ODE.py. �

Exercise C.2. Solve a nonlinear ODE.
Solve the ODE problem

u′ = uq, u(0) = 1, t ∈ [0, T]

using the Forward Euler method. The exact solution reads u(t) = et

for q = 1 and u(t) = (t(1− q)+1)1/(1−q) for q > 1 and t(1− q)+1 > 0.
Read q, Δt, and T from the command line, solve the ODE, and plot
the numerical and exact solution. Run the program for different cases:
q = 2 and q = 3, with Δt = 0.01 and Δt = 0.1. Set T = 6 if q = 1 and
T = 1/(q−1)−0.1 otherwise. Name of program file: nonlinear_ODE.py.
�

Exercise C.3. Solve an ODE for y(x).
We have given the following ODE problem:

dy

dx
=

1

2(y − 1)
, y(0) = 1 +

√
ε, x ∈ [0, 4], (C.34)

where ε > 0 is a small number. Formulate a Forward Euler method for
this ODE problem and compute the solution for varying step size in x:
Δx = 1, Δx = 0.25, Δx = 0.01. Plot the numerical solutions together
with the exact solution y(x) = 1 +

√
x+ ε, using 1001 x coordinates

for accurate resolution of the latter. Set ε to 10−3. Study the numerical

640 C Introduction to Differential Equations

solution with Δx = 1, and use that insight to explain why this problem
is hard to solve numerically. Name of program file: yx_ODE.py. �

Exercise C.4. Experience instability of an ODE.
Consider the ODE problem

u′ = αu, u(0) = u0,

solved by the Forward Euler method. Show by repeatedly applying the
scheme that

uk = (1 + αΔt)ku0.

We now turn to the case α < 0. Show that the numerical solution will
oscillate if Δt > −1/α. Make a program for computing uk, set α = −1,
and demonstrate oscillatory solutions for Δt = 1.1, 1.5, 1.9. Recall that
the exact solution, u(t) = eαt, never oscillates.

What happens if Δt > −2/α? Try it out in the program and explain
then mathematically why not uk → 0 as k → ∞. Name of program file:
unstable_ODE.py. �

Exercise C.5. Solve an ODE with time-varying growth.
Consider the ODE for exponential growth,

u′ = αu, u(0) = 1, t ∈ [0, T].

Now we introduce a time-dependent α such that the growth decreases
with time: α(t) = a − bt. Solve the problem for a = 1, b = 0.1, and
T = 10. Plot the solution and compare with the corresponding expo-
nential growth using the mean value of α(t) as growth factor: e(a−bT/2)t.
Name of program file: time_dep_growth.py. �

A Complete Differential Equation Project D

The examples in the ordinary chapters of this book are quite compact
and composed to convey programming constructs in a gentle pedagog-
ical way. In this appendix the idea is to solve a more comprehensive
real-world problem by programming. The problem solving process gets
quite advanced because we bring together elements from physics, math-
ematics, and programming, in a way that a scientific programmer must
master. Each individual element is quite straightforward in the sense
that you have probably met the element already, either in high school
physics or mathematics, or in this book. The challenge is to under-
stand the problem, and analyze it by breaking it into a set of simpler
elements. It is not necessary to understand this problem solving pro-
cess in detail. As a computer programmer, all you need to understand
is how you translate the given algorithm into a working program and
how to test the program. We anticipate that this task should be doable
without a thorough understanding of the physics and mathematics of
the problem.

You can read the present appendix after the material from Chap-
ters 1–5 is are digested. More specifically, you can read Appendices D.1
and D.2 after Chapter 4, while Appendix D.3 requires knowledge about
curve plotting from Chapter 5.

All Python files associated with this appendix are found in
src/box_spring.

D.1 About the Problem: Motion and Forces in Physics

D.1.1 The Physical Problem

We shall study a simple device which models oscillating systems. A box
with mass m and height b is attached to a spring of length L as shown
in Figure D.1. The end of the spring is attached to a plate which we

H.P. Langtangen, A Primer on Scientific Programming with Python,
Texts in Computational Science and Engineering 6,

DOI 10.1007/978-3-642-30293-0, c© Springer-Verlag Berlin Heidelberg 2012

641

http://dx.doi.org/10.1007/978-3-642-30293-0

642 D A Complete Differential Equation Project

can move up and down with a displacement w(t), where t denotes time.
There are two ways the box can be set in motion: we can either stretch
or compress the string initially by moving the box up or down, or we
can move the plate. If w = 0 the box oscillates freely, otherwise we
have what is called driven oscillations.

Fig. D.1 An oscillating system with a box attached to a spring.

Why will such a system oscillate? When the box moves down-
ward, the spring is stretched, which results in a force that tries to
move the box upward. The more we stretch the spring, the bigger
the force against the movement becomes. The box eventually stops
and starts moving upward with an upward acceleration. At some
point the spring is not stretched anymore and there is no spring
force on the box, but because of inertia, the box continues its mo-
tion upward. This causes the spring to get compressed, causing a force
from the spring on the box that acts downward, against the upward
movement. The downward force increases in intensity and manages
to stop the upward motion. The process repeats itself and results
in an oscillatory motion of the box. Since the spring tries to restore
the position of the box, we refer to the spring force as a restoring
force.

You have probably experienced that oscillations in such springs tend
to die out with time. There is always a damping force that works against
the motion. This damping force may be due to a not perfectly elastic
string, and the force can be quite small, but we can also explicitly attach
the spring to a damping mechanism to obtain a stronger, controllable
damping of the oscillations (as one wants in a car or a mountain bike).
We will assume that there is some damping force present in our sys-

D.1 About the Problem: Motion and Forces in Physics 643

tem, and this can well be a damping mechanism although this is not
explicitly included in Figure D.1.

Oscillating systems of the type depicted in Figure D.1 have a huge
number of applications throughout science and technology. One simple
example is the spring system in a car or bicycle, which you have proba-
bly experienced on a bumpy road (the bumps lead to a w(t) function).
When your washing machine jumps up and down, it acts as a highly
damped oscillating system (and the w(t) function is related to uneven
distribution of the mass of the clothes). The pendulum in a wall clock is
another oscillating system, not with a spring, but physically the system
can (for small oscillations) be modeled as a box attached to a spring
because gravity makes a spring-like force on a pendulum (in this case,
w(t) = 0). Other examples on oscillating systems where this type of
equation arise are briefly mentioned in Exercise E.44. The bottom line
is that understanding the dynamics of Figure D.1 is the starting point
for understanding the behavior of a wide range of oscillating phenom-
ena in nature and technical devices.

Goal of the Computations. Our aim is to compute the position of the
box as a function of time. If we know the position, we can compute the
velocity, the acceleration, the spring force, and the damping force. The
mathematically difficult thing is to calculate the position – everything
else is much easier1.

We assume that the box moves in the vertical direction only, so we
introduce Y (t) as the vertical position of the center point of the box.
We shall derive a mathematical equation that has Y (t) as solution. This
equation can be solved by an algorithm which can be implemented in
a program. Our focus is on the implementation, since this is a book
about programming, but for the reader interested in how computers
play together with physics and mathematics in science and technology,
we also outline how the equation and algorithm arise.

The Key Quantities. Let S be the stretch of the spring, where S > 0
means stretch and S < 0 implies compression. The length of the spring
when it is unstretched is L, so at a given point of time t the actual
length is L+ S(t). Given the position of the plate, w(t), the length of
the spring, L+ S(t), and the height of the box, b, the position Y (t) is
then, according to Figure D.1,

Y (t) = w(t)−
(
L+ S(t)

)
− b

2
. (D.1)

1 More precisely, to compute the position we must solve a differential equation while the

other quantities can be computed by differentiation and simple arithmetics. Solving differ-
ential equations is historically considered very difficult, but computers have simplified this

task dramatically. Appendices C and E are devoted to this topic.

644 D A Complete Differential Equation Project

You can think as follows: We first “go up” to the plate at y = w(t),
then down L+ S(t) along the spring and then down b/2 to the center
of the box. While L, w, and b must be known as input data, S(t) is
unknown and will be output data from the program.

D.1.2 The Computational Algorithm

Let us now go straight to the programming target and present the recipe
for computing Y (t). The algorithm below actually computes S(t), but
at any point of time we can easily find Y (t) from (D.1) if we know S(t).
The S(t) function is computed at discrete points of time, t = ti = iΔt,
for i = 0, 1, . . . , N . We introduce the notation Si for S(ti). The Si

values can be computed by the following algorithm.

1. Set initial stretch S0 from input data
2. Compute S1 by

Si+1 =
1

2m

(
2mSi−Δt2 kSi+m(wi+1−2wi+wi−1)+Δt2mg

)
, (D.2)

with i = 0.
3. For i = 1, 2, . . . , N − 1, compute Si+1 by

Si+1 = (m+ γ)−1
(
2mSi −mSi−1 + γΔtSi−1 −Δt2 kSi

+m(wi+1 − 2wi + wi−1) +Δt2mg
)
. (D.3)

The parameter γ equals 1
2βΔt. The input data to the algorithm are the

mass of the boxm, a coefficient k characterizing the spring, a coefficient
β characterizing the amount of damping in the system, the acceleration
of gravity g, the movement of the plate w(t), the initial stretch of the
spring S0, the number of time steps N , and the time Δt between each
computation of S values. The smaller we choose Δt, the more accurate
the computations become.

Now you have two options, either read the derivation of this algo-
rithm in Appendix D.1.3–D.1.4 or jump right to implementation in
Appendix D.2.

D.1.3 Derivation of the Mathematical Model

To derive the algorithm we need to make a mathematical model of
the oscillating system. This model is based on physical laws. The most
important physical law for a moving body is Newton’s second law of
motion:

F = ma, (D.4)

where F is the sum of all forces on the body, m is the mass of the body,
and a is the acceleration of the body. The body here is our box.

D.1 About the Problem: Motion and Forces in Physics 645

Let us first find all the forces on the box. Gravity acts downward
with magnitude mg. We introduce Fg = −mg as the gravity force,
with a minus sign because a negative force acts downward, in negative
y direction.

The spring force on the box acts upward if the spring is stretched,
i.e., if S > 0 we have a positive spring force Fs. The size of the force is
proportional to the amount of stretching, so we write2 Fs = kS, where
k is commonly known as the spring constant. We also assume that we
have a damping force that is always directed toward the motion and
proportional with the “velocity of the stretch”, −dS/dt. Naming the
proportionality constant β, we can write the damping force as Fd =
βdS/dt. Note that when dS/dt > 0, S increases in time and the box
moves downward, the Fd force then acts upward, against the motion,
and must be positive. This is the way we can check that the damping
force expression has the right sign.

The sum of all forces is now

F = Fg + Fs + Fd,

= −mg + kS + β
dS

dt
. (D.5)

We now know the left-hand side of (D.4), but S is unknown to us.
The acceleration a on the right-hand side of (D.4) is also unknown.
However, acceleration is related to movement and the S quantity, and
through this relation we can eliminate a as a second unknown. From
physics, it is known that the acceleration of a body is the second deriva-
tive in time of the position of the body, so in our case,

a =
d2Y

dt2
,

=
d2w

dt2
− d2S

dt2
, (D.6)

(remember that L and b are constant).
Equation (D.4) now reads

−mg + kS + β
dS

dt
= m

(
d2w

dt2
− d2S

dt2

)
. (D.7)

It is common to collect the unknown terms on the left-hand side and the
known quantities on the right-hand side, and let higher-order deriva-
tives appear before lower-order derivatives. With such a reordering of
terms we get

2 Spring forces are often written in the canonical form “F = −kx”, where x is the stretch.
The reason that we have no minus sign is that our stretch S is positive in the downward

(negative) direction.

646 D A Complete Differential Equation Project

m
d2S

dt2
+ β

dS

dt
+ kS = m

d2w

dt2
+mg. (D.8)

This is the equation governing our physical system. If we solve the
equation for S(t), we have the position of the box according to (D.1),
the velocity v as

v(t) =
dY

dt
=

dw

dt
− dS

dt
, (D.9)

the acceleration as (D.6), and the various forces can be easily obtained
from the formulas in (D.5).

A key question is if we can solve (D.8). If w = 0, there is in fact a
well-known solution which can be written

S(t) =
m

k
g +

⎧⎨
⎩

e−ζt(c1e
t
√
β2−1 + c2e

−t
√
ζ2−1), ζ > 1,

e−ζt(c1 + c2t), ζ = 1,

e−ζt[c1 cos(
√

1− ζ2t) + c2 sin(
√

1− ζ2t)], ζ < 1.
(D.10)

Here, ζ is a short form for β/2, and c1 and c2 are arbitrary constants.
That is, the solution (D.10) is not unique.

To make the solution unique, we must determine c1 and c2. This is
done by specifying the state of the system at some point of time, say
t = 0. In the present type of mathematical problem we must specify S
and dS/dt. We allow the spring to be stretched an amount S0 at t = 0.
Moreover, we assume that there is no ongoing increase or decrease in
the stretch at t = 0, which means that dS/dt = 0. In view of (D.9), this
condition implies that the velocity of the box is that of the plate, and
if the latter is at rest, the box is also at rest initially. The conditions
at t = 0 are called initial conditions :

S(0) = S0,
dS

dt
(0) = 0. (D.11)

These two conditions provide two equations for the two unknown con-
stants c1 and c2. Without the initial conditions two things happen: (i)
there are infinitely many solutions to the problem, and (ii) the compu-
tational algorithm in a program cannot start.

Also when w �= 0 one can find solutions S(t) of (D.8) in terms of
mathematical expressions, but only for some very specific choices of
w(t) functions. With a program we can compute the solution S(t) for
any “reasonable” w(t) by a quite simple method. The method gives
only an approximate solution, but the approximation can usually be
made as good as desired. This powerful solution method is described
below.

D.1.4 Derivation of the Algorithm

To solve (D.8) on a computer, we do two things:

D.1 About the Problem: Motion and Forces in Physics 647

1. We calculate the solution at some discrete time points t = ti = iΔt,
i = 0, 1, 2, . . . , N .

2. We replace the derivatives by finite differences, which are approxi-
mate expressions for the derivatives.

The first and second derivatives can be approximated by3

dS

dt
(ti) ≈

S(ti+1)− S(ti−1)

2Δt
, (D.12)

d2S

dt2
(ti) ≈

S(ti+1)− 2S(ti) + S(ti−1)

Δt2
. (D.13)

It is common to save some writing by introducing Si as a short form
for S(ti). The formulas then read

dS

dt
(ti) ≈

Si+1 − Si−1

2Δt
, (D.14)

d2S

dt2
(ti) ≈

Si+1 − 2Si + Si−1

Δt2
. (D.15)

Let (D.8) be valid at a point of time ti:

m
d2S

dt2
(ti) + β

dS

dt
(ti) + kS(ti) = m

d2w

dt2
(ti) +mg. (D.16)

We now insert (D.14) and (D.15) in (D.16) (observe that we can ap-
proximate d2w/dt2 in the same way as we approximate d2S/dt2):

m
Si+1 − 2Si + Si−1

Δt2
+β

Si+1 − Si−1

2Δt
+kSi = m

wi+1 − 2wi + wi−1

Δt2
+mg.

(D.17)
The computational algorithm starts with knowing S0, then S1 is com-
puted, then S2, and so on. Therefore, in (D.17) we can assume that Si

and Si−1 are already computed, and that Si+1 is the new unknown to
calculate. Let us as usual put the unknown terms on the left-hand side
(and multiply by Δt2):

mSi+1 + γSi+1 = 2mSi −mSi−1 + γSi−1 −Δt2 kSi

+m(wi+1 − 2wi + wi−1) +Δt2mg, (D.18)

where we have introduced the short form γ = 1
2βΔt to save space.

Equation (D.18) can easily be solved for Si+1:

Si+1 = (m+ γ)−1
(
2mSi −mSi−1 + γΔtSi−1 −Δt2 kSi

+m(wi+1 − 2wi + wi−1) +Δt2mg
)
. (D.19)

One fundamental problem arises when we try to start the computa-
tions. We know S0 and want to apply (D.19) for i = 0 to calculate S1.

3 See Appendices B and C for derivations of such formulas.

648 D A Complete Differential Equation Project

However, (D.19) involves Si−1, that is, S−1, which is an unknown value
at a point of time before we compute the motion. The initial condi-
tions come to rescue here. Since dS/dt = 0 at t = 0 (or i = 0), we can
approximate this condition as

S1 − S−1

2Δt
= 0 ⇒ S−1 = S1. (D.20)

Inserting this relation in (D.19) when i = 0 gives a special formula for
S1 (or Si+1 with i = 0, if we want):

Si+1 =
1

2m

(
2mSi−Δt2 kSi+m(wi+1−2wi+wi−1)+Δt2mg

)
. (D.21)

Remember that i = 0 in this formula. The overall algorithm is summa-
rized below:

1. Initialize S0 from initial condition
2. Use (D.21) to compute Si+1 for i = 0
3. For i = 0, 1, 2, . . . , N − 1, use (D.19) to compute Si+1

D.2 Program Development and Testing

D.2.1 Implementation

The aim now is to implement the algorithm on page 644 in a Python
program. There are naturally two parts of the program, one where we
read input data such as L, m, and w(t), and one part where we run
the computational algorithm. Let us write a function for each part.

The set of input data to the program consists of the mathematical
symbols

• m (the mass of the box)
• b (the height of the box)
• L (the length of the unstretched spring)
• β (coefficient for the damping force)
• k (coefficient for the spring force)
• Δt (the time step between each Si calculation)
• N (the number of computed time steps)
• S0 (the initial stretch of the spring)
• w(t) (the vertical displacement of the plate)
• g (acceleration of gravity)

We make a function init_prms for initializing these input parameters
from option-value pairs on the command line. That is, the user pro-
vides pairs like -m 2 and -dt 0.1 (for Δt). The argparse module from
Chapter 4.2.4 can be used for this purpose. We supply default values
for all parameters as arguments to the init_prms function. The func-

D.2 Program Development and Testing 649

tion returns all these parameters with the changes that the user has
specified on the command line. The w parameter is given as a string
expression (called w_formula below), and the StringFunction tool from
Chapter 4.1.4 can be used to turn the formula into a working Python
function. An algorithmic sketch of the tasks in the init_prms function
can be expressed by some pseudo Python code:

def init_prms(m, b, L, k, beta, S0, dt, g, w_formula, N):
import argparse
parser = argparse.ArgumentParser()
parser.add_argument(’--m’, ’--mass’,

type=float, default=m)
parser.add_argument(’--b’, ’--boxheight’,

type=float, default=b)
...
args = parser.parse_args()

from scitools.StringFunction import StringFunction
w = StringFunction(args.w, independent_variables=’t’)
return args.m, args.b, args.L, args.k, args.beta, \

args.S0, args.dt, args.g, w, args.N

With such a sketch as a start, we can complete the indicated code
and arrive at a working function for specifying input parameters to the
mathematical model:

def init_prms(m, b, L, k, beta, S0, dt, g, w_formula, N):
import argparse
parser = argparse.ArgumentParser()
parser.add_argument(’--m’, ’--mass’,

type=float, default=m)
parser.add_argument(’--b’, ’--boxheight’,

type=float, default=b)
parser.add_argument(’--L’, ’--spring-length’,

type=float, default=L)
parser.add_argument(’--k’, ’--spring-stiffness’,

type=float, default=k)
parser.add_argument(’--beta=’, ’--spring-damping’,

type=float, default=beta)
parser.add_argument(’--S0’, ’--initial-position’,

type=float, default=S0)
parser.add_argument(’--dt’,’--timestep’,

type=float, default=dt)
parser.add_argument(’--g’, ’--gravity’,

type=float, default=g)
parser.add_argument(’--w’, type=float, default=w)
parser.add_argument(’--N’, type=int, default=N)
args = parser.parse_args()

from scitools.StringFunction import StringFunction
w = StringFunction(args.w, independent_variables=’t’)
return args.m, args.b, args.L, args.k, args.beta, \

args.S0, args.dt, args.g, w, args.N

You may wonder why we specify g (gravity) since this is a known con-
stant, but it is useful to turn off the gravity force to test the program.
Just imagine the oscillations take place in the horizontal direction –
the mathematical model is the same, but Fg = 0, which we can obtain
in our program by setting the input parameter g to zero.

650 D A Complete Differential Equation Project

The computational algorithm is quite easy to implement, as there
is a quite direct translation of the mathematical algorithm in Ap-
pendix D.1.2 to valid Python code. The Si values can be stored in
a list or array with indices going from 0 to N . To allow readers to
follow the code here without yet having digested Chapter 5, we use a
plain list. The function for computing Si reads

def solve(m, k, beta, S0, dt, g, w, N):
S = [0.0]*(N+1) # output list
gamma = beta*dt/2.0 # short form
t = 0
S[0] = S0
Special formula for first time step
i = 0
S[i+1] = (1/(2.0*m))*(2*m*S[i] - dt**2*k*S[i] +

m*(w(t+dt) - 2*w(t) + w(t-dt)) + dt**2*m*g)
t = dt

for i in range(1,N):
S[i+1] = (1/(m + gamma))*(2*m*S[i] - m*S[i-1] +

gamma*dt*S[i-1] - dt**2*k*S[i] +
m*(w(t+dt) - 2*w(t) + w(t-dt))
+ dt**2*m*g)

t += dt
return S

The primary challenge in coding the algorithm is to set the index i

and the time t right. Recall that in the updating formula for S[i+1]

at time t+dt, the time on the right-hand side shall be the time at
time step i, so the t+=dt update must come after S[i+1] is computed.
The same is important in the special formula for the first time step as
well.

A main program will typically first set some default values of the 10
input parameters, then call init_prms to let the user adjust the default
values, and then call solve to compute the Si values:

Default values
from math import pi
m = 1; b = 2; L = 10; k = 1; beta = 0; S0 = 1;
dt = 2*pi/40; g = 9.81; w_formula = ’0’; N = 80;

m, b, L, k, beta, S0, dt, g, w, N = \
init_prms(m, b, L, k, beta, S0, dt, g, w_formula, N)

S = solve(m, k, beta, S0, dt, g, w, N)

So, what shall we do with the solution S? We can write out the
values of this list, but the numbers do not give an immediate feel-
ing for how the box moves. It will be better to graphically illus-
trate the S(t) function, or even better, the Y (t) function. This is
straightforward with the techniques from Chapter 5 and is treated
in Appendix D.3. In Chapter 9.4, we develop a drawing tool for
drawing figures like Figure D.1. By drawing the box, string, and
plate at every time level we compute Si, we can use this tool to
make a moving figure that illustrates the dynamics of the oscilla-

D.2 Program Development and Testing 651

tions. Already now you can play around with a program doing that
(box_spring_figure_anim.py).

D.2.2 Callback Functionality

It would be nice to make some graphics of the system while the com-
putations take place, not only after the S list is ready. The user must
then put some relevant statements in between the statements in the
algorithm. However, such modifications will depend on what type of
analysis the user wants to do. It is a bad idea to mix user-specific
statements with general statements in a general algorithm. We there-
fore let the user provide a function that the algorithm can call after
each Si value is computed. This is commonly called a callback func-
tion (because a general function calls back to the user’s program to
do a user-specific task). To this callback function we send three key
quantities: the S list, the point of time (t), and the time step num-
ber (i + 1), so that the user’s code gets access to these important
data.

If we just want to print the solution to the screen, the callback func-
tion can be as simple as

def print_S(S, t, step):
print’t=%.2f S[%d]=%+g’ % (t, step, S[step])

In the solve function we take the callback function as a keyword argu-
ment user_action. The default value can be an empty function, which
we can define separately:

def empty_func(S, time, time_step_no):
return None

def solve(m, k, beta, S0, dt, g, w, N,
user_action=empty_func):

...

However, it is quicker to just use a lambda function (see Chap-
ter 3.1.11):

def solve(m, k, beta, S0, dt, g, w, N,
user_action=lambda S, time, time_step_no: None):

The new solve function has a call to user_action each time a new S
value has been computed:

def solve(m, k, beta, S0, dt, g, w, N,
user_action=lambda S, time, time_step_no: None):

"""Calculate N steps forward. Return list S."""
S = [0.0]*(N+1) # output list
gamma = beta*dt/2.0 # short form
t = 0
S[0] = S0

652 D A Complete Differential Equation Project

user_action(S, t, 0)
Special formula for first time step
i = 0
S[i+1] = (1/(2.0*m))*(2*m*S[i] - dt**2*k*S[i] +

m*(w(t+dt) - 2*w(t) + w(t-dt)) + dt**2*m*g)
t = dt
user_action(S, t, i+1)

Time loop
for i in range(1,N):

S[i+1] = (1/(m + gamma))*(2*m*S[i] - m*S[i-1] +
gamma*dt*S[i-1] - dt**2*k*S[i] +
m*(w(t+dt) - 2*w(t) + w(t-dt))
+ dt**2*m*g)

t += dt
user_action(S, t, i+1)

return S

The two last arguments to user_action must be carefully set: these
should be time value and index for the most recently computed S value.

D.2.3 Making a Module

The init_prms and solve functions can now be combined with many
different types of main programs and user_action functions. It is there-
fore preferable to have the general init_prms and solve functions in a
module box_spring and import these functions in more user-specific
programs. Making a module out of init_prms and solve is, according
to Chapter 4.5, quite trivial as we just need to put the functions in a
file box_spring.py.

It is always a good habit to include a test block in module files.
To make the test block small, we place the statements in a separate
function _test and just call _test in the test block. The initial under-
score in the name _test prevents this function from being imported
by a from box_spring import * statement. Our test here simply prints
solution at each time level. The following code snippet is then added
to the module file to include a test block:

def _test():
def print_S(S, t, step):

print ’t=%.2f S[%d]=%+g’ % (t, step, S[step])

Default values
from math import pi
m = 1; b = 2; L = 10; k = 1; beta = 0; S0 = 1;
dt = 2*pi/40; g = 9.81; w_formula = ’0’; N = 80;

m, b, L, k, beta, S0, dt, g, w, N = \
init_prms(m, b, L, k, beta, S0, dt, g, w_formula, N)

S = solve(m, k, beta, S0, dt, g, w, N,
user_action=print_S)

if __name__ == ’__main__’:
_test()

D.2 Program Development and Testing 653

D.2.4 Verification

To check that the program works correctly, we need a series of problems
where the solution is known. These test cases must be specified by
someone with a good physical and mathematical understanding of the
problem being solved. We already have a solution formula (D.10) that
we can compare the computations with, and more tests can be made
in the case w �= 0 as well.

However, before we even think of checking the program against the
formula (D.10), we should perform some much simpler tests. The sim-
plest test is to see what happens if we do nothing with the system.
This solution is of course not very exciting – the box is at rest, but
it is in fact exciting to see if our program reproduces the boring so-
lution. Many bugs in the program can be found this way! So, let us
run the program box_spring.py with -S0 0 as the only command-line
argument. The output reads

t=0.00 S[0]=+0
t=0.16 S[1]=+0.121026
t=0.31 S[2]=+0.481118
t=0.47 S[3]=+1.07139
t=0.63 S[4]=+1.87728
t=0.79 S[5]=+2.8789
t=0.94 S[6]=+4.05154
t=1.10 S[7]=+5.36626
...

Something happens! All S[1], S[2], and so forth should be zero. What
is the error?

There are two directions to follow now: we can either visualize the
solution to understand more of what the computed S(t) function looks
like (perhaps this explains what is wrong), or we can dive into the
algorithm and compute S[1] by hand to understand why it does not
become zero. Let us follow both paths.

First we print out all terms on the right-hand side of the statement
that computes S[1]. All terms except the last one (Δt2mg) are zero.
The gravity term causes the spring to be stretched downward, which
causes oscillations. We can see this from the governing equation (D.8)
too: If there is no motion, S(t) = 0, the derivatives are zero (and w = 0
is default in the program), and then we are left with

kS = mg ⇒ S =
m

k
g. (D.22)

This result means that if the box is at rest, the spring is stretched
(which is reasonable!). Either we have to start with S(0) = m

k g in the
equilibrium position, or we have to turn off the gravity force by setting
-g 0 on the command line. Setting either -S0 0 -g 0 or -S0 9.81 shows
that the whole S list contains either zeros or 9.81 values (recall that
m = k = 1 so S0 = g). This constant solution is correct, and the coding
looks promising.

654 D A Complete Differential Equation Project

We can also plot the solution using the program box_spring_plot:

Terminal

box_spring_plot.py --S0 0 --N 200

Figure D.2 shows the function Y (t) for this case where the initial stretch
is zero, but gravity is causing a motion. With some mathematical anal-
ysis of this problem we can establish that the solution is correct. We
have that m = k = 1 and w = β = 0, which implies that the governing
equation is

d2S

dt2
+ S = g, S(0) = 0, dS/dt(0) = 0.

Without the g term this equation is simple enough to be solved by
basic techniques you can find in most introductory books on differential
equations. Let us therefore get rid of the g term by a little trick: we
introduce a new variable T = S − g, and by inserting S = T + g in the
equation, the g is gone:

d2T

dt2
+ T = 0, T (0) = −g,

dT

dt
(0) = 0. (D.23)

This equation is of a very well-known type and the solution reads T (t) =
−g cos t, which means that S(t) = g(1− cos t) and

Y (t) = −L− g(1− cos t)− b

2
.

With L = 10, g ≈ 10, and b = 2 we get oscillations around y ≈ 21 with
a period of 2π and a start value Y (0) = −L− b/2 = 11. A rough visual
inspection of the plot shows that this looks right. A more thorough
analysis would be to make a test of the numerical values in a new
callback function (the program is found in box_spring_test1.py):

from box_spring import init_prms, solve
from math import cos

def exact_S_solution(t):
return g*(1 - cos(t))

def check_S(S, t, step):
error = exact_S_solution(t) - S[step]
print ’t=%.2f S[%d]=%+g error=%g’ % (t, step, S[step], error)

Fixed values for a test
from math import pi
m = 1; b = 2; L = 10; k = 1; beta = 0; S0 = 0
dt = 2*pi/40; g = 9.81; N = 200

def w(t):
return 0

S = solve(m, k, beta, S0, dt, g, w, N, user_action=check_S)

D.3 Visualization 655

The output from this program shows increasing errors with time,
up as large values as 0.3. The difficulty is to judge whether this is the
error one must expect because the program computes an approximate
solution, or if this error points to a bug in the program – or a wrong
mathematical formula.

From these sessions on program testing you will probably realize that
verification of mathematical software is challenging. In particular, the
design of the test problems and the interpretation of the numerical out-
put require quite some experience with the interplay between physics
(or another application discipline), mathematics, and programming.

Fig. D.2 Positions Y (t) of an oscillating box with m = k = 1, w = β = 0, g = 9.81,
L = 10, and b = 2.

D.3 Visualization

The purpose of this section is to add graphics to the oscillating system
application developed in Appendix D.2. Recall that the function solve

solves the problem and returns a list S with indices from 0 to N. Our
aim is to plot this list and various physical quantities computed from it.

D.3.1 Simultaneous Computation and Plotting

The solve function makes a call back to the user’s code through a
callback function (the user_action argument to solve) at each time
level. The callback function has three arguments: S, the time, and the
current time step number. Now we want the callback function to plot
the position Y (t) of the box during the computations. In principle this
is easy, but S is longer than we want to plot, because S is allocated

656 D A Complete Differential Equation Project

for the whole time simulation while the user_action function is called
at time levels where only the indices in S up to the current time level
have been computed (the rest of the elements in S are zero). We must
therefore use a sublist of S, from time zero and up to the current time.
The callback function we send to solve as the user_action argument
can then be written like this:

def plot_S(S, t, step):
if step == 0: # nothing to plot yet

return None

tcoor = linspace(0, t, step+1)
S = array(S[:len(tcoor)])
Y = w(tcoor) - L - S - b/2.
plot(tcoor, Y)

Note that L, dt, b, and w must be global variables in the user’s main
program.

The major problem with the plot_S function shown is that the
w(tcoor) evaluation does not work. The reason is that w is a
StringFunction object, and according to Chapter 5.5.1, StringFunction
objects do not work with array arguments unless we call their vectorize
function once. We therefore need to do a

w.vectorize(globals())

before calling solve (which calls plot_S repeatedly). Here is the main
program with this important statement:

from box_spring import init_prms, solve
from scitools.std import *

Default values
m = 1; b = 2; L = 10; k = 1; beta = 0; S0 = 1;
dt = 2*pi/40; g = 9.81; w_formula = ’0’; N = 200;

m, b, L, k, beta, S0, dt, g, w, N = \
init_prms(m, b, L, k, beta, S0, dt, g, w_formula, N)

w.vectorize(globals())

S = solve(m, k, beta, S0, dt, g, w, N, user_action=plot_S)

Now the plot_S function works fine. You can try the program out by
running

Terminal

box_spring_plot_v1.py

Fixing Axes. Both the t and the y axes adapt to the solution array in
every plot. The adaptation of the y is okay since it is difficult to predict
the future minimum and maximum values of the solution, and hence it
is most natural to just adapt the y axis to the computed Y points so
far in the simulation. However, the t axis should be fixed throughout

D.3 Visualization 657

the simulation, and this is easy since we know the start and end times.
The relevant plot call now becomes4

plot(tcoor, Y,
axis=[0, N*dt, min(Y), max(Y)],
xlabel=’time’, ylabel=’Y’)

At the end of the simulation it can be nice to make a hardcopy of the
last plot command performed in the plot_S function. We then just
call

savefig(’tmp_Y.eps’)

after the solve function is finished.
In the beginning of the simulation it is convenient to skip plotting

for a number of steps until there are some interesting points to visualize
and to use for computing the axis extent. We also suggest to apply the
recipe at the end of Chapter 5.5.1 to vectorize w. More precisely, we use
w.vectorize in general, but turn to numpy’s vectorize feature only if the
string formula contains an inline if-else test (to avoid requiring users
to use where to vectorize the string expressions). One reason for paying
attention to if-else tests in the w formula is that sudden movements
of the plate are of interest, and this gives rise to step functions and
strings like ’1 if t>0 else 0’. A main program with all these features
is listed next.

from box_spring import init_prms, solve
from scitools.std import *

def plot_S(S, t, step):
first_plot_step = 10 # skip the first steps
if step < first_plot_step:

return

tcoor = linspace(0, t, step+1) # t = dt*step
S = array(S[:len(tcoor)])
Y = w(tcoor) - L - S - b/2.0 # (w, L, b are global vars.)

plot(tcoor, Y,
axis=[0, N*dt, min(Y), max(Y)],
xlabel=’time’, ylabel=’Y’)

Default values
m = 1; b = 2; L = 10; k = 1; beta = 0; S0 = 1
dt = 2*pi/40; g = 9.81; w_formula = ’0’; N = 200

m, b, L, k, beta, S0, dt, g, w, N = \
init_prms(m, b, L, k, beta, S0, dt, g, w_formula, N)

Vectorize the StringFunction w
w_formula = str(w) # keep this to see if w=0 later
if ’ else ’ in w_formula:

w = vectorize(w) # general vectorization
else:

w.vectorize(globals()) # more efficient (when no if)

4 Note that the final time is T = NΔt.

658 D A Complete Differential Equation Project

S = solve(m, k, beta, S0, dt, g, w, N, user_action=plot_S)

First make a hardcopy of the last plot of Y
hardcopy(’tmp_Y.eps’)

D.3.2 Some Applications

What if we suddenly, right after t = 0, move the plate upward from
y = 0 to y = 1? This will set the system in motion, and the task is to
find out what the motion looks like.

There is no initial stretch in the spring, so the initial condition be-
comes S0 = 0. We turn off gravity for simplicity and try a w = 1
function since the plate has the position y = w = 1 for t > 0:

Terminal

box_spring_plot.py --w’1’ --S 0 --g 0

Nothing happens. The reason is that we specify w(t) = 1, but in the
equation only d2w/dt2 has an effect and this quantity is zero. What we
need to specify is a step function: w = 0 for t ≤ 0 and w = 1 for t > 0.
In Python such a function can be specified as a string expression ’1 if

t>0 else 0’. With a step function we obtain the right initial jump of
the plate:

Terminal

box_spring_plot.py --w’1 if t > 0 else 0’ \
--S0 0 --g 0 --N 1000 --beta 0.1

Figure D.3 displays the solution. We see that the damping parameter
has the effect of reducing the amplitude of Y (t), and the reduction
looks exponential, which is in accordance with the exact solution (D.10)
(although this formula is not valid in the present case because w �= 0
– but one gets the same exponential reduction even in this case). The
box is initially located in Y = 0 − (10 + 0) − 2/2 = −11. During the
first time step we get a stretch S = 0.5 and the plate jumps up to
y = 1 so the box jumps to Y = 1 − (10 + 0.5) − 2/2 = −10.5. In
Figure D.3b we that the box starts correctly out and jumps upwards,
as expected.

More exciting motions of the box can be obtained by moving the
plate back and forth in time, see for instance Figure D.4 on page 661.

D.3.3 Remark on Choosing Δt

If you run the box_spring_plot.py program with a large -dt argument
(for Δt), strange things may happen. Try -dt 2 -N 20 as command-
line arguments and observe that Y jumps up and down in a saw tooth

D.3 Visualization 659

Fig. D.3 Plot of the position of an oscillating box where the end point of the spring (w(t))
is given a sudden movement at t = 0. Other parameters are m = k = 1, β = 0.1, g = 0,

S0 = 0. (a) 1000 time steps; (b) 100 steps for magnifying the first oscillation cycles.

fashion so we clearly have too large time steps. Then try -dt 2.1 -N 20

and observe that Y takes on very large values (105). This highly non-
physical result points to an error in the program. However, the problem
is not in the program, but in the numerical method used to solve (D.8).
This method becomes unstable and hence useless if Δt is larger than
a critical value. We shall not dig further into such problems, but just
notice that mathematical models on a computer must be used with care,
and that a serious user of simulation programs must understand how
the mathematical methods work in detail and what their limitations
are.

D.3.4 Comparing Several Quantities in Subplots

So far we have plotted Y , but there are other interesting quantities to
look at, e.g., S, w, the spring force, and the damping force. The spring
force and S are proportional, so only one of these is necessary to plot.
Also, the damping force is relevant only if β �= 0, and w is only relevant
if the string formula is different from the default value ’0’.

All the mentioned additional plots can be placed in the same fig-
ure for comparison. To this end, we apply the subfigure command in
Easyviz and create a row of individual plots. How many plots we have
depends on the values of str(w) and beta. The relevant code snippet
for creating the additional plots is given below and appears after the
part of the main program shown above.

Make plots of several additional interesting quantities
tcoor = linspace(0, tstop, N+1)
S = array(S)

plots = 2 # number of rows of plots
if beta != 0:

plots += 1
if w_formula != ’0’:

plots += 1

660 D A Complete Differential Equation Project

Position Y(t)
plot_row = 1
subplot(plots, 1, plot_row)
Y = w(tcoor) - L - S - b/2.0
plot(tcoor, Y, xlabel=’time’, ylabel=’Y’)

Spring force (and S)
plot_row += 1
subplot(plots, 1, plot_row)
Fs = k*S
plot(tcoor, Fs, xlabel=’time’, ylabel=’spring force’)

Friction force
if beta != 0:

plot_row += 1
subplot(plots, 1, plot_row)
Fd = beta*diff(S) # diff is in numpy
len(diff(S)) = len(S)-1 so we use tcoor[:-1]:
plot(tcoor[:-1], Fd, xlabel=’time’, ylabel=’damping force’)

Excitation
if w_formula != ’0’:

plot_row += 1
subplot(plots, 1, plot_row)
w_array = w(tcoor)
plot(tcoor, w_array, xlabel=’time’, ylabel=’w(t)’)

savefig(’tmp.eps’) # save this multi-axis plot in a file

Figure D.4 displays what the resulting plot looks like for a test case
with an oscillating plate (w). The command for this run is

Terminal

box_spring_plot.py --S0 0 --w’2*(cos(8*t)-1)’ \
--N 600 --dt 0.05236

The rapid oscillations of the plate require us to use a smaller Δt and
more steps (larger N).

D.3.5 Comparing Approximate and Exact Solutions

To illustrate multiple curves in the same plot and animations we turn
to a slightly different program. The task now is to visually investigate
how the accuracy of the computations depends on the Δt parameter.
The smaller Δt is, the more accurate the solution S is. To look into
this topic, we need a test problem with known solution. Setting m =
k = 1 and w = 0 = β = 0 implies the exact solution S(t) = g(1 −
cos t) (see Appendix D.2.4). The box_spring_test1.py program from
Appendix D.2.4 can easily be extended to plot the calculated solution
together with the exact solution. We drop the user_action callback
function and just make the plot after having the complete solution S

returned from the solve function:

D.3 Visualization 661

Fig. D.4 Plot of the plate position w(t), the spring force (proportional to S(t)), and the
position Y (t) for a test problem where w(t) = 2(cos(8t)−1), β = g = 0, m = k = 1, S0 = 0,

Δt = 0.5236, and N = 600.

tcoor = linspace(0, N*dt, len(S))
exact = exact_S_solution(tcoor)
plot(tcoor, S, ’r’, tcoor, exact, ’b’,

xlabel=’time’, ylabel=’S’,
legend=(’computed S(t)’, ’exact S(t)’),
savefig=’tmp_S.eps’)

The two curves tend to lie upon each other, so to get some more insight
into the details of the error, we plot the error itself, in a separate plot
window:

figure() # new plot window
S = array(S) # turn list into NumPy array for computations
error = exact - S
plot(tcoor, error, xlabel=’time’, ylabel=’error’,

savefig=’tmp_error.eps’)

The error increases in time as the plot in Figure D.5a clearly shows.

D.3.6 Evolution of the Error as Δt Decreases

Finally, we want to investigate how the error curve evolves as the time
stepΔt decreases. In a loop we halveΔt in each pass, solve the problem,
compute the error, and plot the error curve. From the finite difference
formulas involved in the computational algorithm, we can expect that
the error is of order Δt2. That is, if Δt is halved, the error should be
reduced by 1/4.

The resulting plot of error curves is not very informative because the
error reduces too quickly (by several orders of magnitude). A better plot

662 D A Complete Differential Equation Project

is obtained by taking the logarithm of the error. Since an error curve
may contain positive and negative elements, we take the absolute value
of the error before taking the logarithm. We also note that S0 is always
correct, so it is necessary to leave out the initial value of the error array
to avoid the logarithm of zero.

The ideas of the previous two paragraphs can be summarized in a
Python code snippet:

figure() # new plot window
dt = 2*pi/10
tstop = 8*pi # 4 periods
N = int(tstop/dt)
for i in range(6):

dt /= 2.0
N *= 2
S = solve(m, k, beta, S0, dt, g, w, N)
S = array(S)
tcoor = linspace(0, tstop, len(S))
exact = exact_S_solution(tcoor)
abserror = abs(exact - S)
Drop abserror[0] since it is always zero and causes
problems for the log function:
logerror = log10(abserror[1:])

plot(tcoor[1:], logerror, ’r’, xlabel=’time’,
ylabel=’log10(abs(error))’)

hold(’on’)
savefig(’tmp_errors.eps’)

The resulting plot is shown in Figure D.5b.

Fig. D.5 Error plots for a test problem involving an oscillating system: (a) the error as a

function of time; (b) the logarithm of the absolute value of the error as a function of time,
where Δt is reduced by one half from one curve to the next one below.

Visually, it seems to be a constant distance between the curves in
Figure D.5b. Let d denote this difference and let Ei be the absolute
error curve associated with Δt in the i-th pass in the loop. What we
plot is log10Ei. The difference between two curves is then Di+1 =
log10Ei − log10Ei+1 = log10(Ei/Ei+1). If this difference is roughly 0.5
as we see from Figure D.5b, we have

D.3 Visualization 663

log10
Ei

Ei+1
= d = 0.5 ⇒ Ei+1 =

1

3.16
Ei.

That is, the error is reduced, but not by the theoretically expected
factor 4. Let us investigate this topic in more detail by plotting Di+1.

We make a loop as in the last code snippet, but store the logerror ar-
ray from the previous pass in the loop (Ei) in a variable logerror_prev

such that we can compute the difference Di+1 as

logerror_diff = logerror_prev - logerror

There are two problems to be aware of now in this array subtraction:
(i) the logerror_prev array is not defined before the second pass in the
loop (when i is one or greater), and (ii) logerror_prev and logerror

have different lengths since logerror has twice as many time intervals
as logerror_prev. Numerical Python does not know how to compute
this difference unless the arrays have the same length. We therefore
need to use every two elements in logerror:

logerror_diff = logerror_prev - logerror[::2]

An additional problem now arises because the set of time coordinates,
tcoor, in the current pass of the loop also has twice as many intervals
so we need to plot logerror_diff against tcoor[::2].

The complete code snippet for plotting differences between the log-
arithm of the absolute value of the errors now becomes

figure()
dt = 2*pi/10
tstop = 8*pi # 4 periods
N = int(tstop/dt)
for i in range(6):

dt /= 2.0
N *= 2
S = solve(m, k, beta, S0, dt, g, w, N)
S = array(S)
tcoor = linspace(0, tstop, len(S))
exact = exact_S_solution(tcoor)
abserror = abs(exact - S)
logerror = log10(abserror[1:])
if i > 0:

logerror_diff = logerror_prev - logerror[::2]
plot(tcoor[1::2], logerror_diff, ’r’, xlabel=’time’,

ylabel=’difference in log10(abs(error))’)
hold(’on’)
meandiff = mean(logerror_diff)
print ’average log10(abs(error)) difference:’, meandiff

logerror_prev = logerror
savefig(’tmp_errors_diff.eps’)

Figure D.6 shows the result. We clearly see that the differences between
the curves in Figure D.5b are almost the same even if Δt is reduced by
several orders of magnitude.

In the loop we also print out the average value of the difference
curves in Figure D.6:

664 D A Complete Differential Equation Project

Fig. D.6 Differences between the curves in Figure D.5b.

average log10(abs(error)) difference: 0.558702094666
average log10(abs(error)) difference: 0.56541814902
average log10(abs(error)) difference: 0.576489014172
average log10(abs(error)) difference: 0.585704362507
average log10(abs(error)) difference: 0.592109360025

These values are “quite constant”. Let us use 0.57 as an representative
value and see what it implies. Roughly speaking, we can then say that

log10Ei − log10Ei+1 = 0.57.

Collecting the two first terms and applying the exponential function
10x on both sides we get that

Ei+1 =
1

3.7
Ei.

This error reduction when Δt is decreased is not quite as good as
we would theoretically expect (1/4), but it is close. The purpose of
this brief analysis is primarily to show how errors can be explored
by plotting, and how we can take advantage of array computing to
produce various quantities of interest in a problem. A more thorough
investigation of how the error depends on Δt would use time integrals
of the error instead of the complete error curves.

Again we mention that the complete problem analyzed in this ap-
pendix is challenging to understand because of its mix of physics, math-
ematics, and programming. In real life, however, problem solving in
science and industry involve multi-disciplinary projects where people
with different competence work together. As a scientific programmer
you must then be able to fully understand what to program and how
to verify the results. This is a requirement in the current summarizing
example too. You have to accept that your programming problem is
buried in a lot of physical and mathematical details.

D.4 Exercises 665

Having said this, we expect that most readers of this book also gain
a background in physics and mathematics so that the present summa-
rizing example can be understood in complete detail, at least at some
later stage.

D.4 Exercises

Exercise D.1. Use a w function with a step.
Set up a problem with the box_spring_plot.py program where the

initial stretch in the spring is 1 and there is no gravity force. Between
t = 20 and t = 30 we move the plate suddenly from 0 to 2 and back
again:

w(t) =

{
2, 20 < t < 30,
0, otherwise

Run this problem and view the solution. �

Exercise D.2. Make a callback function in Exercise D.1.
Doing Exercise D.1 shows that the Y position increases signifi-

cantly in magnitude when the plate “jumps” upward and back again
at t = 20 and t = 30, respectively. Make a program where you im-
port from the box_spring module and provide a callback function that
checks if Y < 9 and then aborts the program. Name of program file:
box_spring_Ycrit.py. �

Exercise D.3. Improve input to the simulation program.
The oscillating system in Appendix D.1 has an equilibrium position

S = mg/k, see (D.22) on page 653. A natural case is to let the box
start at rest in this position and move the plate to induce oscillations.
We must then prescribe S0 = mg/k on the command line, but the
numerical value depends on the values of m and g that we might also
give in the command line. However, it is possible to specify -S0 m*g/k

on the command line if we in the init_prms function first let S0 be
a string in the elif test and then, after the for loop, execute S0 =

eval(S0). At that point, m and k are read from the command line so
that eval will work on ’m*g/k’, or any other expression involving data
from the command. Implement this idea.

A first test problem is to start from rest in the equilibrium position
S(0) = mg/k and give the plate a sudden upward change in position
from y = 0 to y = 1. That is,

w(t) =

{
0, t ≤ 0,
1, t > 0

You should get oscillations around the displaced equilibrium position
Y = w − L− S0 = −9− 2g. Name of program file: box_spring2.py. �

http://www.springer.com
http://www.springer.com/mycopy

Programming of Differential Equations E

Appendices C and D give a brief introduction differential equations,
with a focus on a few specific equations and programs that are tailored
to these equations. The present appendix views differential equations
from a more abstract point of view, which allows us to formulate nu-
merical methods and create general software that are applicable to
a large family of widely different problems from physics, biology, fi-
nance, and numerous other disciplines. More specifically, the abstract
view is motivated by the slogan implement once, apply anywhere. We
have in fact met this principle several places in the book: differenti-
ation (f ′′(x)) in Chapters 3.1.9 and 7.3.2, integration (

∫ b
a f(x)dx) in

Chapters 3.4.2 and 7.3.3, and root finding (f(x) = 0) in Chapter 4.6.2
and Appendix A.1.10. In all of the referred implementations, we work
with a general function f(x) so that any problem can be solved by
the same piece of code as long as we can define the problem in terms
of a function f(x). This is an excellent demonstration of the power of
mathematics, and this abstract view of problems in terms of some f(x)
is especially powerful in numerical methods and programming. Now we
shall formulate differential equations on the abstract form u′ = f(u, t)
and create software that can solve any equation for which the f(u, t)
is given.

Before studying the present appendix, the reader should have some
familiarity with differential equations at the level of Appendix C. Ap-
pendix D can also be advantageous to read, although this is not strictly
required. Fundamental programming skills corresponding to Chap-
ters 1–5 are required for the basic material in this appendix. However,
we also use classes to a large extent, which demands familiarity with
the concepts in Chapter 7. The material on object-oriented program-
ming in Appendix E.2.5 requires good knowledge of class hierarchies
from Chapter 9.

H.P. Langtangen, A Primer on Scientific Programming with Python,
Texts in Computational Science and Engineering 6,

DOI 10.1007/978-3-642-30293-0, c© Springer-Verlag Berlin Heidelberg 2012

667

http://dx.doi.org/10.1007/978-3-642-30293-0

668 E Programming of Differential Equations

All computer codes associated with this appendix is found in
src/ode2.

E.1 Scalar Ordinary Differential Equations

We shall in this appendix work with ordinary differential equations
(ODEs) written on the abstract form

u′(t) = f
(
u(t), t

)
. (E.1)

There is an infinite number of solutions to such an equation, so to make
the solution u(t) unique, we must also specify an initial condition

u(0) = U0. (E.2)

Given f(u, t) and U0, our task is to compute u(t).
A first sight, (E.1) is only a first-order differential equation, since

only u′ and not higher-order derivatives like u′′ are present in the equa-
tion. However, equations with higher-order derivatives can also be writ-
ten on the abstract form (E.1) by introducing auxiliary variables and
interpreting u and f as vector functions. This rewrite of the original
equation leads to a system of first-order differential equations and will
be treated in Appendix E.2. The bottom line is that a very large family
of differential equations can be written as (E.1). Forthcoming examples
will provide evidence.

We shall first assume that u(t) is a scalar function, meaning that it
has one number as value, which can be represented as a float object
in Python. We then refer to (E.1) as a scalar differential equation. The
counterpart vector function means that u is a vector of scalar functions
and the equation is known as a system of ODEs (also known as a vector
ODE). The value of a vector function is a list or array in a program,
not more complicated than explained in Chapter 5.

E.1.1 Examples on Right-Hand-Side Functions

To write a specific differential equation on the form (E.1) we need to
identify what the f function is. Say the equation reads

y2y′ = x, y(0) = Y,

with y(x) as the unknown function. First, we need to introduce u and
t as new symbols: u = y, t = x. This gives the equivalent equation
u2u′ = t and the initial condition u(0) = Y . Second, the quantity u′

must be isolated on the left-hand side of the equation in order to bring
the equation on the form (E.1). Dividing by u2 gives

u′ = tu−2.

E.1 Scalar Ordinary Differential Equations 669

This fits the form (E.1), and the f(u, t) function is simply the formula
involving u and t on the right-hand side:

f(u, t) = tu−2.

The t parameter is very often absent on the right-hand side such that
f involves u only.

Below is a set of commonly arising scalar differential equations and
their corresponding f functions.

1. Exponential growth of money or populations:

u′ = αu, (E.3)

where α > 0 is a given constant expressing the growth rate of u.

f(u, t) = αu. (E.4)

2. Logistic growth of a population under limited resources:

u′ = αu

(
1− u

R

)
, (E.5)

where α > 0 is the initial growth rate and R is the maximum possible
value of u.

f(u, t) = αu

(
1− u

R

)
. (E.6)

3. Radioactive decay of a substance:

u′ = −au, (E.7)

where a > 0 is the rate of decay of u.

f(u, t) = −au. (E.8)

4. Body falling in a fluid:

u′ + b|u|u = g, (E.9)

where b > 0 models the fluid resistance, g is the acceleration of
gravity, and u is the body’s velocity (see Exercise E.11 on page 709).

f(u, t) = −b|u|u+ g. (E.10)

5. Newton’s law of cooling:

u′ = −h(u− s), (E.11)

where u is the temperature of a body, h > 0 is a proportionality

670 E Programming of Differential Equations

constant, normally to be estimated from experiments, and s is the
temperature of the surroundings.

f(u, t) = −h(u− s). (E.12)

E.1.2 The Forward Euler Scheme

Our task now is to define numerical methods for solving equations of
the form (E.1). The simplest such method is the Forward Euler scheme.
Equation (E.1) is to be solved for t ∈ (0, T], and we seek the solution u
at discrete time points ti = iΔt, i = 1, 2, . . . , n. Clearly, tn = nΔt = T ,
determining the number of points n as T/Δt. The corresponding values
u(ti) are often abbreviated as ui, just for notational simplicity.

Equation (E.1) is to be fulfilled at all time points t ∈ (0, T]. However,
when we solve (E.1) numerically, we only require the equation to be
satisfied at the discrete time points t1, t2, . . . , tn. That is,

u′(tk) = f
(
u(tk), tk

)
,

for k = 1, . . . , n. The fundamental idea of the Forward Euler scheme is
to approximate u′(tk) by a one-sided, forward difference:

u′(tk) ≈
u(tk+1)− u(tk)

Δt
=

uk+1 − uk
Δt

.

This removes the derivative and leaves us with the equation

uk+1 − uk
Δt

= f(uk, tk).

We assume that uk is already computed, so that the only unknown in
this equation is uk+1, which we can solve for:

uk+1 = uk +Δtf(uk, tk). (E.13)

This is the Forward Euler scheme for a scalar first-order differential
equation u′ = f(u, t).

Equation (E.13) has a recursive nature. We start with the initial
condition, u0 = U0, and compute u1 as

u1 = u0 +Δtf(u0, t0).

Then we can continue with

u2 = u1 +Δtf(u1, t1),

and then with u3 and so forth. This recursive nature of the method
also demonstrates that we must have an initial condition – otherwise
the method cannot start.

E.1 Scalar Ordinary Differential Equations 671

E.1.3 Function Implementation

The next task is to write a general piece of code that implements
the Forward Euler scheme (E.13). The complete original (continuous)
mathematical problem is stated as

u′ = f(u, t), t ∈ (0, T], u(0) = U0, (E.14)

while the discrete numerical problem reads

uk+1 = uk+Δtf(uk, tk), tk = kΔt, k = 1, . . . , n, n = T/Δt, u0 = U0.
(E.15)

We see that the input data to the numerical problem consist of f , U0,
T , and Δt or n. The output consists of u1, u2, . . . , un and the corre-
sponding set of time points t1, t2, . . . , tn.

Let us implement The Forward Euler scheme in a function
ForwardEuler that takes f , U0, T , and n as input, and that returns
u0, . . . , un and t0, . . . , tn:

def ForwardEuler(f, U0, T, n):
"""Solve u’=f(u,t), u(0)=U0, with n steps until t=T."""
import numpy as np
t = np.zeros(n+1)
u = np.zeros(n+1) # u[k] is the solution at time t[k]
u[0] = U0
t[0] = 0
dt = T/float(n)
for k in range(n):

t[k+1] = t[k] + dt
u[k+1] = u[k] + dt*f(u[k], t[k])

return u, t

Note the close correspondence between the implementation and the
mathematical specification of the problem to be solved. The argument
f to the ForwardEuler function must be a Python function f(u, t)

implementing the f(u, t) function in the differential equation (i.e., f is
the definition of the equation to be solved). For example, we may solve
u′ = u for t ∈ (0, 3), with u(0) = 1, and Δt = 0.1 by the following code
utilizing the ForwardEuler function:

def f(u, t):
return u

u, t = ForwardEuler(f, U0=1, T=3, n=30)

With the u and t arrays we can easily plot the solution or perform
data analysis on the numbers.

E.1.4 Verifying the Implementation

The simplest, yet very effective, way to verify the implementation is to
compute a couple of time steps by hand, say u1 and u2:

672 E Programming of Differential Equations

u1 = 1 + 0.1 · 1 = 1.1, u2 = 1.1 + 0.1 · 1.1 = 1.21.

These values are to be compared with the numbers produced by the
code:

u, t = ForwardEuler(f, U0=1, T=0.2, n=2)
print u

Another effective way to verify the code, is to find a problem that
can be solved exactly by the numerical method we use. That is, we seek
a problem where we do not have to deal with mathematical approxi-
mation errors when comparing the exact solution with that produced
by the program. It turns out that if the solution u(t) is linear in t, the
Forward Euler method will reproduce this solution exactly. Therefore,
we choose u(t) = at + U0, with (e.g.) a = 0.2 and U0 = 3. The cor-
responding f is the derivative of u, i.e., f(u, t) = a. This is obviously
a very simple right-hand side without any u or t. However, we can
make f more complicated by adding something that is zero, e.g., some
expression with u− (at+ U0), say (u− (at+ U0))

4, so that

f(u, t) = a+
(
u− (at+ U0)

)4
. (E.16)

We implement our special f and the exact solution in two functions
f1 and u_solution_f1, and write out the numerical and exact solutions
for comparison:

def f1(u, t):
return 0.2 + (u - u_solution_f1(t))**4

def u_solution_f1(t):
return 0.2*t + 3

u, t = ForwardEuler(f1, U0=3, T=3, n=5)
print ’Numerical:’, u
print ’Exact: ’, u_solution_f1(t)

The output becomes

Numerical: [3. 3.12 3.24 3.36 3.48 3.6]
Exact: [3. 3.12 3.24 3.36 3.48 3.6]

showing that the code works as it should in this example.

E.1.5 From Discrete to Continuous Solution

The numerical solution of an ODE is a discrete function in the sense
that we only know the function values u0, u1, ldots, uN at some discrete
points t0, t1, . . . , tN in time. What if we want to know u between two
computed points? For example, what is u between ti and ti+1, say at
the midpoint t = ti+

1
2Δt? One can use interpolation techniques to find

this value u. The simplest interpolation technique is to assume that u

E.1 Scalar Ordinary Differential Equations 673

varies linearly on each time interval. On the interval [ti, ti+1] the linear
variation of u becomes

u(t) = ui +
ui+1 − ui

ti+1 − ti
(t− ti).

We can then evaluate, e.g., u(ti +
1
2Δt) from this formula and show

that it becomes (ui + ui+1)/2.
The function scitools.std.wrap2callable can automatically convert

a discrete function to a continuous function:

from scitools.std import wrap2callable
u_cont = wrap2callable((t, u))

From the arrays t and u, wrap2callable constructs a continuous func-
tion based on linear interpolation. The result u_cont is a Python func-
tion that we can evaluate for any value of its argument t:

dt = t[i+1] - t[i]
t = t[i] + 0.5*dt
value = u_cont(t)

In general, the wrap2callable function is handy when you have com-
puted some discrete function and you want to evaluate this discrete
function at any point.

E.1.6 Switching Numerical Method

There are numerous alternative numerical methods for solving (E.13).
One of the simplest is Heun’s method:

u∗ = uk +Δtf(uk, tk), (E.17)

uk+1 = uk +
1

2
Δtf(uk, tk) +

1

2
Δtf(u∗, tk+1). (E.18)

This scheme is easily implemented in the ForwardEuler function by
replacing the Forward Euler formula

u[k+1] = u[k] + dt*f(u[k], t[k])

by (E.17) and (E.18):

u_star = u[k] + dt*f(u[k], t[k])
u[k+1] = u[k] + 0.5*dt*f(u[k], t[k]) + 0.5*dt*f(u_star, t[k+1])

We can, especially if f is expensive to calculate, eliminate a call f(u[k],
t[k]) by introducing an auxiliary variable:

f_k = f(u[k], t[k])
u_star = u[k] + dt*f_k
u[k+1] = u[k] + 0.5*dt*f_k + 0.5*dt*f(u_star, t[k+1])

674 E Programming of Differential Equations

E.1.7 Class Implementation

As an alternative to the general ForwardEuler function in Ap-
pendix E.1.3, we shall now implement the numerical method in a
class. This requires, of course, familiarity with the class concept from
Chapter 7.

Class Wrapping of a Function. Let us start with simply wrapping
the ForwardEuler function in a class ForwardEuler_v1 (the postfix _v1

indicates that this is the very first class version). That is, we take the
code in the ForwardEuler function and distribute it among methods in
a class.

The constructor can store the input data of the problem and initialize
data structures, while a solve method can perform the time stepping
procedure:

import numpy as np

class ForwardEuler_v1:
def __init__(self, f, U0, T, n):

self.f, self.U0, self.T, self.n = f, dt, U0, T, n
self.dt = T/float(n)
self.u = np.zeros(n+1)
self.t = np.zeros(n+1)

def solve(self):
"""Compute solution for 0 <= t <= T."""
self.u[0] = float(self.U0)
self.t[0] = float(0)

for k in range(self.n):
self.k = k
self.t[k+1] = self.t[k] + self.dt
self.u[k+1] = self.advance()

return self.u, self.t

def advance(self):
"""Advance the solution one time step."""
u, dt, f, k, t = \

self.u, self.dt, self.f, self.k, self.t

u_new = u[k] + dt*f(u[k], t[k])
return u_new

Note that we have introduced a third class method, advance, which
isolates the numerical scheme. The motivation is that, by observa-
tion, the constructor and the solve method are completely general
as they remain unaltered if we change the numerical method (at least
this is true for a wide class of numerical methods). The only differ-
ence between various numerical schemes is the updating formula. It
is therefore a good programming habit to isolate the updating for-
mula so that another scheme can be implemented by just replac-
ing the advance method – without touching any other parts of the
class.

E.1 Scalar Ordinary Differential Equations 675

Also note that we in the advance method “strip off” the self prefix
by introducing local symbols with exactly the same names as in the
mathematical specification of the numerical method. This is important
if we want a one-to-one correspondence between the mathematics and
the implementation.

Application of the class goes as follows, here for the model problem
u′ = u, u(0) = 1:

def u_exp():
def f(u, t):

return u

solver = ForwardEuler_v1(f, U0=1, T=3, n=15)
u, t = solver.solve()

u_exp()

Switching Numerical Method. Implementing, for example, Heun’s
method (E.17)–(E.18) is a matter of replacing the advance method
by

def advance(self):
"""Advance the solution one time step."""
u, dt, f, k, t = \

self.u, self.dt, self.f, self.k, self.t

u_star = u[k] + dt*f(u[k], t[k])
u_new = u[k] + \

0.5*dt*f(u[k], t[k]) + 0.5*dt*f(u_star, t[k+1])
return u_new

Checking input data is always a good habit, and in the present class
the constructor may test that the f argument is indeed an object that
can be called as a function (cf. page 361):

if not callable(f):
raise TypeError(’f is %s, not a function’ % type(f))

A More Flexible Class. Say we solve u′ = f(u, t) from t = 0 to t = T1.
We can continue the solution for t > T1 simply by restarting the whole
procedure with initial conditions at t = T1. Hence, the implementation
should allow several consequtive solve steps.

Another fact is that the time step Δt does not need to be constant.
Allowing small Δt in regions where u changes rapidly and letting Δt
be larger in areas where u is slowly varying, is an attractive solution
strategy. The Forward Euler method can be reformulated for a variable
time step size tk+1 − tk:

uk+1 = uk + (tk+1 − tk)f(uk, tk). (E.19)

Similarly, Heun’s method and many other methods can be formulated
with a variable step size simply by replacing Δt with tk+1− tk. It then

676 E Programming of Differential Equations

makes sense for the user to provide a list or array with time points for
which a solution is sought: t0, t1, . . . , tn. The solve method can accept
such a set of points.

The mentioned extensions lead to a modified class:

class ForwardEuler:
def __init__(self, f):

if not callable(f):
raise TypeError(’f is %s, not a function’ % type(f))

self.f = f

def set_initial_condition(self, U0):
self.U0 = float(U0)

def solve(self, time_points):
"""Compute u for t values in time_points list."""
self.t = np.asarray(time_points)
self.u = np.zeros(len(time_points))
Assume self.t[0] corresponds to self.U0
self.u[0] = self.U0

for k in range(len(self.t)-1):
self.k = k
self.u[k+1] = self.advance()

return self.u, self.t

def advance(self):
"""Advance the solution one time step."""
u, f, k, t = self.u, self.f, self.k, self.t
dt = t[k+1] - t[k]
u_new = u[k] + dt*f(u[k], t[k])
return u_new

Here is a verification of the implementation, first integrating the equa-
tion corresponding to the f in (E.16) for the time points 0, 0.4, 1, 1.2,
and then continuing the solution process for t1 = 1.4 and t2 = 1.5 with
t0 = 1.2 as initial point:

def _verify_f1_ForwardEuler():
U0 = 3
solver = ForwardEuler(_f1)
solver.set_initial_condition(U0)
t = [0, 0.4, 1, 1.2]
u1, t1 = solver.solve(t)
Continue with a new time interval
solver.set_initial_condition(u1[-1])
t = [1.2, 1.4, 1.5]
u2, t2 = solver.solve(t)
u = np.concatenate((u1, u2))
t = np.concatenate((t1, t2))
u_exact = _u_solution_f1(t)
print ’time values:’, t
print ’Numerical: ’, u
print ’Exact: ’, u_exact

The output is exactly what we would expect:

time values: [0. 0.4 1. 1.2 1.2 1.4 1.5]
Numerical: [3. 3.08 3.2 3.24 3.24 3.28 3.3]
Exact: [3. 3.08 3.2 3.24 3.24 3.28 3.3]

E.2 Systems of Ordinary Differential Equations 677

E.1.8 Example: Logistic Growth

A more exciting application is to solve the logistic equation (C.23),

u′(t) = αu(t)

(
1− u(t)

R

)
.

The f(u, t) function is simply the right-hand side of this ODE.
Implementing this problem with the aid of the ForwardEuler function

from Appendix E.1.3 is left as an exercise for the reader, while we here
explain how to utilize class ForwardEuler from Appendix E.1.7. Also the
right-hand-side function f(u, t) will be implemented as a class, because
it contains the parameters α and R. We may store the initial condition
as part of this class and have a __str__ method for pretty print of the
formula for the right-hand-side of the logistic equation.

This problem class can then be expressed as

class Logistic:
"""Problem class for a logistic ODE."""
def __init__(self, alpha, R, U0):

self.alpha, self.R, self.U0 = alpha, float(R), U0

def __call__(self, u, t):
"""Return f(u,t) for the logistic ODE."""
return self.alpha*u*(1 - u/self.R)

def __str__(self):
"""Return ODE and initial condition."""
return "u’(t) = %g*u*(1 - u/%g)\nu(0)=%g" % \

(self.alpha, self.R, self.U0)

Running a case with α = 0.2, R = 1, u(0) = 0.1, and 400 equally
spaced time points up to time T = 40, can be performed in the following
function:

def logistic():
problem = Logistic(alpha=0.2, R=1, U0=0.1)
T = 40
solver = ForwardEuler(problem)
solver.set_initial_condition(problem.U0)
t = np.linspace(0, T, 401) # 400 intervals in [0,T]
u, t = solver.solve(t)

A plot of u versus t is shown in Figure E.1.
The ForwardEuler class is further developed in Appendix E.2, where

the code is extended to other numerical methods and also systems of
ODEs.

E.2 Systems of Ordinary Differential Equations

The software developed so far in this appendix targets scalar ODEs
of the form u′ = f(u, t) with initial condition u(0) = U0. Our goal

678 E Programming of Differential Equations

Fig. E.1 Plot of the solution of the ODE problem u′ = 0.2u(1− u), u(0) = 0.1.

now is to build a flexible toolbox for solving scalar ODEs as well as
systems of ODEs. That is, we want the same code to work both for
systems and scalar equations. Moreover, the user should be able to
easily switch between different numerical methods, with a minimum of
coding. Also, the developer of the tools should be able to include a new
numerical method with a minimum of coding. All these requirements
can be met by utilizing object-oriented programming from Chapter 9.
Recommended background material consists of Chapters 9.1–9.3.

E.2.1 Mathematical Problem

A scalar ODE involves the single equation

u′(t) = f
(
u(t), t

)
with a single function u(t) as unknown, while a system of ODEs involves
n scalar ODEs and consequently n unknown functions. Let us denote
the unknown functions in the system by u(i)(t), with i as a counter,
i = 0, . . . ,m − 1. The system of n ODEs can then be written in the
following abstract form:

du(0)

dt
= f (0)

(
u(0), u(1), . . . , u(m−1), t

)
, (E.20)

...

du(i)

dt
= f (i)

(
u(0), u(1), . . . , u(m−1), t

)
, (E.21)

...

du(m−1)

dt
= f (m−1)

(
u(0), u(1), . . . , u(m−1), t

)
. (E.22)

E.2 Systems of Ordinary Differential Equations 679

In addition, we need n initial conditions for the n unknown functions:

u(i)(0) = U
(i)
0 , i = 0, . . . ,m− 1. (E.23)

Instead of writing out each equation as in (E.20)–(E.22), mathemati-
cians like to collect the individual functions u(0), u(1), . . . , u(m−1) in a
vector

u =
(
u(0), u(1), . . . , u(m−1)

)
.

The different right-hand-side functions f (0), f (1), . . . , f (m−1) in (E.20)–
(E.22) can also be collected in a vector

f =
(
f (0), f (1), . . . , f (m−1)

)
.

Similarly, we put the initial conditions also in a vector

U0 =
(
U

(0)
0 , U

(1)
0 , . . . , U

(m−1)
0

)
.

With the vectors u, f , and U0, we can write the ODE system (E.20)–
(E.22) with initial conditions (E.23) as

u′ = f(u, t), u(0) = U0. (E.24)

This is exactly the same notation as we used for a scalar ODE (!). The
power of mathematics is that abstractions can be generalized so that
new problems look like the familiar ones, and very often methods carry
over to the new problems in the new notation without any changes.
This is true for numerical methods for ODEs too.

Let us apply the Forward Euler scheme to each of the ODEs in the
system (E.20)–(E.22):

u
(0)
k+1 = u

(0)
k +Δtf (0)

(
u
(0)
k , u

(1)
k , . . . , u

(m−1)
k , tk

)
, (E.25)

...

u
(i)
k+1 = u

(i)
k +Δtf (i)

(
u
(0)
k , u

(1)
k , . . . , u

(m−1)
k , tk

)
, (E.26)

...

u
(m−1)
k+1 = u

(m−1)
k +Δtf (m−1)

(
u
(0)
k , u

(1)
k , . . . , u

(m−1)
k , tk

)
. (E.27)

Utilizing the vector notation, (E.25)–(E.27) can be compactly written
as

uk+1 = uk +Δtf(uk, tk), (E.28)

and this is again nothing but the formula we had for the Forward Euler
scheme applied to a scalar ODE.

To summarize, the notation u′ = f(u, t), u(0) = U0, is from now
on used both for scalar ODEs and for systems of ODEs. In the former
case, u and f are scalar functions, while in the latter case they are

680 E Programming of Differential Equations

vectors. This great flexibility carries over to programming too: we can
develop code for u′ = f(u, t) that works for scalar ODEs and systems
of ODEs, the only difference being that u and f correspond to float

objects for scalar ODEs and to arrays for systems of ODEs.
Unless you are quite familiar with systems of ODEs and array arith-

metics, it can be a good idea to just think about scalar ODEs and
that u(t) is a function of one variable when you read on. Later, you
can come back and reread the text with systems of ODEs and u(t)
as a vector (array) in mind. The invisible difference between scalar
ODEs and systems of ODEs is not only important for addressing both
newcomers to ODEs and more experienced readers. The principle is
very important for software development too: We can write code with
scalar ODEs in mind and test this code. Afterwards, the code should
also work immediately for systems and u(t) as a vector of functions.
This remarkable achievement is obtained by an elegant interplay be-
tween abstractions in mathematics and the functionality and syntax of
the Python programming language.

E.2.2 Example of a System of ODEs

An oscillating spring-mass system can be governed by a second-order
ODE (see (D.8) in Appendix D for derivation):

mu′′ + βu′ + ku = F (t), u(0) = U0, u′(0) = 0. (E.29)

The parameters m, β, and k are known and F (t) is a prescribed func-
tion. This second-order equation can be rewritten as two first-order
equations by introducing two functions (see Appendix C.4),

u(0)(t) = u(t), u(1)(t) = u′(t).

The unknowns are now the position u(0)(t) and the velocity u(1)(t). We
can then create equations where the derivative of the two new primary
unknowns u(0) and u(1) appear alone on the left-hand side:

d

dt
u(0)(t) = u(1)(t), (E.30)

d

dt
u(1)(t) = m−1

(
F (t)− βu(1) − ku(0)

)
. (E.31)

We write this system as u′(t) = f(u, t) where now u and f are vectors,
here of length two:

u(t) =
(
u(0)(t), u(1)(t)

)
f(t, u) =

(
u(1),m−1

(
F (t)− βu(1) − ku(0)

))
. (E.32)

Note that the vector u(t) is different from the quantity u in (E.29)!
There are, in fact, several interpretation of the symbol u, depending

E.2 Systems of Ordinary Differential Equations 681

on the context: the exact solution u of (E.29), the numerical solution
u of (E.29), the vector u in a rewrite of (E.29) as a first-order ODE
system, and the array u in the software, holding the numerical values
of u(t) = (u(0)(t), u(1)(t)).

E.2.3 From Scalar ODE Code to Systems

Let us have a look at how the software from Appendices E.1.3–E.1.7
changes if we try to apply it to systems of ODEs.

Function Implementation. We start with the ForwardEuler function
listed on page 671 and the specific system from Appendix E.2.2. The
right-hand-side function f(u, t) must now return the vector in (E.32),
here as a NumPy array:

def f(u, t):
return np.array([u[1], 1./m*(F(t) - beta*u[1] - k*u[0])])

Note that u is an array with two components, holding the values of the
two unknown functions u(0)(t) and u(1)(t) at time t.

The initial conditions can also be specified as an array

U0 = np.array([0.1, 0])

What happens if we just send these f and U0 objects to the
ForwardEuler function?

To answer the question, we must examine each statement inside the
function to see if the Python operations are still valid. But of greater
importance, we must check that right mathematics is carried out. The
first failure occurs with the statement

u = np.zeros(n+1) # u[k] is the solution at time t[k]

Now, u should be an array of arrays, since the solution at each time level
is an array. The length of U0 gives information on how many equations
and unknowns there are in the system. An updated code might be

if isinstance(U0, (float,int)):
u = np.zeros(n+1)

else:
neq = len(U0)
u = np.zeros((n+1,neq))

Fortunately, the rest of the code now works regardless of whether u is
a one- or two-dimensional array. In the former case, u[k+1] = u[k] +

... involves computations with float objects only, while in the latter
case, u[k+1] picks out “row” k + 1 in u, which is the array with the
two unknown values at time tk+1: u

(0)(tk+1) and u(1)(tk+1). The state-
ment u[k+1] = u[k] + ... then involves array arithmetic with arrays
of length two in this specific example.

682 E Programming of Differential Equations

Allowing Lists. The specification of f and U0 using arrays is not as
readable as a plain list specification:

def f(u, t):
return [u[1], 1./m*(F(t) - beta*u[1] - k*u[0])]

U0 = [0.1, 0]

Users would probably prefer the list syntax. With a little adjustment
inside the modified ForwardEuler function we can allow lists, tuples, or
arrays for U0 and as return objects from f. With U0 we just do

U0 = np.asarray(U0)

since np.asarray will just return U0 if it already is an array and other-
wise copy the data to an array.

With f the situation is a bit more demanding. The array operation
dt*f(u[k], t[k]) will not work unless f really returns an array (since
lists or tuples cannot be multiplied by a scalar dt). A trick is to wrap
a function around the user-provided right-hand-side function:

def ForwardEuler(f_user, dt, U0, T):
def f(u, t):

return np.asarray(f_user(u, t))
...

Now, dt*f(u[k], t[k]) will call f, which calls the user’s f_user and
turns whatever is returned from that function into a NumPy array. A
more compact syntax arises from using a lambda function (see Chap-
ter 3.1.11):

def ForwardEuler(f, dt, U0, T):
f = lambda u, t: np.asarray(f(u, t))
...

Here we have also gotten rid of f_user and simply overwrite the user-
provided f function by a new function f which ensures that the evalu-
ation of the right-hand side results in an array.

Class Implementation. Proceeding with class ForwardEuler from Ap-
pendix E.1.7, we make observations similar to those above. The trick
with the lambda function is introduced in the constructor, and distin-
guishing between scalar and vector ODEs is necessary where self.U0

and self.u are created. The complete class looks as follows (see the file
session.py for real code with applications):

class ForwardEuler:
"""
Class for solving a scalar of vector ODE,

du/dt = f(u, t)

by the ForwardEuler solver.

E.2 Systems of Ordinary Differential Equations 683

Class attributes:
t: array of time values
u: array of solution values (at time points t)
k: step number of the most recently computed solution
f: callable object implementing f(u, t)
"""
def __init__(self, f):

if not callable(f):
raise TypeError(’f is %s, not a function’ % type(f))

self.f = lambda u, t: np.asarray(f(u, t))

def set_initial_condition(self, U0):
if isinstance(U0, (float,int)): # scalar ODE

self.neq = 1
else: # system of ODEs

U0 = np.asarray(U0)
self.neq= U0.size

self.U0 = U0

def solve(self, time_points):
"""Compute u for t values in time_points list."""
self.t = np.asarray(time_points)
n = self.t.size
if self.neq == 1: # scalar ODEs

self.u = np.zeros(n)
else: # systems of ODEs

self.u = np.zeros((n,self.neq))

Assume self.t[0] corresponds to self.U0
self.u[0] = self.U0

Time loop
for k in range(n-1):

self.k = k
self.u[k+1] = self.advance()

return self.u, self.t

def advance(self):
"""Advance the solution one time step."""
u, f, k, t = self.u, self.f, self.k, self.t
dt = t[k+1] - t[k]
u_new = u[k] + dt*f(u[k], t[k])
return u_new

The application code for the equation u′′+u = 0, u(0) = 0, u′(0) = 1,
with solution u(t) = sin(t) and u′(t) = cos(t), reads

def f(u, t):
return [u[1], -u[0]]

U0 = [0, 1]
solver = ForwardEuler(f)
solver.set_initial_condition(U0)
T = 12; n = 100
t = np.linspace(0, T, n+1)
u, t = solver.solve(t)
u0 = u[:,0]

Note that the computed u array is two-dimensional, where u[k,i] holds
u(i)(tk). Hence, to grab all the values associated with u(0), we fix i as
0 and let the k index take on all its legal values: u[:,0]. Then u0 refers
to the piece of u where the discrete values u(0)(t0), u

(0)(t1), . . . , u
(0)(tn)

are stored.

684 E Programming of Differential Equations

E.2.4 Numerical Methods

Numerical methods for ODEs compute approximations uk to the ex-
act solution u at discrete time levels tk, k = 1, 2, 3, Some of the
simplest, but also most widely used methods for ODEs are listed below.

1. The Forward Euler method:

uk+1 = uk +Δt f(uk, tk), Δt = tk+1 − tk. (E.33)

2. The Midpoint method:

uk+1 = uk−1 + 2Δtf(uk, tk), 2Δt = tk+1 − tk−1 (E.34)

for k = 1, 2, The computation of u1 involves u−1, which is un-
known, so for the first step we must use another method, for instance,
(E.33).

3. Heun’s method:

u∗ = uk +Δtf(uk, tk), (E.35)

uk+1 = uk +
1

2
Δtf(uk, tk) +

1

2
Δtf(u∗, tk+1), (E.36)

with Δt = tk+1 − tk.
4. The 2nd-order Runge-Kutta method:

uk+1 = uk +K2 (E.37)

where

K1 = Δt f(uk, tk), (E.38)

K2 = Δt f

(
uk +

1

2
K1, tk +

1

2
Δt

)
, (E.39)

with Δt = tk+1 − tk.
5. The 4th-order Runge-Kutta method:

uk+1 = uk +
1

6
(K1 + 2K2 + 2K3 +K4), (E.40)

where

K1 = Δt f(uk, tk), (E.41)

K2 = Δt f

(
uk +

1

2
K1, tk +

1

2
Δt

)
, (E.42)

K3 = Δt f

(
uk +

1

2
K2, tk +

1

2
Δt

)
, (E.43)

K4 = Δt f(uk +K3, tk +Δt), (E.44)

and Δt = tk+1 − tk.

E.2 Systems of Ordinary Differential Equations 685

6. The 3rd-order Adams-Bashforth method:

uk+1 = uk +
Δt

12

(
23f(uk, tk)− 16f(uk−1, tk−1) + 5f(uk−2, tk−2)

)
,

(E.45)
with Δt constant. To start the scheme, one can apply a 2nd-order
Runge-Kutta method or Heun’s method to compute u1 and u2 before
(E.45) is applied for k ≥ 2.

7. The Midpoint method with iterations:

vq = uk +
1

2
Δt

(
f(vq−1, tk+1) + f(uk, tk)

)
,

q = 1, . . . , N, v0 = uk (E.46)

uk+1 = vN . (E.47)

At each time level, one runs the formula (E.46) N times, and the
value vN becomes uk+1. Setting N = 1 recovers the Forward Euler
scheme if f is independent of t, while N = 2 corresponds to Heun’s
method. We can either fix the value of N , or we can repeat (E.46)
until the change in vq is small, that is, until |vq − vq−1| < ε, where
ε is a small value. Fixing N is sufficient in this exercise.

8. The Backward Euler method:

uk+1 = uk +Δt f(uk+1, tk+1), Δt = tk+1 − tk. (E.48)

If f(u, t) is nonlinear in u, (E.48) constitutes a nonlinear equation in
uk+1, which must be solved by some method for nonlinear equations,
say Newton’s method (see Appendix E.2.6 for more details).

The methods above are valid both for scalar ODEs and for systems of
ODEs. In the system case, the quantities u, uk, uk+1, f , K1, K2, etc.,
are vectors.

E.2.5 The ODE Solver Class Hierarchy

Appendix E.2.3 presents a class ForwardEuler for implementing the
Forward Euler scheme (E.33) both for scalar ODEs and systems. Only
the advance method should be necessary to change in order to imple-
ment other numerical methods. Copying the ForwardEuler class and
editing just the advance method is considered bad programming prac-
tice, because we get two copies the general parts of class ForwardEuler.
As we implement more schemes, we end up with a lot of copies of
the same code. Correcting an error or improving the code in this
general part then requires identical edits in several almost identical
classes.

A good programming practice is to collect all the common code in
a superclass. Subclasses can implement the advance method, but share

686 E Programming of Differential Equations

the constructor, the set_initial_condition method, and the solve

method with the superclass.

The Superclass. We introduce class ODESolver as the superclass of
various numerical methods for solving ODEs. Class ODESolver should
provide all functionality that is common to all numerical methods for
ODEs:

1. hold the solution u(t) at discrete time points in an array u

2. hold the corresponding time values t

3. hold information about the f(u, t) function, i.e., a callable Python
object f(u, t)

4. hold the current time step number k in an attribute k

5. hold the initial condition U0

6. implement the loop over all time steps

As already outlined in Appendix E.1.7, we implement the last point
as two methods: solve for performing the time loop and advance for
advancing the solution one time step. The latter method is empty in the
superclass since the method is to be implemented by various subclasses
for various numerical schemes.

A first version class ODESolver follows directly from class
ForwardEuler in Appendix E.2.3, but letting advance be an empty
method. However, there is one more extension which will be handy
in some problems, namely a possibility for the user to terminate the
time loop if the solution has certain properties. Throwing a ball yields
an example: the simulation should be stopped when the ball hits
the ground, instead of simulating an artificial movement down in the
ground until the final time T is reached. To implement the requested
feature, the user can provide a function terminate(u, t, step_no),
which returns True if the time loop is be terminated. The arguments
are the solution array u, the corresponding time points t, and the
current time step number step_no. For example, if we want to solve an
ODE until the solution is (close to) zero, we can supply the function

def terminate(u, t, step_no):
eps = 1.0E-6 # small number
if abs(u[step_no,0]) < eps: # close enough to zero?

return True
else:

return False

The terminate function is an optional argument to the solve method.
By default, we provide a function that always returns False.

The suggested code for the superclass ODESolver then takes the fol-
lowing form:

class ODESolver:
def __init__(self, f):

self.f = lambda u, t: np.asarray(f(u, t), float)

E.2 Systems of Ordinary Differential Equations 687

def advance(self):
"""Advance solution one time step."""
raise NotImplementedError

def set_initial_condition(self, U0):
if isinstance(U0, (float,int)): # scalar ODE

self.neq = 1
U0 = float(U0)

else: # system of ODEs
U0 = np.asarray(U0)
self.neq = U0.size

self.U0 = U0

def solve(self, time_points, terminate=None):
if terminate is None:

terminate = lambda u, t, step_no: False

self.t = np.asarray(time_points)
n = self.t.size
if self.neq == 1: # scalar ODEs

self.u = np.zeros(n)
else: # systems of ODEs

self.u = np.zeros((n,self.neq))

Assume that self.t[0] corresponds to self.U0
self.u[0] = self.U0

Time loop
for k in range(n-1):

self.k = k
self.u[k+1] = self.advance()
if terminate(self.u, self.t, self.k+1):

break # terminate loop over k
return self.u[:k+2], self.t[:k+2]

Note that we return just the parts of self.u and self.t that have
been filled with values (the rest are zeroes): all elements up to the one
with index k+1 are computed before terminate may return True. The
corresponding slice of the array is then :k+2 since the upper limit is not
included in the slice. If terminate never returns True we simply have
that :k+1 is the entire array.

The Forward Euler Method. Subclasses implement specific numerical
formulas for numerical solution of ODEs in the advance method. For
the Forward Euler the formula is given by (E.33). All data we need for
this formula are stored as attributes by the superclass. First we load
these data into variables with shorter names, to avoid the lengthy self

prefix and obtain a notation closer to the mathematics. Then we apply
the formula (E.33), and finally we return the new value:

class ForwardEuler(ODESolver):
def advance(self):

u, f, k, t = self.u, self.f, self.k, self.t
dt = t[k+1] - t[k]
u_new = u[k] + dt*f(u[k], t[k])
return u_new

Remark. When we extract attributes to local variables with short
names, we should only use these local variables for reading values, not

688 E Programming of Differential Equations

setting values. For example, if we do a k += 1 to update the time step
counter, that increased value is not reflected in self.k (which is the
“official” counter). On the other hand, changing a list in-place, say
u[k+1] = ..., is reflected in self.u. Extracting class attributes in lo-
cal variables is done for getting the code closer to the mathematics, but
has a danger of introducing bugs that might be hard to track down.

The 4th-order Runge-Kutta Method. Below is an implementation of the
4th-order Runge-Kutta method (E.40):

class RungeKutta4(ODESolver):
def advance(self):

u, f, k, t = self.u, self.f, self.k, self.t
dt = t[k+1] - t[k]
dt2 = dt/2.0
K1 = dt*f(u[k], t[k])
K2 = dt*f(u[k] + 0.5*K1, t[k] + dt2)
K3 = dt*f(u[k] + 0.5*K2, t[k] + dt2)
K4 = dt*f(u[k] + K3, t[k] + dt)
u_new = u[k] + (1/6.0)*(K1 + 2*K2 + 2*K3 + K4)
return u_new

It is left as exercises to implement other numerical methods in the
ODESolver class hierarchy. However, the Backward Euler method (E.48)
requires a much more advanced implementation than the other methods
so that particular method deserves its own section.

E.2.6 The Backward Euler Method

The Backward Euler scheme (E.48) leads in general to a nonlinear
equation at a new time level, while all the other schemes listed in
Appendix E.2.4 have a simple formula for the new uk+1 value. The
nonlinear equation reads

uk+1 = uk +Δt f(uk+1, tk+1).

For simplicity we assume that the ODE is scalar so the unknown uk+1 is
a scalar. It might be easier to see that the equation for uk+1 is nonlinear
if we rearrange the equation to

F (w) ≡ w −Δtf(w, tk+1)− uk = 0, (E.49)

where w = uk+1. If now f(u, t) is a nonlinear function of u, F (w) will
also be a nonlinear function of w.

To solve F (w) = 0 we can use the Bisection method from Chap-
ter 4.6.2, Newton’s method from Appendix A.1.10, or the Secant
method from Exercise A.14. Here we apply Newton’s method and the
implementation given in src/diffeq/Newton.py. A disadvantage with
Newton’s method is that we need the derivative of F with respect

E.2 Systems of Ordinary Differential Equations 689

to w, which requires the derivative ∂f(w, t)/∂w. A quick solution is to
use a numerical derivative, e.g., class Derivative from Chapter 7.3.2.

We make a subclass BackwardEuler. As we need to solve F (w) = 0
at every time step, we also need to implement the F (w) function. This
is conveniently done in a local function inside the advance method1:

def advance(self):
u, f, k, t = self.u, self.f, self.k, self.t

def F(w):
return w - dt*f(w, t[k+1]) - u[k]

dFdw = Derivative(F)
w_start = u[k] + dt*f(u[k], t[k]) # Forward Euler step
u_new, n, F_value = Newton(F, w_start, dFdw, N=30)
if n >= 30:

print "Newton’s failed to converge at t=%g "\
"(%d iterations)" % (t, n)

return u_new

The derivative dF/dw is computed numerically by a class Derivative,
which is a slight modification of the similar class in Chapter 7.3.2,
because we now want to use a more accurate, centered formula:

class Derivative:
def __init__(self, f, h=1E-5):

self.f = f
self.h = float(h)

def __call__(self, x):
f, h = self.f, self.h
return (f(x+h) - f(x-h))/(2*h)

This code is included in the ODESolver.py file after class BackwardEuler.
The next step is to call Newton’s method. For this purpose we need to

import the Newton function from the Newton module. The Newton.py file
must then reside in the same directory as ODESolver.py, or Newton.py

must be in one of the directories listed in the sys.path list or the
PYTHONPATH environment variable (cf. Chapter 4.5.3).

Having the Newton(f, x_start, dfdx, N) function from Ap-
pendix A.1.10 accessible in our ODESolver.py file, we can make a
call and supply our F function as the argument f, a start value for the
iteration, here called w_start, as the argument x, and the derivative
dFdw for the argument dfdx. We rely on default values for the epsilon

and store arguments, while the maximum number of iterations is set
to N=30. The program is terminated if it happens that the number of
iterations exceeds that value, because then the method is not consid-
ered to have converged (at least not quickly enough), and we have
consequently not been able to compute the next uk+1 value.

1 The local variables in the advance function, e.g., dt and u, act as “global” variables for
the F function. Hence, when F is sent away to some Newton function, F remembers the values

of dt, f, t, and u!.

690 E Programming of Differential Equations

The starting value for Newton’s method must be chosen. As we ex-
pect the solution to not change much from one time level to the next,
uk could be a good initial guess. However, we can do better by using a
simple Forward Euler step uk +Δtf(uk, tk), which is exactly what we
do in the advance function above.

Since Newton’s method always has the danger of converging slowly,
it can be interesting to store the number of iterations at each time level
as an attribute in the BackwardEuler class. We can easily insert extra
statement for this purpose:

def advance(self):
...
u_new, n, F_value = Newton(F, w_start, dFdw, N=30)
if k == 0:

self.Newton_iter = []
self.Newton_iter.append(n)
...

Note the need for creating an empty list (at the first call of advance)
before we can append elements.

There is now one important question to ask: Will the advancemethod
work for systems of ODEs? In that case, F (w) is a vector of functions.
The implementation of F will work when w is a vector, because all the
quantities involved in the formula are arrays or scalar variables. The
dFdw instance will compute a numerical derivative of each component
of the vector function dFdw.f (which is simply our F function). The call
to the Newton function is more critical: It turns out that this function,
as the algorithm behind it, works for scalar equations only. Newton’s
method can quite easily be extended to a system of nonlinear equa-
tions, but we do not consider that topic here. Instead we equip class
BackwardEuler with a constructor that calls the f object and controls
that the returned value is a float and not an array:

class BackwardEuler(ODESolver):
def __init__(self, f):

ODESolver.__init__(self, f)
Make a sample call to check that f is a scalar function:
try:

u = np.array([1]); t = 1
value = f(u, t)

except IndexError: # index out of bounds for u
raise ValueError(’f(u,t) must return float/int’)

Observe that we must explicitly call the superclass constructor and
pass on the argument f to achieve the right storage and treatment of
this argument.

Understanding class BackwardEuler implies a good understanding
of classes in general; a good understanding of numerical methods for
ODEs, for numerical differentiation, and for finding roots of functions;
and a good understanding on how to combine different code segments
from different parts of the book. Therefore, if you have digested class

E.2 Systems of Ordinary Differential Equations 691

BackwardEuler, you have all reasons to believe that you have digested
the key topics of this book.

E.2.7 Application 1: u′ = −u

The perhaps simplest of all ODEs, u′ = −u, with initial condition
u(0) = 1, is our first target problem for the classes in the ODESolver

hierarchy. The exact solution is u(t) = e−t. The basic part of the ap-
plication of class ForwardEuler goes as follows:

import ODESolver

def f(u, t):
return -u

solver = ODESolver.ForwardEuler(f)
solver.set_initial_condition(1.0)
t_points = linspace(0, 3, 31)
u, t = solver.solve(t_points)
plot(t, u)

We can run various values of Δt to see the effect on the accuracy:

Test various dt values and plot
figure()
T = 3
for dt in 2.0, 1.0, 0.5, 0.1:

n = int(round(T/dt))
solver = ODESolver.ForwardEuler(f)
solver.set_initial_condition(1)
u, t = solver.solve(linspace(0, T, n+1))
plot(t, u, legend=’dt=%g’ % dt)
hold(’on’)

plot(t, exp(-t), ’bo’, legend=’exact’)

Figure E.2 shows alarming results. With Δt = 2 we get a completely
wrong solution that becomes negative and then increasing. The value
Δt = 1 gives a peculiar solution: uk = 0 for k ≥ 1! Qualitatively correct
behavior appears with Δt = 0.5, and the results get quantitatively
better as we decrease Δt. The solution corresponding to Δ = 0.1 looks
good from the graph.

We can easily explain what we observe in Figure E.2. For the equa-
tion in question, the Forward Euler method computes

u1 = u0 −Δtu0 = (1−Δt)u0,

u2 = u1 −Δtu1 = (1−Δt)u1 = (1−Δt)2u0,

...

uk = (1−Δt)ku0.

With Δt = 1 we simply get uk = 0 for k ≥ 1. For Δt > 1, 1−Δt < 0,
and (1 − Δt)k means raising a negative value to an integer power,

692 E Programming of Differential Equations

Fig. E.2 Solution of u′ = −u for t ∈ [0, 3] by the Forward Euler method and

Δt ∈ {2, 1, 0.5, 0.1}.

which results in uk > 0 for even k and uk < 0 for odd k. Moreover,
|uk| decreases with k. Such a growing, oscillating solution is of course
qualitatively wrong when the exact solution is e−t and monotonically
decaying. The conclusion is that the Forward Euler method gives mean-
ingless results for Δt ≥ 1 in the present example.

A particular strength of the ODESolver hierarchy of classes is that
we can trivially switch from one method to another. For example, we
may demonstrate how superior the 4-th order Runge-Kutta method is
for this equation: just replace ForwardEuler by RungeKutta4 in the pre-
vious code segment and re-run the program. It turns out that the 4-th
order Runge-Kutta method gives a monotonically decaying numerical
solution for all the tested Δt values. In particular, the solutions corre-
sponding to Δt = 0.5 and Δt = 0.1 are visually very close to the exact
solution. The conclusion is that the 4-th order Runge-Kutta method is
a safer and more accurate method.

Let us compare the two numerical methods in the case where
Δt = 0.5:

Test ForwardEuler vs RungeKutta4
T = 3
dt = 0.5
n = int(round(T/dt))
t_points = linspace(0, T, n+1)
figure()
for solver_class in ODESolver.RungeKutta4, ODESolver.ForwardEuler:

solver = solver_class(f)
solver.set_initial_condition(1)
u, t = solver.solve(t_points)
plot(t, u, legend=’%s’ % solver_class.__name__)
hold(’on’)

plot(t, exp(-t), ’bo’, legend=’exact’)

Figure E.3 illustrates that differences in accuracy between the two
methods. The complete program can be found in the file app1_decay.py.

E.2 Systems of Ordinary Differential Equations 693

Fig. E.3 Comparison of the Forward Euler and the 4-th order Runge-Kutta method for

solving u′ = −u for t ∈ [0, 3] and a time step Δt = 0.5.

E.2.8 Application 2: The Logistic Equation

The logistic ODE (E.5) is copied here for convenience:

u′(t) = αu(t)

(
1− u(t)

R

)
, u(0) = U0.

The right-hand side contains the parameters α and R. We know that
u → R as t → ∞, so at some point t̂ in time we have approached
the asymptotic value u = R within a sufficiently small tolerance and
should stop the simulation. This can be done by providing a function
as the tolerance argument in the solve method.

Basic Problem and Solver Classes. Let us, as in Appendix E.1.8, im-
plement the problem-dependent data in a class. This time we store all
user-given physical data in the class:

import ODESolver
from scitools.std import plot, figure
import numpy as np

class Problem:
def __init__(self, alpha, R, U0, T):

"""
alpha, R: parameters in the ODE.
U0: initial condition.
T: max length of time interval for integration;
asymptotic value R must be reached within 1%
accuracy for some t <= T.
"""
self.alpha, self.R, self.U0, self.T = alpha, R, U0, T

def __call__(self, u, t):
"""Return f(u,t) for logistic ODE."""
return self.alpha*u*(1 - u/self.R)

def terminate(self, u, t, step_no):

694 E Programming of Differential Equations

"""Return True when asymptotic value R is reached."""
tol = self.R*0.01
return abs(u[step_no] - self.R) < tol

def __str__(self):
"""Pretty print of physical parameters."""
return ’alpha=%g, R=%g, U0=%g’ % \

(self.alpha, self.R, self.U0)

Note that the tolerance used in the terminate method is made de-
pendent on the size of R: if R = 1000 we say the asymptotic value is
reached when u ≥ 990. Smaller tolerances will just lead to a solution
curve where large parts of it show the boring behavior u ≈ R.

The solution is obtained the usual way by short code:

solver = ODESolver.RungeKutta4(problem)
solver.set_initial_condition(problem.U0)
dt = 1.0
n = int(round(problem.T/dt))
t_points = np.linspace(0, T, n+1)
u, t = solver.solve(t_points, problem.terminate)

Let us pack these statements into a class Solver, which has two meth-
ods: solve and plot. The code may look like

class Solver:
def __init__(self, problem, dt,

method=ODESolver.ForwardEuler):
"""
problem: instance of class Problem.
dt: time step.
method: class in ODESolver hierarchy.
"""
self.problem, self.dt = problem, dt
self.solver = method

def solve(self):
solver = self.method(self.problem)
solver.set_initial_condition(self.problem.U0)
n = int(round(self.problem.T/self.dt))
t_points = np.linspace(0, self.problem.T, n+1)
self.u, self.t = solver.solve(t_points,

self.problem.terminate)

if solver.k+1 == n: # integration to t=T?
self.plot()
raise ValueError(

’termination criterion not reached, ’\
’give T > %g’ % self.problem.T)

def plot(self):
filename = ’logistic_’ + str(self.problem) + ’.eps’
plot(self.t, self.u,

title=str(self.problem) + ’, dt=%g’ % self.dt,
savefig=filename)

Problem-dependent data related to the numerical quality of the so-
lution, such as the time step here, go to the Solver class. That is,
class Problem contains the physics and class Solver the numerics of the
problem under investigation.

E.2 Systems of Ordinary Differential Equations 695

If the last computed time step, solver.k+1, equals the last possible
index, n, problem.terminate never returned True, which means that the
asymptotic limit was not reached. This is treated as an erroneous con-
dition. To guide the user, we launch a plot before raising the exception
with an instructive message. The complete code is found in the file
app2_logistic.py.

Computing an Appropriate Δt. Choosing an appropriate Δt is not al-
ways so easy. The impact of Δt can sometimes be dramatic, as demon-
strated for the Forward Euler method in Appendix E.2.7. We could
automate the process of finding a suitable Δt: start with a large Δt,
and keep halving Δt until the difference between two solutions corre-
sponding to two consequtive Δt values is small enough.

Say solver is a class Solver instance computed with time step Δt
and solver2 is the instance corresponding to a computation with Δt/2.
Calculating at the difference between solver.u and solver2.u is not
trivial as (i) one of the arrays has approximately twice as many elements
as the other, and (ii) the last element in both arrays does not necessarily
correspond to the same time value since the time stepping and the
terminate function may lead to slightly different termination times.

A solution to these two problems is to turn each of the arrays
solver.u and solver2.u into continuous functions, as explained in Ap-
pendix E.1.5, and then evaluate the difference at some selected time
points up to the smallest value of solver.t[-1] and solver2.t[-1].
The code becomes

Make continuous functions u(t) and u2(t)
u = wrap2callable((solver. t, solver. u))
u2 = wrap2callable((solver2.t, solver2.u))
Sample the difference in n points in [0, t_end]
n = 13
t_end = min(solver2.t[-1], solver.t[-1])
t = np.linspace(0, t_end, n)
u_diff = np.abs(u(t) - u2(t)).max()

The next step is to introduce a loop where we halve the time step in
each iteration and solve the logistic ODE with the new time step and
compute u_diff as shown above. A complete function takes the form

def find_dt(problem, method=ODESolver.ForwardEuler,
tol=0.01, dt_min=1E-6):

"""
Return a "solved" class Solver instance where the
difference in the solution and one with a double
time step is less than tol.

problem: class Problem instance.
method: class in ODESolver hierarchy.
tol: tolerance (chosen relative to problem.R).
dt_min: minimum allowed time step.
"""
dt = problem.T/10 # start with 10 intervals
solver = Solver(problem, dt, method)

696 E Programming of Differential Equations

solver.solve()
from scitools.std import wrap2callable

good_approximation = False
while not good_approximation:

dt = dt/2.0
if dt < dt_min:

raise ValueError(’dt=%g < %g - abort’ % (dt, dt_min))

solver2 = Solver(problem, dt, method)
solver2.solve()

Make continuous functions u(t) and u2(t)
u = wrap2callable((solver. t, solver. u))
u2 = wrap2callable((solver2.t, solver2.u))

Sample the difference in n points in [0, t_end]
n = 13
t_end = min(solver2.t[-1], solver.t[-1])
t = np.linspace(0, t_end, n)
u_diff = np.abs(u(t) - u2(t)).max()
print u_diff, dt, tol
if u_diff < tol:

good_approximation = True
else:

solver = solver2
return solver2

Setting the tolerance tol must be done with a view to the typical
size of u, i.e., the size of R. With R = 100 and tol=1, the Forward
Euler method meets the tolerance for Δt = 0.25. Switching to the 4-th
order Runge-Kutta method makes Δt = 1.625 sufficient to meet the
tolerance. Note that although the latter method can use a significantly
larger time step, it also involves four times as many evaluations of the
right-hand side function at each time step.

Finally, we show how to make a class that behaves as class Solver,
but with automatic computation of the time step. If we do not provide
a dt parameter to the constructor, the find_dt function is used to com-
pute dt and the solution, otherwise we use the standard Solver.solve

code. This new class is conveniently realized as a subclass of Solver

where we override the constructor and the solve method. The plot

method can be inherited as is. The code becomes

class AutoSolver(Solver):
def __init__(self, problem, dt=None,

method=ODESolver.ForwardEuler,
tol=0.01, dt_min=1E-6):

Solver.__init__(self, problem, dt, method)
if dt is None:

solver = find_dt(self.problem, method,
tol, dt_min)

self.dt = solver.dt
self.u, self.t = solver.u, solver.t

def solve(self, method=ODESolver.ForwardEuler):
if hasattr(self, ’u’):

Solution was computed by find_dt in constructor
pass

else:
Solver.solve(self)

E.2 Systems of Ordinary Differential Equations 697

The call hasattr(self,’u’) returns True if u is an attribute in object
self. Here this is used as an indicator that the solution was computed
in the constructor by the find_dt function. A typical use is

problem = Problem(alpha=0.1, R=500, U0=2, T=130)
solver = AutoSolver(problem, tol=1)
solver.solve(method=ODESolver.RungeKutta4)
solver.plot()

Dealing with Time-Dependent Coefficients. The carrying capacity of
the environment, R, may vary with time, e.g., due to seasonal changes.
Can we extend the previous code so that R can be specified either as
a constant or as a function of time?

This is in fact easy if we in the implementation of the right-hand side
function assume that R is a function of time. If it is given as a constant
in the constructor of class Problem, we just wrap it as a function of
time:

if isinstance(R, (float,int)): # number?
self.R = lambda t: R

elif callable(R):
self.R = R

else:
raise TypeError(

’R is %s, has to be number of function’ % type(R))

The terminate method is also affected as we need to base the tolerance
on the R value at the present time level. Also the __str__ method must
be changed since it is not meaningful to print a function self.R. That
is, all methods in the generalized problem class, here called Problem2,
must be altered. We have not chosen to make Problem2 a subclass of
Problem, even though the interface is the same and the two classes are
closely related. While Problem is clearly a special case of Problem2, as
a constant R is a special case of a function (R), the opposite case is
not true.

Class Problem2 becomes

class Problem2(Problem):
def __init__(self, alpha, R, U0, T):

"""
alpha, R: parameters in the ODE.
U0: initial condition.
T: max length of time interval for integration;
asymptotic value R must be reached within 1%
accuracy for some t <= T.
"""
self.alpha, self.U0, self.T = alpha, U0, T
if isinstance(R, (float,int)): # number?

self.R = lambda t: R
elif callable(R):

self.R = R
else:

raise TypeError(
’R is %s, has to be number of function’ % type(R))

698 E Programming of Differential Equations

def __call__(self, u, t):
"""Return f(u,t) for logistic ODE."""
return self.alpha*u*(1 - u/self.R(t))

def terminate(self, u, t, step_no):
"""Return True when asymptotic value R is reached."""
tol = self.R(t[step_no])*0.01
return abs(u[step_no] - self.R(t[step_no])) < tol

def __str__(self):
return ’alpha=%g, U0=%g’ % (self.alpha, self.U0)

We can compute the case where R = 500 for t < 60 and then reduced
to R = 100 because of an environmental crisis (see Figure E.4):

problem = Problem2(alpha=0.1, U0=2, T=130,
R=lambda t: 500 if t < 60 else 100)

solver = AutoSolver(problem, tol=1)
solver.solve(method=ODESolver.RungeKutta4)
solver.plot()

Note the use of a lambda function (Chapter 3.1.11) to save some typ-
ing when specifying R. The corresponding graph is made of two parts,
basically exponential growth until the environment changes and then
exponential reduction until u approaches the new R value and the
change in u becomes small.

Reading Input. Our final version of the problem class is equipped with
functionality for reading data from the command line in addition to
setting data explicitly in the program. We use the argparse module de-
scribed in Chapter 4.2.4. The idea now is to have a constructor that just
sets default values. Then we have a method for defining the command-
line arguments and a method for transforming the argparse information

Fig. E.4 Solution of the logistic equation u′ = αu(1 − u/R(t)) when R = 500 for t < 60

and R = 100 for t ≥ 60.

E.2 Systems of Ordinary Differential Equations 699

to the attributes alpha, U0, R, and T. The R attribute is supposed to be
a function, and we use the StringFunction tool to turn strings from
the command-line into a Python function of time t.

The code of our new problem class is listed next.

class Problem3(Problem):
def __init__(self):

Set default parameter values
self.alpha = 1.
self.R = StringFunction(’1.0’, independent_variable=’t’)
self.U0 = 0.01
self.T = 4.

def define_command_line_arguments(self, parser):
"""Add arguments to parser (argparse.ArgumentParser)."""

def evalcmlarg(text):
return eval(text)

def toStringFunction(text):
return StringFunction(text, independent_variable=’t’)

parser.add_argument(
’--alpha’, dest=’alpha’, type=evalcmlarg,
default=self.alpha,
help=’initial growth rate in logistic model’)

parser.add_argument(
’--R’, dest=’R’, type=toStringFunction, default=self.R,
help=’carrying capacity of the environment’)

parser.add_argument(
’--U0’, dest=’U0’, type=evalcmlarg, default=self.U0,
help=’initial condition’)

parser.add_argument(
’--T’, dest=’T’, type=evalcmlarg, default=self.T,
help=’integration in time interval [0,T]’)

return parser

def set(self, **kwargs):
"""
Set parameters as keyword arguments alpha, R, U0, or T,
or as args (object returned by parser.parse_args()).
"""
for prm in (’alpha’, ’U0’, ’R’, ’T’):

if prm in kwargs:
setattr(self, prm, kwargs[prm])

if ’args’ in kwargs:
args = kwargs[’args’]
for prm in (’alpha’, ’U0’, ’R’, ’T’):

if hasattr(args, prm):
setattr(self, prm, getattr(args, prm))

else:
print ’Really strange’, dir(args)

def __call__(self, u, t):
"""Return f(u,t) for logistic ODE."""
return self.alpha*u*(1 - u/self.R(t))

def terminate(self, u, t, step_no):
"""Return True when asymptotic value R is reached."""
tol = self.R(t[step_no])*0.01
return abs(u[step_no] - self.R(t[step_no])) < tol

def __str__(self):
s = ’alpha=%g, U0=%g’ % (self.alpha, self.U0)
if isinstance(self.R, StringFunction):

700 E Programming of Differential Equations

s += ’, R=%s’ % str(self.R)
return s

The calls to parser.add_argument are straightforward, but notice
that we allow strings for α, U0, and T to be interpreted by eval. The
string for R is interpreted as a formula by StringFunction. The set

method is flexible: it accepts any set of keyword arguments, and checks
first if these are the names of the problem parameters, and thereafter if
args=’ is given, which implies that the parameters are taken from the
command line. The rest of the class is very similar to earlier versions.

The typical use of class Problem3 is shown below. First we set pa-
rameters directly:

problem = Problem3()
problem.set(alpha=0.1, U0=2, T=130,

R=lambda t: 500 if t < 60 else 100)
solver = AutoSolver(problem, tol=1)
solver.solve(method=ODESolver.RungeKutta4)
solver.plot()

Then we rely on reading parameters from the command line:

problem = Problem3()
import argparse
parser = argparse.ArgumentParser(

description=’Logistic ODE model’)
parser = problem.define_command_line_arguments(parser)

Try --alpha 0.11 --T 130 --U0 2 --R ’500 if t < 60 else 300’
args = parser.parse_args()
problem.set(args=args)
solver = AutoSolver(problem, tol=1)
solver.solve(method=ODESolver.RungeKutta4)
solver.plot()

The last example using a problem class integrated with the command
line is the most flexible way of implementing ODE models.

E.2.9 Application 3: An Oscillating System

The motion of a box attached to a spring, as described in Appendix D,
can be modeled by two first-order differential equations as listed in
(E.32), here repeated with F (t) = mw′′(t) for convenience:

du(0)

dt
= u(1),

du(1)

dt
= w′′(t) + g −m−1βu(1) −m−1ku(0).

The w(t) function is the forced movement of the end of the spring.
The code related to this example is found in app3_osc.py. Because

our right-hand side f contains several parameters, we implement it as

E.2 Systems of Ordinary Differential Equations 701

a class with the parameters as attributes and a __call__ method for
returning the 2-vector f . We assume that the user of the class supplies
the w(t) function, so it is natural to compute w′′(t) by a finite difference
formula.

class OscSystem:
def __init__(self, m, beta, k, g, w):

self.m, self.beta, self.k, self.g, self.w = \
float(m), float(beta), float(k), float(g), w

def __call__(self, u, t):
u0, u1 = u
m, beta, k, g, w = \

self.m, self.beta, self.k, self.g, self.w
Use a finite difference for w’’(t)
h = 1E-5
ddw = (w(t+h) - 2*w(t) + w(t-h))/(h**2)
f = [u1, ddw + g - beta/m*u1 - k/m*u0]
return f

A simple test case arises if we set m = k = 1 and β = g = w = 0:

du(0)

dt
= u(1),

du(1)

dt
= −u(0).

Suppose that u(0)(0) = 1 and u(1)(0) = 0. An exact solution is then

u(0)(t) = cos t, u(1)(t) = − sin t.

We can use this case to check how the Forward Euler method compares
with the 4-th order Runge-Kutta method:

import ODESolver
from scitools.std import *
f = OscSystem(1.0, 0.0, 1.0, 0.0, lambda t: 0)
u_init = [1, 0] # initial condition
nperiods = 3.5 # no of oscillation periods
T = 2*pi*nperiods
for solver_class in ODESolver.ForwardEuler, ODESolver.RungeKutta4:

if solver_class == ODESolver.ForwardEuler:
npoints_per_period = 200

elif solver_class == ODESolver.RungeKutta4:
npoints_per_period = 20

n = npoints_per_period*nperiods
t_points = linspace(0, T, n+1)
solver = solver_class(f)
solver.set_initial_condition(u_init)
u, t = solver.solve(t_points)

u is an array of [u0,u1] pairs for each time level,
get the u0 values from u for plotting
u0_values = u[:, 0]
u1_values = u[:, 1]
u0_exact = cos(t)
u1_exact = -sin(t)
figure()
alg = solver_class.__name__ # (class) name of algorithm
plot(t, u0_values, ’r-’,

702 E Programming of Differential Equations

t, u0_exact, ’b-’,
legend=(’numerical’, ’exact’),
title=’Oscillating system; position - %s’ % alg,
savefig=’tmp_oscsystem_pos_%s.eps’ % alg)

figure()
plot(t, u1_values, ’r-’,

t, u1_exact, ’b-’,
legend=(’numerical’, ’exact’),
title=’Oscillating system; velocity - %s’ % alg,
savefig=’tmp_oscsystem_vel_%s.eps’ % alg)

For this particular application it turns out that the 4-th order Runge-
Kutta is very accurate, even with few (20) time steps per oscillation.
Unfortunately, the Forward Euler method leads to a solution with in-
creasing amplitude in time. Figure E.5 shows a comparison between
the two methods. Note that the Forward Euler method uses 10 times
as many time steps as the 4-th order Runge-Kutta method and is still
much less accurate. A very much smaller time step is needed to limit
the growth of the Forward Euler scheme for oscillating systems.

Fig. E.5 Solution of an oscillating system (u′′+u = 0 formulated as system of two ODEs)
by (a) the Forward Euler method with Δt = 2π/200; and (b) the 4-th order Runge-Kutta

method with Δt = 2π/20.

E.2.10 Application 4: The Trajectory of a Ball

Exercise 1.13 derives the following two second-order differential equa-
tions for the motion of a ball (neglecting air resistance):

d2x

dt2
= 0, (E.50)

d2y

dt2
= −g, (E.51)

where (x, y) is the position of the ball (x is a horizontal measure and
y is a vertical measure), and g is the acceleration of gravity. To use
numerical methods for first-order equations, we must rewrite the system
of two second-order equations as a system of four first-order equations.

E.2 Systems of Ordinary Differential Equations 703

This is done by introducing to new unknowns, the velocities vx = dx/dt
and vy = dy/dt. We then have the first-order system of ODEs

dx

dt
= vx, (E.52)

dvx
dt

= 0, (E.53)

dy

dt
= vy, (E.54)

dvy
dt

= −g. (E.55)

The initial conditions are

x(0) = 0, (E.56)

vx(0) = v0 cos θ, (E.57)

y(0) = y0, (E.58)

vy(0) = v0 sin θ, (E.59)

where v0 is the initial magnitude of the velocity of the ball. The initial
velocity has a direction that makes the angle θ with the horizontal.

The code related to this example is found in app4_ball.py. A func-
tion returning the right-hand side of our ODE system reads

def f(u, t):
x, vx, y, vy = u
g = 9.81
return [vx, 0, vy, -g]

It makes sense to solve the ODE system as long as the ball as above the
ground, i.e., as long as y ≥ 0. We must therefore supply a terminate

function as explained on page 686:

def terminate(u, t, step_no):
return False if u[step_no,2] >= 0 else True

Observe that all the y values are given by u[:,2] and we want to test
the value at the current step, which becomes u[step_no,2].

The main program for solving the ODEs can be set up as

v0 = 5
theta = 80*pi/180
U0 = [0, v0*cos(theta), 0, v0*sin(theta)]
T = 1.2; dt = 0.01; n = int(round(T/dt))
solver = ODESolver.ForwardEuler(f)
solver.set_initial_condition(U0)

def terminate(u, t, step_no):
return False if u[step_no,2] >= 0 else True

u, t = solver.solve(linspace(0, T, n+1), terminate)

704 E Programming of Differential Equations

Now, u[:,0] represents all the x(t) values, u[:,1] all the vx(t) values,
u[:,2] all the y(t) values, and u[:,3] all the vy(t) values. To plot the
trajectory, y versus x, we write

x = u[:,0]
y = u[:,2]
plot(x, y)

The exact solution is given by (1.5), so we can easily assess the accu-
racy of the numerical solution. Figure E.6 shows a comparison of the
numerical and the exact solution in this simple test problem. Note that
even if we are just interested in y as a function of x, we first need to
solve the complete ODE system for x(t), vx(t), y(t), and vy(t).

The real strength of the numerical approach is the ease with which we
can add air resistance and lift to the system of ODEs. Insight in physics
is necessary to derive what the additional terms are, but implementing
the terms is trivial in our program above (do Exercise E.32).

Fig. E.6 The trajectory of a ball solved as a system of four ODEs by the Forward Euler
method.

E.2.11 Further Developments of ODESolver

The ODESolver hierarchy is a simplified prototype version of a more pro-
fessional Python package for solving ODEs called Odespy. This package
features a range of simple and sophisticated methods for solving scalar
ODEs and systems of ODEs. Some of the solvers are implemented in
Python, while others call up well-known ODE software in Fortran. Like
the ODESolver hierarchy, Odespy offers a unified interface to the differ-
ent numerical methods, which means that the user can specify the ODE
problem as a function f(u,t) and send this function to all solvers. This

E.3 Exercises 705

feature makes it easy to switch between solvers to test a wide collection
of numerical methods for a problem.

Odespy can be downloaded from http://hplgit.github.com/odespy/.
It is installed by the usual python setup.py install command.

E.3 Exercises

Exercise E.1. Solve a simple ODE in two ways.
The purpose of this exercise is to solve the ODE problem u−10u′ = 0,

u(0) = 0.2, for t ∈ [0, 20]. Use both the ForwardEuler function from
Appendix E.1.3 and the ForwardEuler class from Appendix E.1.7. Set
Δt = 1. Check that the results produced by the two equivalent methods
coincide. Name of program file: simple_ODE.py. �

Exercise E.2. Use the ODESolver hierarchy to solve a simple ODE.
Solve the ODE problem u′ = u/2 with u(0) = 1, using a class in

the ODESolver hierarchy. Choose Δt = 0.5 and find u(t) for t ∈ [0, 6].
Write out the approximate final un value together with the exact
value e3. Repeat the calculations for Δt = 0.001. Name of program
file: ODESolver_demo.py. �

Exercise E.3. Solve an ODE for emptying a tank.
A cylindrical tank of radius R is filled with water to a height h0. By

opening a valve of radius r at the bottom of the tank, water flows out,
and the height of water, h(t), decreases with time. We can derive an
ODE that governs the height function h(t).

Mass conservation of water requires that the reduction in height
balances the outflow. In a time interval Δt, the height is reduced by
Δh, which corresponds to a water volume of πR2Δh. The water leaving
the tank in the same interval of time equals πr2vΔt, where v is the
outflow velocity. It can be shown (from what is known as Bernoulli’s
equation) that

v(t) =
√

2gh(t) + h′(t)2,

g being the acceleration of gravity [6, 11]. Note that Δh > 0 implies
an increase in h, which means that −πR2Δh is the corresponding de-
crease in volume that must balance the outflow loss of volume πr2vΔt.
Elimination of v and taking the limit Δt → 0 lead to the ODE

dh

dt
= −

(
r

R

)2(
1−

(
r

R

)4)−1/2√
2gh.

For practical applications r � R so that 1− (r/R)4 ≈ 1 is a reasonable
approximation (friction is neglected in the derivation, and we are also
going to solve the ODE by approximate methods). The final ODE then

http://hplgit.github.com/odespy/

706 E Programming of Differential Equations

becomes
dh

dt
= −

(
r

R

)2√
2gh. (E.60)

The initial condition follows from the initial height of water, h0, in the
tank: h(0) = h0.

Solve (E.60) by a numerical method of your choice in a program. Set
r = 1 cm, R = 20 cm, g = 9.81 m/s2, and h0 = 1 m. Use a time step
of 10 seconds. Plot the solution, and experiment to see what a proper
time interval for the simulation is. Make sure to test for h < 0 so that
you do not apply the square root function to negative numbers. Can
you find an analytical solution of the problem to compare the numerical
solution with? Name of program file: tank_ODE.py. �

Exercise E.4. Scale the logistic equation.
Consider the logistic model (E.5):

u′(t) = αu(t)

(
1− u(t)

R

)
, u(0) = U0.

This problem involves three input parameters: U0, R, and α. Learning
how u varies with U0, R, and α requires much experimentation where
we vary all three parameters and observe the solution. A much more
effective approach is to scale the problem. By this technique the solu-
tion depends only on one parameter U0/R in the present problem. This
exercise tells how the scaling is done.

The idea of scaling is to introduce dimensionless versions of the
independent and dependent variables:

v =
u

uc
, τ =

t

tc
,

where uc and tc are characteristic sizes of u and t, respectively, such
that the dimensionless variables v and τ are of approximately unit
size. Since we know that u → R as t → ∞, R can be taken as the
characteristic size of u.

Insert u = Rv and t = tcτ in the governing ODE and choose tc =
1/α. Show that the ODE for the new function v(τ) becomes

dv

dτ
= v(1− v), v(0) = v0. (E.61)

We see that the three parameters U0, R, and α have disappeared from
the ODE problem, and only one parameter v0 = U0/R is involved.

Show that if v(τ) is computed, one can recover u(t) by

u(t) = Rv(αt). (E.62)

Geometrically, the transformation from v to u is just a stretching of
the two axis in the coordinate system.

E.3 Exercises 707

Make a program logistic_scaled.py where you compute v(τ), given
v0 = 0.05, and then you use (E.62) to plot u(t) for R = 100, 500, 1000
and α = 1 in one figure, and u(t) for α = 1, 5, 10 and R = 1000
in another figure. Note how effectively you can generate u(t) without
needing to solve an ODE problem, and also note how varying R and α
impacts the graph of u(t). Name of program file: logistic_scaled.py.
�

Exercise E.5. Compute logistic growth with time-varying carrying ca-
pacity.

Use classes Problem2 and AutoSolver from Appendix E.2.8 to study
logistic growth when the carrying capacity of the environment, R,
changes periodically with time: R = 500 for its ≤ t < (i + 1)ts and
R = 200 for (i + 1)ts ≤ t < (i + 2)ts, with i = 0, 2, 4, 6, Use
the same data as in Appendix E.2.8, and find some relevant sizes of
the period of variation, ts, to experiment with. Name of program file:
seasonal_logistic_growth.py. �

Exercise E.6. Solve an ODE for the arc length.
Given a curve y = f(x), the length of the curve from x = x0 to some

point x is given by the function s(x), which solves the problem

ds

dx
=

√
1 +

[
f ′(x)

]2
, s(x0) = 0. (E.63)

Since s does not enter the right-hand side, (E.63) can immediately
be integrated from x0 to x (see Exercise A.17). However, we shall
solve (E.63) as an ODE. Use the Forward Euler method and com-
pute the length of a straight line (for easy verification) and a parabola:
f(x) = 1

2x + 1, x ∈ [0, 2]; f(x) = x2, x ∈ [0, 2]. Name of program file:
arclength_ODE.py. �

Exercise E.7. Compute inverse functions by solving an ODE.
The inverse function g of some function f(x) takes the value f(x)

back to x again: g(f(x)) = x. The common technique to compute
inverse functions is to set y = f(x) and solve with respect to x. The
formula on the right-hand side is then the desired inverse function g(y).
Exercise 7.26 makes use of such an approach, where y − f(x) = 0 is
solved numerically with respect to x for different discrete values of y.

We can formulate a general procedure for computing inverse func-
tions from an ODE problem. If we differentiate y = f(x) with respect
to y, we get 1 = f ′(x)dxdy by the chain rule. The inverse function we

seek is x(y), but this function then fulfills the ODE

x′(y) =
1

f ′(x)
. (E.64)

708 E Programming of Differential Equations

That y is the independent coordinate and x the function of y can be
a somewhat confusing notation, so you might introduce u and t for x
and y:

u′(t) =
1

f ′(u)
.

The initial condition is x(0) = xr where xr solves the equation
f(xr) = 0 (x(0) implies y = 0 and then from y = f(x) it follows
that f(x(0)) = 0).

Make a program that can use the described method to compute x(y),
given f(x) and xr. Use any numerical method of your choice for solving
the ODE problem. Plot f(x) as well as x(y). Verify the implementation
for f(x) = 2x. Test the method for f(x) =

√
x. Name of program file:

inverse_ODE.py. �

Exercise E.8. Generalize the implementation in Exer. E.7.
The method for computing inverse functions described in Exer-

cise E.7 is very general. The purpose now is to make a reusable utility,
here called Inverse, for computing the inverse of some Python function
f(x) on some interval I=[a,b]. The utility can be used as follows to
calculate the inverse of sinx on I = [0, π/2]:

def f(x):
return sin(x)

Compute the inverse of f
inverse = Inverse(f, x0=0, I=[0, pi/2], resolution=100)
x, y = Inverse.compute()
from scitools.std import plot

plot(y, x, ’r-’,
x, f(x), ’b-’,
y, asin(y), ’go’)

legend([’computed inverse’, ’f(x)’, ’exact inverse’])

Here, x0 is the value of x at 0, or in general at the left point of the
interval: I[0]. The parameter resolution tells how many equally sized
intervals Δy we use in the numerical integration of the ODE. A default
choice of 1000 can be used if it is not given by the user.

Make class Inverse and put it in a module. Include a function
_verify() in the module which tests that class Inverse gives exact solu-
tion for the test problem f(x) = 2x. Name of program file: Inverse1.py.
�

Exercise E.9. Extend the implementation in Exer. E.8.
Extend the module in Exercise E.8 such that the value of x(0) (x0

in class Inverse’s constructor) does not need to be provided by the
user. To this end, class Inverse must solve f(x) = 0 and set x0 equal
to the root. You may use the Bisection method from Chapter 4.6.2,
Newton’s method from Appendix A.1.10, or the Secant method from
Exercise A.14 to solve f(x) = 0. Class Inverse should figure out a

E.3 Exercises 709

suitable initial interval for the Bisection method or start values for the
Newton or Secant methods. Computing f(x) for x at many points and
examining these may help in solving f(x) = 0 without any input from
the user. Name of program file: Inverse2.py. �

Exercise E.10. Compute inverse functions by interpolation.
Instead of solving an ODE for computing the inverse function g(y) of

some function f(x), as explained in Exercise E.7, one may use a simpler
approach based on ideas from Appendix E.1.5. Say we compute discrete
values of x and f(x), stored in the arrays x and y. Doing a plot(x, y)

shows y = f(x) as a function of x, and doing plot(y, x) shows x as
a function of y, i.e., we plot the inverse function g(y). It is therefore
trivial to plot the inverse function!

However, if we want the inverse function of f(x) as some Python
function g(y) that we can call for any y, we can use the tool
wrap2callable from Appendix E.1.5 to turn the discrete inverse func-
tion, described by the arrays y (independent coordinate) and x (depen-
dent coordinate), into a continuous function g(y):

from scitools.std import wrap2callable
g = wrap2callable((y, x))

y = 0.5
print g(y)

The g(y) function applies linear interpolation in each interval between
the points in the y array.

Implement this method in a program. Verify the implementation for
f(x) = 2x for x ∈ [0, 4] and test it for f(x) = sinx for x ∈ [0, π/2].
Name of program file: inverse_wrap2callable.py. �

Exercise E.11. Simulate a falling or rising body in a fluid.
A body moving vertically through a fluid (liquid or gas) is subject

to three different types of forces:

1. the gravity force Fg = −mg, where m is the mass of the body and g
is the acceleration of gravity;

2. the drag force2 Fd = −1
2CD�A|v|v (see also Exercise 1.11), where CD

is a dimensionless drag coefficient depending on the body’s shape,
� is the density of the fluid, A is the cross-sectional area (produced
by a cutting plane y = const through the thickest part of the body),
and v is the velocity;

3. the uplift or buoyancy force (“Archimedes force”) Fb = �gV , where
V is the volume of the body.

2 Roughly speaking, the Fd formula is suitable for medium to high velocities, while for very
small velocities, or very small bodies, Fd is proportional to the velocity, not the velocity

squared, see [11].

710 E Programming of Differential Equations

Newton’s second law applied to the body says that the sum of these
forces must equal the mass of the body times its acceleration a:

Fg + Fd + Fb = ma,

which gives

−mg − 1

2
CD�A|v|v + �gV = ma.

The unknowns here are v and a, i.e., we have two unknowns but only
one equation. From kinematics in physics we know that the acceleration
is the time derivative of the velocity: a = dv/dt. This is our second
equation. We can easily eliminate a and get a single differential equation
for v:

−mg − 1

2
CD�A|v|v + �gV = m

dv

dt
.

A small rewrite of this equation is handy: We express m as �bV , where
�b is the density of the body, and we isolate dv/dt on the left-hand side,

dv

dt
= −g

(
1− �

�b

)
− 1

2
CD

�A

�bV
|v|v. (E.65)

This differential equation must be accompanied by an initial condition:
v(0) = V0.

Make a program for solving (E.65) numerically, using any numerical
method of your choice. Implement the right-hand side of (E.65) in the
__call__ method of a class where the parameters g, �, �b, CD, A, and
V are attributes.

To verify the program, assume a heavy body in air such that the Fb

force can be neglected, and assume a small velocity such that the air
resistance Fd can also be neglected. Setting � = 0 removes both these
terms from the equation. The motion then leads to the exact velocity
v(t) = y′(t) = v0−gt. See how well the program reproduces this simple
solution.

After the program is verified, we are ready to run two real examples
and plot the evolution of v:

1. Parachute jumper. The point is to compute the motion of a parachute
jumper in free fall before the parachute opens. We set the density of
the human body as �b = 1003 kg/m3 and the mass as m = 80 kg,
implying V = m/�b = 0.08 m3. We can base the cross-sectional area
A on the height 1.8 m and a width of 50 cm, giving A ≈ πR2 =
0.9 m2. The density of air decreases with height, and we here use the
value 0.79 kg/m3 which is relevant for about 5000 m height. The CD

coefficient can be set as 0.6. Start with v0 = 0.
2. Rising ball in water. A ball with the size of a soccer ball is placed in

deep water, and we seek to model its motion upwards. Contrary to

E.3 Exercises 711

the former example, where the buoyancy force Fb is very small, Fb is
now the driving force, and the gravity force Fg is small. Set A = πa2

with a = 11 cm, the mass of the ball is 0.43 kg, the density of water
is 1000 kg/m3, and CD is 0.2. Start with v0 = 0 and see how the ball
rises.

Name of program file: body_in_fluid.py. �

Exercise E.12. Check the solution’s limit in Exer. E.11.
The solution of (E.65) often tends to a constant velocity, called the

terminal velocity. This happens when the sum of the forces, i.e., the
right-hand side in (E.65) vanishes. Compute the formula for the ter-
minal velocity by hand. Solve the ODE using class ODESolver and
call the solve method with a terminate function that terminates
the computations when a constant velocity is reached, that is, when
|v(tn) − v(tn−1)| ≤ ε, where ε is a small number. Run a series of Δt
values and make a graph of the terminal velocity as a function of Δt
for the two cases in Exercise E.11. Indicate the exact terminal velocity
in the plot by a horizontal line. Would you expect the accuracy of the
computed terminal velocity to increase with decreasing Δt? Discuss!
Name of program file: body_in_fluid_termvel.py. �

Exercise E.13. Visualize the different forces in Exer. E.11.
The purpose of this exercise is to plot the forces Fg, Fb, and Fd in the

model from Exercise E.11 as functions of t. Seeing the relative impor-
tance of the forces as time develops gives an increased understanding
of how the different forces contribute to change the velocity. Name of
program file: body_in_fluid_forces.py. �

Exercise E.14. Solve an ODE until constant solution.
Newton’s law of cooling,

dT

dt
= −h(T − Ts) (E.66)

can be used to see how the temperature T of an object changes be-
cause of heat exchange with the surroundings, which have a tempera-
ture Ts. The parameter h, with unit s−1 is an experimental constant
(heat transfer coefficient) telling how efficient the heat exchange with
the surroundings is. For example, (E.66) may model the cooling of a
hot pizza taken out of the oven. The problem with applying (E.66),
nevertheless, is that h must be measured. Suppose we have measured
T at t = 0 and t1. We can use a rough Forward Euler approximation
of (E.66) with one time step of length t1,

T (t1)− T (0)

t1
= −h

(
T (0)− Ts

)
,

to make the estimate

712 E Programming of Differential Equations

h =
T (t1)− T (0)

t1(Ts − T (0))
. (E.67)

Suppose now you take a hot pizza out of the oven. The temperature
of the pizza is 200 C at t = 0 and 180 C after 50 seconds, in a room
with temperature 20 C. Find an estimate of h from the formula above.

Solve (E.66) to find the evolution of the temperature of the pizza. Use
class ForwardEuler or RungeKutta4, and supply a terminate function to
the solve method so that the simulation stops when T is sufficiently
close to the final room temperature Ts. Plot the solution. Name of
program file: pizza_cooling1.py. �

Exercise E.15. Use classes in Exer. E.14.
Solve Exercise E.14 with a class Problem containing the parameters

h, Ts, T (0), and Δt as attributes. A method estimate_h should take
t1 and T (t1) as arguments, compute h, and assign it to self.h. Also a
method __call__ for computing the right-hand side must be included.
The terminate function can be a method in the class, a stand-alone
function, or a lambda function. By using class Problem, we avoid having
the physical parameters as global variables in the program and all the
problem-specific data are packed into one object.

Write a function solve(problem) that takes a Problem object with
name problem as argument, solves the ODE, and plots the solution. We
now want to run experiments with different values of some parameters:
Ts = 15, 22, 30 C and T (0) = 250, 200 C. Make a list of Problem objects
and plot the solution for each problem in the same figure:

Given h and dt
problems = [Problem(h, T_s, T_0, dt) \

for T_s in 15, 22, 30 for T_0 in 250, 200]
for problem in problems:

solve(problem)
hold(’on’)

Name of program file: pizza_cooling2.py. �

Exercise E.16. Scale away parameters in Exer. E.14.
Use the scaling approach from Appendix E.2.8 to “scale away” the

parameters in the ODE in Exercise E.14. That is, introduce a new
unknown u = (T − Ts)/(T (0)− Ts) and a new time scale τ = th. Find
the ODE and the initial condition that governs the u(τ) function. Make
a program that computes u(τ) until |u| < 0.001. Store the discrete
u and τ values in a file u_tau.dat if that file is not already present
(you can use os.path.isfile(f) to test if a file with name f exists).
Create a function T(u, tau, h, T0, Ts) that loads the u and τ data
from the u_tau.dat file and returns two arrays with T and t values,
corresponding to the computed arrays for u and τ . Plot T versus t.
Give the parameters h, Ts, and T (0) on the command line. Note that
this program is supposed to solve the ODE once and then recover any

E.3 Exercises 713

T (t) solution by a simple scaling of the single u(τ) solution. Name of
program file: pizza_cooling3.py. �

Exercise E.17. Use the 4th-order Runge-Kutta on (C.34).
Investigate if the 4th-order Runge-Kutta method is better than the

Forward Euler scheme for solving the challenging ODE problem (C.34)
from Exercise C.3 on page 639. Name of program file: yx_ODE2.py. �

Exercise E.18. Compare ODE methods.
The equation u′ = −au is a relevant model for radioactive decay,

where u(t) is the fraction of particles that remains in the radioactive
substance at time t. The parameter a is the inverse of the so-called
mean lifetime of the substance. The initial condition is u(0) = 1.

Introduce a class Decay to hold information about the physical prob-
lem: the parameter a and a __call__ method for computing the right-
hand side −au of the ODE. Initialize an instance of class Decay with
a = ln(2)/5600 1/y (y means the unit years, and this value of a cor-
responds to the Carbon-14 radioactive isotope whose decay is used ex-
tensively in dating organic material that is tens of thousands of years
old).

Solve (E.7) by both the Forward Euler and the 4-th order Runge-
Kutta method, using the ForwardEuler and the RungeKutta4 classes
in the ODESolver hierarchy. Use a time step of 500 years, and simulate
decay for T = 20,000 y (let the time unit be 1 y). Plot the two solutions.
Write out the final u(T) value and compare it with the exact value e−aT .
Name of program file: radioactive_decay.py. �

Exercise E.19. Compare ODE methods.
Consider the problem described in Exercise E.3 on page 705. Make

a class Problem that holds problem-specific parameters: h0, r, R, Δt,
and T ([0, T] being the time interval for simulation). Our aim is to
solve this ODE problem using the ForwardEuler, BackwardEuler, and
RungeKutta4 classes in the ODESolver hierarchy. Read one or more Δt
values from the command line, solve the problems for these Δt values,
and plot the graphs in the same figure:

Given h_0, r, R
problems = [Problem(h_0, r, R, float(dt)) for dt in sys.argv[1:]]
for problem in problems:

for method in ForwardEuler, BackwardEuler, RungeKutta4:
solve(problem, method)
hold(’on’)

The solve function must use the method class and information in the
Problem object to solve the ODE and make a curve plot of h(t) (anno-
tating the legend with the value of dt and method).

Try out different Δt values between 5 and 50 s. Comment upon the
quality of the various methods to compute a correct limiting value of h
as Δt is varied. (Hint: negative h values may appear when the problem

714 E Programming of Differential Equations

is solved numerically, so set h = 0 if h < 0 before computing
√
h.)

Name of program file: tank_ODE_3methods.py. �
Exercise E.20. Solve two coupled ODEs for radioactive decay.

Consider two radioactive substances A and B. The nuclei in sub-
stance A decay to form nuclei of type B with a mean lifetime τA, while
substance B decay to form type A nuclei with a mean lifetime τB. Let-
ting uA and uB be the fractions of the initial amount of material in
substance A and B, respectively, the following system of ODEs governs
the evolution of uA(t) and uB(t):

u′A = uB/τB − uA/τA, (E.68)

u′B = uA/τA − uB/τB, (E.69)

with uA(0) = uB(0) = 1. As in Exercise E.18, introduce a problem
class, which holds the parameters τA and τB and offers a __call__

method to compute the right-hand side vector of the ODE system,
i.e., (uB/τB − uA/τA, uA/τA − uB/τB). Solve for uA and uB using a
subclass in the ODESolver hierarchy and the parameter choice τA = 8
minutes, τB = 40 minutes, and Δt = 10 seconds. Plot uA and uB
against time measured in minutes. From the ODE system it follows
that the ratio uA/uB → τA/τB as t → ∞ (assuming u′A = u′B = 0
in the limit t → ∞). Check that the solutions fulfills this requirement
(this is a partial verification of the program). Name of program file:
radioactive_decay2.py. �
Exercise E.21. Code a 2nd-order Runge-Kutta method; function.

Implement the 2nd-order Runge-Kutta method specified in formula
(E.37). Use a plain function RungeKutta2 of the type shown in Ap-
pendix E.1.2 for the Forward Euler method. Construct a test problem
where you know the analytical solution, and plot the difference be-
tween the numerical and analytical solution. Name of program file:
RungeKutta2_func.py. �
Exercise E.22. Code a 2nd-order Runge-Kutta method; class.

Make a new subclass RungeKutta2 in the ODESolver hierarchy from
Appendix E.2.5 for solving ordinary differential equations with the 2nd-
order Runge-Kutta method specified in formula (E.37). Construct a
test problem where you know the analytical solution, and plot the dif-
ference between the numerical and analytical solution as a function of
time. Place the RungeKutta2 class and the test problem in a separate
module (where the superclass ODESolver is imported from the ODESolver
module). Call the test problem from the test block in the module file.
Name of program file: RungeKutta2.py. �
Exercise E.23. Make a subclass for Heun’s method.

Implement the numerical method (E.35)–(E.36) in a subclass of
ODESolver. Place the code in a separate file where the ODESolver class

E.3 Exercises 715

is imported. How can you verify that the implementation is correct?
Name of program file: Heun.py. �
Exercise E.24. Make a subclass for the Midpoint method.

Implement the Midpoint method specified in formula (E.34) from
page 684 in a subclass of ODESolver.

Compare in a plot the Midpoint method with the Forward Euler and
4th-order Runge-Kutta methods and the exact solution for the problem
u′ = u, u(0) = 1, with 10 steps between 0 and the end time T = 5.
Name of program file: Midpoint.py. �
Exercise E.25. Make a subclass for an Adams-Bashforth method.

Implement the Adams-Bashforth method (E.45) on page 685 in a
subclass of ODESolver. Use Heun’s method (E.36) to compute u1.

Compare in a plot the Adams-Bashforth method with the Forward
Euler and 4th-order Runge-Kutta methods and the exact solution for
the problem u′ = u, u(0) = 1, with 10 steps between 0 and the end
time T = 5. Name of program file: AdamsBashforth3.py. �
Exercise E.26. Implement the iterated Midpoint method; function.

Implement the numerical method (E.46)–(E.47) as a function

iterated_Midpoint_method(f, U0, T, n, N)

where f is a Python implementation of f(u, t), U0 is the initial condi-
tion u(0) = U0, T is the final time of the simulation, n is the number
of time steps, and N is the parameter N in the method (E.46). The
iterated_Midpoint_method should return two arrays: u0, . . . , un and
t0, . . . , tn. To verify the implementation, calculate by hand u1 and u2
when N = 2 for the ODE u′ = −2u, u(0) = 1, with Δt = 1/4. Compare
your hand calculations with the results of the program. Thereafter, run
the program for the same ODE problem but with Δt = 0.1 and T = 2.
Name of program file: MidpointIter_func.py. �
Exercise E.27. Implement the iterated Midpoint method; class.

The purpose of this exercise is to implement the numerical
method (E.46)–(E.47) in a class like the ForwardEuler class from
Appendix E.1.7. Create a module containing the class and a test
function demonstrating the use:

def _application():
def f(u, t):

return -2*u

solver = MidpointIter(f, N=4)
solver.set_initial_condition(1)
t_points = numpy.linspace(0, 1.5, 16)
u, t = solver.solve(t_points)
from scitools.std import plot
plot(t, u)

Call the _application function from the test block in the module file.
Also include a _verify function which compares the hand calculations

716 E Programming of Differential Equations

of two time steps (see Exercise E.26) with the results produced by the
class. Name of program file: MidpointIter_class.py. �

Exercise E.28. Make a subclass for the iterated Midpoint method.
Implement the numerical method (E.46)–(E.47) in a subclass of

ODESolver. The code should reside in a separate file where the ODESolver
class is imported. One can either fix N or introduce an ε and iterate
until the change in |vq − vq−1| is less than ε. Allow the constructor to
take both N and ε as arguments. Compute a new vq as long as q ≤ N
or |vq − vq−1| > ε. Let N = 20 and ε = 10−6 by default. Name of
program file: MidpointIter.py. �

Exercise E.29. Study convergence of numerical methods for ODEs.
The approximation error when solving an ODE numerically is usu-

ally of the form CΔtr, where C and r are constants that can be es-
timated from numerical experiments. The constant r, called the con-
vergence rate, is of particular interest. Halving Δt halves the error if
r = 1, but if r = 3, halving Δt reduces the error by a factor of 8.

Exercise 9.16 describes a method for estimating r from two consec-
utive experiments. Make a function

ODE_convergence(f, U0, u_e, method, dt=[])

that returns a series of estimated r values corresponding to a series
of Δt values given as the dt list. The argument f is a Python imple-
mentation of f(u, t) in the ODE u′ = f(u, t). The initial condition is
u(0) = U0, where U0 is given as the U0 argument, u_e is the exact
solution ue(t) of the ODE, and method is the name of a class in the
ODESolver hierarchy. The error between the exact solution ue and the
computed solution u0, u1, . . . , un can be defined as

e =

(
Δt

n∑
i=0

(
ue(ti)− ui

)2)1/2

.

Call the ODE_convergence function for some methods you have in the
ODESolver hierarchy and answers to exercises, and print the estimated
r values for each method. Use an ODE problem of your own choice.
Name of program file: ODE_convergence.py. �

Exercise E.30. Solve an ODE specified on the command line.
To solve an ODE, we want to make a program cmlodesolver.py

which accepts an ODE problem to be specified on the command line.
The command-line arguments are f u0 dt T, where f is the right-
hand side f(u, t) specified as a string formula (to be converted to a
StringFunction object), u0 is the initial condition, dt is the time step,
and T is the final time of the simulation. A fifth optional argument can
be given to specify the class name of the numerical solution method
(set any method of choice as default value). A curve plot of the solution

E.3 Exercises 717

versus time should be produced and stored in a file plot.png. Name of
program file: cmlodesolver.py. �

Exercise E.31. Find the body’s position in Exer. E.11.
In Exercise E.11 we compute the velocity v(t). The position of the

body, y(t), is related to the velocity by y′(t) = v(t). Extend the program
from Exercise E.11 to solve the system

dy

dt
= v,

dv

dt
= −g

(
1− �

�b

)
− 1

2
CD

�A

�bV
|v|v.

Name of program file: body_in_fluid2.py. �

Exercise E.32. Add the effect of air resistance on a ball.
The differential equations governing the horizontal and vertical mo-

tion of a ball subject to gravity and air resistance read3

d2x

dt2
= −3

8
CD�̄a

−1

√(
dx

dt

)2

+

(
dy

dt

)2dx

dt
, (E.70)

d2y

dt2
= −g − 3

8
CD�̄a

−1

√(
dx

dt

)2

+

(
dy

dt

)2dy

dt
, (E.71)

where (x, y) is the position of the ball (x is a horizontal measure and
y is a vertical measure), g is the acceleration of gravity, CD = 0.2 is
a drag coefficient, �̄ is the ratio of the density of air and the ball, and
a is the radius of the ball. The latter two quantities can be taken as
0.017 and 11 cm for a football.

Let the initial condition be x = y = 0 (start position in the origin)
and

dx/dt = v0 cos θ, dy/dt = v0 sin θ,

where v0 is the magnitude of the initial velocity and θ is the angle the
velocity makes with the horizontal. For a hard football kick we can set
v0 = 120 km/h and take θ as 30 degrees.

Express the two second-order equations above as a system of four
first-order equations with four initial conditions. Implement the right-
hand side in a problem class where the physical parameters CD, �̄, a,
v0, and θ are stored along with the initial conditions.

Solve the ODE system for CD = 0 (no air resistance) and CD = 0.2,
and plot y as a function of x in both cases to illustrate the effect
of air resistance. Use the 4-th order Runge-Kutta method. Make sure
you express all units in kg, m, s, and radians. Name of program file:
kick2D.py. �
3 The equations arise by combining the models in Exercises 1.11 and 1.13.

718 E Programming of Differential Equations

Exercise E.33. Solve an ODE system for an electric circuit.
An electric circuit with a resistor, a capacitor, an inductor, and a

voltage source can be described by the ODE

L
dI

dt
+RI +

Q

C
= E(t), (E.72)

where LdI/dt is the voltage drop across the inductor, I is the current
(measured in amperes, A), L is the inductance (measured in henrys,
H), R is the resistance (measured in ohms, Ω), Q is the charge on the
capacitor (measured in coulombs, C), C is the capacitance (measured
in farads, F), E(t) is the time-variable voltage source (measured in
volts, V), and t is time (measured in seconds, s). There is a relation
between I and Q:

dQ

dt
= I. (E.73)

Equations (E.72)–(E.73) is a system two ODEs. Solve these for L = 1
H, E(t) = 2 sinωt V, ω2 = 3.5 s−2, C = 0.25 C, R = 0.2 Ω, I(0) = 1 A,
and Q(0) = 1C. Use the Forward Euler scheme with Δt = 2π/(60ω).
The solution will, after some time, oscillate with the same period as
E(t), a period of 2π/ω. Simulate 10 periods. (Actually, it turns out
that the Forward Euler scheme overestimates the amplitudes of the
oscillations. Exercise E.34 compares the Forward Euler scheme with
the more accurate 4th-order Runge-Kutta method.) Name of program
file: electric_circuit.py. �

Exercise E.34. Compare methods for solving (E.72)–(E.73).
Consider the system of ODEs in Exercise E.33 for simulating an elec-

tric circuit. The purpose now is to compare the Forward Euler scheme
with the 4-th order Runge-Kutta method. Make a class Circuit for
storing the physical parameters of the problem (L, R, C, E(t)) as well
as the initial conditions (I(0), Q(0)). Class Circuit should also define
the right-hand side of the ODE through a __call__ method. Create
two solver instances, one from the ForwardEuler class and one from the
RungeKutta4 class. Solve the ODE system using both methods. Plot the
two I(t) solutions for comparison. As you will see, the Forward Euler
scheme overestimates the amplitudes significantly, compared with the
more accurate 4th-order Runge-Kutta method. Name of program file:
electric_circuit2.py. �

Exercise E.35. Simulate the spreading of a disease.
We shall in this exercise model epidemiological diseases such as

measles or swine flu. Suppose we have three categories of people: sus-
ceptibles (S) who can get the disease, infected (I) who has developed
the disease and who can infect susceptibles, and recovered (R) who
have recovered from the disease and become immune. Let S(t), I(t),
and R(t) be the number of people in category S, I, and R, respectively.

E.3 Exercises 719

We have that S + I + R = N , where N is the size of the population,
assumed constant here for simplicity.

When people mix in the population there are SI possible pairs of
susceptibles and infected, and a certain fraction βSI per time interval
does meet with the result that the infected “successfully” infects the
susceptible. During a time interval Δt, βSIΔt get infected and move
from the S to the I category:

S(t+Δt) = S(t)− βSIΔt.

We divide by Δt and let Δ → 0 to get the differential equation

S′(t) = −βSI. (E.74)

A fraction νI of the infected will per time unit recover from the disease.
In a time Δt, νIΔt recover and move from the I to the R category. The
quantity 1/ν typically reflects the duration of the disease. In the same
time interval, βSIΔt come from the S to the I category. The accounting
for the I category therefore becomes

I(t+Δt) = I(t) + βSIΔt− νIΔt,

which in the limit Δt → ∞ becomes the differential equation

I ′(t) = βSI − νI. (E.75)

Finally, the R category gets contributions from the I category:

R(t+Δt) = R(t) + νIΔt.

The corresponding ODE for R reads

R′(t) = νI. (E.76)

In case the recovered do not become immune, we do not need the recov-
ered category, since the recovered go directly out of the I category to
the S category again. This gives a contribution νI to the equation for S
and we end up with the S–I system (C.32)–(C.33) from Appendix C.5.

The system (E.74)–(E.76) is known as a SIR model in epidemiology
(which is the name of the scientific field studying the spreading of
epidemic diseases).

Solve the equations in the SIR model by any numerical method of
your choice. Show from the equations that S′ + I ′ + R′ = 0, which
means that S + I + R must be constant. This can be used to test the
program. Let S(0) = 1500, I(0) = I0, and R(0) = 0. Set ν = 0.1,
I0 = 1, Δt = 0.5, and t ∈ [0, 60]. Time t here counts days. Make a plot
corresponding to β = 0.0005. Certain precautions, like staying inside,

720 E Programming of Differential Equations

will reduce β. Try β = 0.0001 and watch the effect on S(t). Name of
program file: SIR.py. �

Exercise E.36. Make a more flexible code in Exer. E.35.
The parameters ν and β in the SIR model in Exercise E.35 can be

constants or functions of time. Now we shall make an implementation
of the f(u, t) function specifying the ODE system such that ν and β
can be given as either a constant or a Python function. Introduce a
class for f(u, t), with the following code sketch:

class Problem:
def __init__(self, nu, beta, S0, I0, R0, T):

"""
nu, beta: parameters in the ODE system
S0, I0, R0: initial values
T: simulation for t in [0,T]
"""
if isinstance(nu, (float,int)): # number?

self.nu = lambda t: nu # wrap as function
elif callable(nu):

self.nu = nu

same for beta and self.beta
...

store the other parameters

def __call__(self, u, t):
"""Right-hand side function of the ODE system."""
S, I, R = u
return [-self.beta(t)*S*I, # S equation

..., # I equation
-self.nu(t)*I] # R equation

Example:
problem = Problem(beta=lambda t: 0.0005 if t <= 12 else 0.0001,

nu=0.1, S0=1500, I0=1)
solver = ODESolver.ForwardEuler(problem.f)

Write the complete code for class Problem based on the sketch of ideas
above. The ν parameter is usually not varying with time as 1/ν is a
characteristic size of the period a person is sick, but introduction of
new medicine during the disease might change the picture such that
time dependence becomes relevant.

We can also make a class Solver for solving the problem (see Ap-
pendix E.2.8 for similar examples):

class Solver:
def __init__(self, problem, dt):

self.problem, self.dt = problem, dt

def solve(self, method=ODESolver.RungeKutta4):
self.solver = method(problem)
ic = [self.problem.S0, self.problem.I0, self.problem.R0]
self.solver.set_initial_condition(ic)
n = int(round(self.problem.T/float(self.dt)))
t = np.linspace(0, self.problem.T, n+1)
u, self.t = self.solver.solve(t)
self.S, self.I, self.R = u[:,0], u[:,1], u[:,2]

E.3 Exercises 721

def plot(self):
plot S(t), I(t), and R(t)

After the breakout of a disease, authorities often start campaigns for
decreasing the spreading of the disease. Suppose a massive campaign
telling people to wash their hands more frequently is launched, with the
effect that β is significantly reduced after a some days. For the specific
case simulated in Exercise E.35, let

β(t) =

{
0.0005, 0 ≤ t ≤ 12,
0.0001, t > 12

Simulate this scenario with the Problem and Solver classes. Report the
maximum number of infected people and compare it to the case where
β(t) = 0.0005. Name of program file: SIR_class.py. �

Exercise E.37. Introduce vaccination in Exer. E.35.
We shall now extend the SIR model in Exercise E.35 with a vaccina-

tion program. If a fraction p of the susceptibles per time unit is being
vaccinated, and we say that the vaccination is 100% effective, pSΔt
individuals will be removed from the S category in a time interval Δt.
We place the vaccinated people in a new category V. The equations for
S and V becomes

S′ = −βSI − pS, (E.77)

V ′ = pS. (E.78)

The equations for I and R are not affected. The initial condition for V
can be taken as V (0) = 0. The resulting model is named SIRV.

Make a program for computing S(t), I(t), R(t), and V (t). Try the
same parameters as in Exercise E.35 in combination with p = 0.1.
Watch the effect of vaccination on the maximum number of infected.
Name of program file: SIRV.py. �

Exercise E.38. Introduce a vaccination campaign in Exer. E.37.
Let the vaccination campaign in Exercise E.37 start 6 days after the

outbreak of the disease and let it last for 10 days,

p(t) =

{
0.1, 6 ≤ t ≤ 15,
0, otherwise

Plot the corresponding solutions S(t), I(t), R(t), and V (t). (It is clearly
advantageous to have the SIRV model implemented as an extension to
the classes in Exercise E.36.) Name of program file: SIRV_varying_p.py.
�

Exercise E.39. Find optimal vaccination period in Exer. E.38.
Let the vaccination campaign in Exercise E.38 last for VT days:

722 E Programming of Differential Equations

p(t) =

{
0.1, 6 ≤ t ≤ 6 + VT ,
0, otherwise

Compute the maximum number of infected people, maxt I(t), as a func-
tion of VT ∈ [0, 31]. Plot this function. Determine the optimal VT , i.e.,
the smallest vaccination period VT such that increasing VT has negligi-
ble effect on the maximum number of infected people. Name of program
file: SIRV_optimal_duration.py. �

Exercise E.40. Simulate human–zombie interaction.
Suppose the human population is attacked by zombies. This is quite a

common happening in movies, and the “zombification” of humans acts
much like the spreading of a disease. Let us make a differential equation
model, inspired by the SIR model from Exercise E.35, to simulate how
humans and zombies interact.

We introduce four categories of individuals:

1. S: susceptible humans who can become zombies.
2. I: infected humans, being bitten by zombies.
3. Z: zombies.
4. R: removed individuals, either conquered zombies or dead humans.

The corresponding functions counting how many individuals we have
in each category are named S(t), I(t), Z(t), and R(t), respectively.

The type of zombies considered here is inspired by the standard for
modern zombies set by the classic movie The Night of the Living Dead,
by George A. Romero from 1968. Only a small extension of the SIR
model is necessary to model the effect of human–zombie interaction
mathematically. A fraction of the human susceptibles is getting bitten
by zombies and moves to the infected category. A fraction of the in-
fected is then turned into zombies. On the other hand, humans can
conquer zombies.

Now we shall precisely set up all the dynamic features of the human-
zombie populations we aim to model. Changes in the S category are
due to three effects:

1. Susceptibles are infected by zombies, modeled by a term −ΔtβSZ,
similar to the S-I interaction in the SIR model.

2. Susceptibles die naturally or get killed and therefore enter the re-
moved category. If the probability that one susceptible dies during
a unit time interval is δS , the total expected number of deaths in a
time interval Δt becomes ΔtδSS.

3. We also allow new humans to enter the area with zombies, as this
effect may be necessary to successfully run a war on zombies. The
number of new individuals in the S category arriving per time
unit is denoted by Σ, giving an increase in S(t) by ΔtΣ during a
time Δt.

E.3 Exercises 723

We could also add newborns to the S category, but we simply skip this
effect since it will not be significant over time scales of a few days.

The balance of the S category is then

S′ = Σ − βSZ − δSS,

in the limit Δt → 0.
The infected category gets a contribution ΔtβSZ from the S cat-

egory, but loses individuals to the Z and R category. That is, some
infected are turned into zombies, while others die. Movies reveal that in-
fected may commit suicide or that others (susceptibles) may kill them.
Let δI be the probability of being killed in a unit time interval. Dur-
ing time Δt, a total of δIΔtI will die and hence be transferred to the
removed category. The probability that a single infected is turned into
a zombie during a unit time interval is denoted by ρ, so that a total of
ΔtρI individuals are lost from the I to the Z category in time Δt. The
accounting in the I category becomes

I ′ = βSZ − ρI − δII.

The zombie category gains −ΔtρI individuals from the I category.
We disregard the effect that any removed individual can turn into a
zombie again, as we consider that effect as pure magic beyond reason-
able behavior, at least according to what is observed in the Romero
movie tradition. A fundamental feature in zombie movies is that hu-
mans can conquer zombies. Here we consider zombie killing in a “man-
to-man” human–zombie fight. This interaction resembles the nature of
zombification (or the susceptible-infective interaction in the SIR model)
and can be modeled by a loss −αSZ for some parameter α with an in-
terpretation similar to that of β. The equation for Z then becomes

Z ′ = ρI − αSZ.

The accounting in the R category consists of a gain δS of natural
deaths from the S category, a gain δI from the I category, and a gain
αSZ from defeated zombies:

R′ = δSS + δII + αSZ.

The complete SIZR model for human–zombie interaction can be sum-
marized as

S′ = Σ − βSZ − δSS, (E.79)

I ′ = βSZ − ρI − δII, (E.80)

Z ′ = ρI − αSZ, (E.81)

R′ = δSS + δII + αSZ. (E.82)

724 E Programming of Differential Equations

The interpretations of the parameters are as follows:

• Σ: the number of new humans brought into the zombified area per
unit time.

• β: the probability that a theoretically possible human-zombie pair
actually meets physically, during a unit time interval, with the result
that the human is infected.

• δS : the probability that a susceptible human is killed or dies, in a
unit time interval.

• δI : the probability that an infected human is killed or dies, in a unit
time interval.

• ρ: the probability that an infected human is turned into a zombie,
during a unit time interval.

• α: the probability that, during a unit time interval, a theoretically
possible human-zombie pair fights and the human kills the zombie.

Note that probabilities per unit time do not necessarily lie in the in-
terval [0, 1]. The real probability, lying between 0 and 1, arises after
multiplication by the time interval of interest.

Implement the SIZR model with a Problem and Solver class as ex-
plained in Exercise E.36, allowing parameters to vary in time. The
time variation is essential to make a realistic model that can mimic
what happens in movies. It becomes necessary (cf. Exercise E.41)
to work with piecewise constant functions in time, for instance from
scitools.std (or Exercise 3.27):

from scitools.std import PiecewiseConstant

Define f(t) as 1.5 in [0,3], 0.1 in [3,4] and 1 in [4,7]
f = PiecewiseConstant(domain=[0, 7],

data=[(0, 1.5), (3, 0.1), (4, 1)])

Test the implementation with the following data: β = 0.0012, α =
0.0016, δI = 0.014, Σ = 2, ρ = 1, S(0) = 10, Z(0) = 100, I(0),
R(0) = 0, and simulation time T = 24 hours. All other parameters can
be set to zero. These values are estimated from the hysterical phase of
the movie The Night of the Living Dead. The time unit is hours. Plot
the S, I, Z, and R quantities. Name of program file: SIZR.py. �

Exercise E.41. Simulate an entire zombie movie.
The movie The Night of the Living Dead has three phases:

1. The initial phase, lasting for (say) 4 hours, where two humans meet
one zombie and of the humans get infected. A rough (and uncertain)
estimation of parameters in this phase, taking into account dynamics
not shown in the movie, yet necessary to establish a more realistic
evolution of the S and Z categories later in the movie, is Σ = 20,
β = 0.03, ρ = 1, S(0) = 60, and Z(0) = 1. All other parameters are
taken as zero when not specified.

E.3 Exercises 725

2. The hysterical phase, when the zombie treat is evident. This phase
lasts for 24 hours, and relevant parameters can be taken as β =
0.0012, α = 0.0016, δI = 0.014, Σ = 2, ρ = 1.

3. The counter attack by humans, estimated to last for 5 hours, with
parameters α = 0.006, β = 0 (humans no longer get infected), δS =
0.0067, ρ = 1.

Use the program from Exercise E.40 to simulate all three phases of the
movie. Name of program file: Night_of_the_Living_Dead.py. �

Exercise E.42. Simulate a war on zombies.
A war on zombies can be implemented through large-scale effective

attacks. A possible model is to increase α in the SIZR model from
Exercise E.40 by some amount ω(t), where ω(t) varies in time to model
strong attacks at some distinct points of time T1 < T2 < · · · < Tm.
Around these t values we want ω to have a large value, while in between
the attacks ω is small. One possible mathematical function with this
behavior is a sum of Gaussian functions:

ω(t) = a
m∑
i=0

exp

(
1

2

(
t− Ti

σ

)2)
, (E.83)

where a measures the strength of the attacks (the maximum value of
ω(t)) and σ measures the length of the attacks, which should be much
less than the time between the points of attack: typically, 4σ measures
the length of an attack, and we must have 4σ � Ti − Ti−1. We should
choose a significantly larger than α to make the attacks in the war on
zombies much stronger than the “man-to-man” killing of zombies.

Modify the model and the implementation from Exercise E.40 to
include a war on zombies. As a demonstration, we start out with 50
humans and 3 zombies, and β = 0.0625 as estimated from The Night of
The Living Dead movie. These values lead to a rapid zombification. We
assume there are some small resistances against zombies from the hu-
mans: α = 0.2β. However, the humans implement three strong attacks,
a = 50α, at 5, 10, and 18 hours after zombification starts. The attacks
last for about 2 hours (σ = 0.5). Add this effect to the simulation in Ex-
ercise E.41 and see if such attacks are sufficient to save mankind in this
particular case. Use ρ = 1 as before and set non-specified parameters
to zero. Name of program file: war_on_zombies.py. �

Exercise E.43. Explore predator-prey population interactions.
Suppose we have two species in an environment: a predator and a

prey. How will the two populations interact and change with time?
A system of ordinary differential equations can give insight into this
question. Let x(t) and y(t) be the size of the prey and the predator
populations, respectively. In the absence of a predator, the population
of the prey will follow the ODE derived in Appendix C.2:

726 E Programming of Differential Equations

dx

dt
= rx,

with r > 0, assuming there are enough resources for exponential
growth. Similarly, in the absence of prey, the predator population will
just experience a death rate m > 0:

dy

dt
= −my.

In the presence of the predator, the prey population will experience a
reduction in the growth proportional to xy. The number of interactions
(meetings) between x and y numbers of animals is xy, and in a certain
fraction of these interactions the predator eats the prey. The predator
population will correspondingly experience a growth in the population
because of the xy interactions with the prey population. The adjusted
growth of both populations can now be expressed as

dx

dt
= rx− axy, (E.84)

dy

dt
= −my + bxy, (E.85)

for positive constants r, m, a, and b. Solve this system and plot x(t)
and y(t) for r = m = 1, a = 0.3, b = 0.2, x(0) = 1, and y(0) = 1,
t ∈ [0, 20]. Try to explain the dynamics of the population growth you
observe. Experiment with other values of a and b. Name of program
file: predator_prey.py. �

Exercise E.44. Formulate a 2nd-order ODE as a system.
In this and subsequent exercises we shall deal with the following

second-order ordinary differential equation with two initial conditions:

mü+ f(u̇) + s(u) = F (t), t > 0, u(0) = U0, u̇(0) = V0. (E.86)

The notation u̇ and ü means u′(t) and u′′(t), respectively. Write (E.86)
as a system of two first-order differential equations. Also set up the
initial condition for this system.

Physical Applications. Equation (E.86) has a wide range of applications
throughout science and engineering. A primary application is damped
spring systems in, e.g., cars and bicycles: u is the vertical displacement
of the spring system attached to a wheel; u̇ is then the corresponding
velocity; F (t) resembles a bumpy road; s(u) represents the force from
the spring; and f(u̇) models the damping force (friction) in the spring
system. For this particular application f and s will normally be linear
functions of their arguments: f(u̇) = βu̇ and s(u) = ku, where k is a
spring constant and β some parameter describing viscous damping.

E.3 Exercises 727

Equation (E.86) can also be used to describe the motions of a
moored ship or oil platform in waves: the moorings act as a nonlin-
ear spring s(u); F (t) represents environmental excitation from waves,
wind, and current; f(u̇) models damping of the motion; and u is the
one-dimensional displacement of the ship or platform.

Oscillations of a pendulum can be described by (E.86): u is the angle
the pendulum makes with the vertical; s(u) = (mg/L) sin(u), where L
is the length of the pendulum,m is the mass, and g is the acceleration of
gravity; f(u̇) = β|u̇|u̇ models air resistance (with β being some suitable
constant, see Exercises 1.11 and E.48); and F (t) might be some motion
of the top point of the pendulum.

Another application is electric circuits with u(t) as the charge,m = L
as the inductance, f(u̇) = Ru̇ as the voltage drop across a resistor R,
s(u) = u/C as the voltage drop across a capacitor C, and F (t) as an
electromotive force (supplied by a battery or generator).

Furthermore, Equation (E.86) can act as a simplified model of many
other oscillating systems: aircraft wings, lasers, loudspeakers, micro-
phones, tuning forks, guitar strings, ultrasound imaging, voice, tides,
the El Niño phenomenon, climate changes – to mention some.

We remark that (E.86) is a possibly nonlinear generalization of Equa-
tion (D.8) explained in Appendix D.1.3. The case in Appendix D cor-
responds to the special choice of f(u̇) proportional to the velocity u̇,
s(u) proportional to the displacement u, and F (t) as the acceleration
ẅ of the plate and the action of the gravity force. �

Exercise E.45. Solve the system in Exer. E.44 in a special case.
Make a function

def rhs(u, t):
...

for returning a list with two elements with the two right-hand side
expressions in the first-order differential equation system from Exer-
cise E.44. As usual, the u argument is an array or list with the two
solution components u[0] and u[1] at some time t. Inside rhs, assume
that you have access to three global Python functions friction(dudt),
spring(u), and external(t) for evaluating f(u̇), s(u), and F (t), respec-
tively.

Test the rhs function in combination with the functions f(u̇) = 0,
F (t) = 0, s(u) = u, and the choice m = 1. The differential equation
then reads ü+u = 0. With initial conditions u(0) = 1 and u̇(0) = 0, one
can show that the solution is given by u(t) = cos(t). Apply three numer-
ical methods: the 4th-order Runge-Kutta method and the Forward Eu-
ler method from the ODESolvermodule developed in Appendix E.2.5, as
well as the 2nd-order Runge-Kutta method developed in Exercise E.22.
Use a time step Δt = π/20.

728 E Programming of Differential Equations

Plot u(t) and u̇(t) versus t together with the exact solutions. Also
make a plot of u̇ versus u (plot(u[:,0], u[:,1]) if u is the array re-
turned from the solver’s solve method). In the latter case, the exact
plot should be a circle4, but the ForwardEuler method results in a
spiral. Investigate how the spiral develops as Δt is reduced.

The kinetic energy K of the motion is given by 1
2mu̇2, and the po-

tential energy P (stored in the spring) is given by the work done by
the spring force: P =

∫ u
0 s(v)dv = 1

2u
2. Make a plot with K and P as

functions of time for both the 4th-order Runge-Kutta method and the
Forward Euler method, for the same physical problem described above.
In this test case, the sum of the kinetic and potential energy should be
constant. Compute this constant analytically and plot it together with
the sum K + P as calculated by the 4th-order Runge-Kutta method
and the Forward Euler method.

Name of program file: oscillator_v1.py. �

Exercise E.46. Make a tool for analyzing oscillatory solutions.
The solution u(t) of the equation (E.86) often exhibits an oscillatory

behavior (for the test problem in Exercise E.45 we have that u(t) =
cos t). It is then of interest to find the wavelength of the oscillations. The
purpose of this exercise is to find and visualize the distance between
peaks in a numerical representation of a continuous function.

Given an array (y0, . . . , yn−1) representing a function y(t) sampled
at various points t0, . . . , tn−1. A local maximum of y(t) occurs at t = tk
if yk−1 < yk > yk+1. Similarly, a local minimum of y(t) occurs at
t = tk if yk−1 > yk < yk+1. By iterating over the y1, . . . , yn−2 values
and making the two tests, one can collect local maxima and minima
as (tk, yk) pairs. Make a function minmax(t, y) which returns two lists,
minima and maxima, where each list holds pairs (2-tuples) of t and y
values of local minima or maxima. Ensure that the t value increases
from one pair to the next. The arguments t and y in minmax hold the
coordinates t0, . . . , tn−1 and y0, . . . , yn−1, respectively.

Make another function wavelength(peaks) which takes a list peaks

of 2-tuples with t and y values for local minima or maxima as argument
and returns an array of distances between consecutive t values, i.e., the
distances between the peaks. These distances reflect the local wave-
length of the computed y function. More precisely, the first element
in the returned array is peaks[1][0]-peaks[0][0], the next element is
peaks[2][0]-peaks[1][0], and so forth.

Test the minmax and wavelength functions on y values generated by
y = et/4 cos(2t) and y = e−t/4 cos(t2/5) for t ∈ [0, 4π]. Plot the y(t)
curve in each case, and mark the local minima and maxima computed
by minmax with circles and boxes, respectively. Make a separate plot
with the array returned from the wavelength function (just plot the

4 The points on the curve are (cos t, sin t), which all lie on a circle as t is varied.

E.3 Exercises 729

array against its indices - the point is to see if the wavelength varies or
not). Plot only the wavelengths corresponding to maxima.

Make a module with the minmax and wavelength function, and let
the test block perform the tests specified above. Name of program file:
wavelength.py. �

Exercise E.47. Enhance the code from Exer. E.45.
The user-chosen functions f , s, and F in Exercise E.45 must be coded

with particular names. It is then difficult to have several functions for
s(u) and experiment with these. A much more flexible code arises if
we adopt the ideas of a problem and a solver class as explained in
Appendix E.2.8. Specifically, we shall here make use of class Problem3

in Appendix E.2.8 to store information about f(u̇), s(u), F (t), u(0),
u̇(0), m, T , and the exact solution (if available). The solver class can
store parameters related to the numerical quality of the solution, i.e.,
Δt and the name of the solver class in the ODESolver hierarchy. In
addition we will make a visualizer class for producing plots of various
kinds.

We want all parameters to be set on the command line, but also have
sensible default values. As in Appendix E.2.8, the argparse module
is used to read data from the command line. Class Problem can be
sketched as follows:

class Problem:
def define_command_line_arguments(self, parser):

"""Add arguments to parser (argparse.ArgumentParser)."""

parser.add_argument(
’--friction’, type=func_dudt, default=’0’,
help=’friction function f(dudt)’,
metavar=’<function expression>’)

parser.add_argument(
’--spring’, type=func_u, default=’u’,
help=’spring function s(u)’,
metavar=’<function expression>’)

parser.add_argument(
’--external’, type=func_t, default=’0’,
help=’external force function F(t)’,
metavar=’<function expression>’)

parser.add_argument(
’--u_exact’, type=func_t_vec, default=’0’,
help=’exact solution u(t) (0 or None: now known)’,
metavar=’<function expression>’)

parser.add_argument(
’--m’, type=evalcmlarg, default=1.0, help=’mass’,
type=float, metavar=’mass’)

...
return parser

def set(self, args):
"""Initialize parameters from the command line."""
self.friction = args.friction
self.spring = args.spring
self.m = args.m
...

def __call__(self, u, t):

730 E Programming of Differential Equations

"""Define the right-hand side in the ODE system."""
m, f, s, F = \

self.m, self.friction, self.spring, self.external
...

Several functions are specified as the type argument to
parser.add_argument for turning strings into proper objects, in partic-
ular StringFunction objects with different independent variables:

def evalcmlarg(text):
return eval(text)

def func_dudt(text):
return StringFunction(text, independent_variable=’dudt’)

def func_u(text):
return StringFunction(text, independent_variable=’u’)

def func_t(text):
return StringFunction(text, independent_variable=’t’)

def func_t_vec(text):
if text == ’None’ or text == ’0’:

return None
else:

f = StringFunction(text, independent_variable=’t’)
f.vectorize(globals())
return f

The use of evalcmlarg is essential: this function runs the strings from
the command line through eval, which means that we can use mathe-
matical formulas like -T’4*pi’.

Class Solver is relatively much shorter than class Problem:

class Solver:
def __init__(self, problem):

self.problem = problem

def define_command_line_arguments(self, parser):
"""Add arguments to parser (argparse.ArgumentParser)."""
add --dt and --method
...
return parser

def set(self, args):
self.dt = args.dt
self.n = int(round(self.problem.T/self.dt))
self.solver = eval(args.method)

def solve(self):
self.solver = self.method(self.problem)
ic = [self.problem.initial_u, self.problem.initial_dudt]
self.solver.set_initial_condition(ic)
time_points = linspace(0, self.problem.T, self.n+1)
self.u, self.t = self.solver.solve(time_points)

The Visualizer class holds references to a Problem and Solver in-
stance and creates plots. The user can specify plots in an interactive
dialog in the terminal window. Inside a loop, the user is repeatedly
asked to specify a plot until the user responds with quit. The spec-
ification of a plot can be one of the words u, dudt, dudt-u, K, and

E.3 Exercises 731

wavelength which means a plot of u(t) versus t, u̇(t) versus t, u̇ versus
u, K (= 1

2mu̇2, kinetic energy) versus t, and u’s wavelength versus its
indices, respectively. The wavelength can be computed from the local
maxima of u as explained in Exercise E.46.

A sketch of class Visualizer is given next:

class Visualizer:
def __init__(self, problem, solver):

self.problem = problem
self.solver = solver

def define_command_line_arguments(self, parser):
parser.add_argument(

’--plot’, type=str, default=’u dudt’,
help=’specification of types of plots’,
metavar=’<space separated list of plot types>’)

return parser

def set(self, args):
plot_spec = args.plot
self.plots = plot_spec.split()

def visualize(self):
t = self.solver.t # short form
u, dudt = self.solver.u[:,0], self.solver.u[:,1]

Tag all plots with numerical and physical input values
title = ’solver=%s, dt=%g, m=%g’ % \

(self.solver.method, self.solver.dt, self.problem.m)
Can easily get the formula for friction, spring and force
if these are string formulas.
if isinstance(self.problem.friction, StringFunction):

title += ’ f=%s’ % str(self.problem.friction)
if isinstance(self.problem.spring, StringFunction):

title += ’ s=%s’ % str(self.problem.spring)
if isinstance(self.problem.external, StringFunction):

title += ’ F=%s’ % str(self.problem.external)

plot_type = ’’
while plot_type != ’quit’:

plot_type = raw_input(’Specify a plot: ’)
figure()
if plot_type == ’u’:

Plot u vs t
if self.problem.u_exact is not None:

hold(’on’)
Plot self.problem.u_exact vs t

show()
savefig(’tmp_u.eps’)

elif plot_type == ’dudt’:
...

Make a complete implementation of the three proposed classes. Also
make a main function that (i) creates a problem, solver, and visualizer,
(ii) calls the functions to define command-line arguments in each of
them, (iii) reads the command line, (iv) passes on the args from the
reading of the command line to the problem, solver, and visualizer
classes, (v) calls the solver, and (vi) calls the visualizer’s visualize

method to create plots. Collect the classes and functions in a module
oscillator, which has a call to main in the test block.

732 E Programming of Differential Equations

The first task from Exercises E.45 can now be run as

Terminal

oscillator.py --method ForwardEuler --u_exact "cos(t)" \
--dt "pi/20" --T "5*pi"

The other tasks from Exercises E.45 can be tested similarly.
Explore some of the possibilities of specifying several functions on

the command line:

Terminal

oscillator.py --method RungeKutta4 --friction "0.1*dudt" \
--external "sin(0.5*t)" --dt "pi/80" \
--T "40*pi" --m 10

oscillator.py --method RungeKutta4 --friction "0.8*dudt" \
--external "sin(0.5*t)" --dt "pi/80" \
--T "120*pi" --m 50

Name of program file: oscillator.py. �

Exercise E.48. Allow flexible choice of functions in Exer. E.47.
Some typical choices of f(u̇), s(u), and F (t) in (E.86) are listed

below:

1. Linear friction force (low velocities): f(u̇) = 6πμRu̇ (Stokes drag),
where R is the radius of a spherical approximation to the body’s
geometry, and μ is the viscosity of the surrounding fluid.

2. Quadratic friction force (high velocities): f(u̇) = 1
2CD�A|u̇|u̇, see

Exercise 1.11 for explanation of symbols.
3. Linear spring force: s(u) = ku, where k is a spring constant.
4. Sinusoidal spring force: s(u) = k sinu, where k is a constant.
5. Cubic spring force: s(u) = k(u− 1

6u
3), where k is a spring constant.

6. Sinusoidal external force: F (t) = F0+A sinωt, where F0 is the mean
value of the force, A is the amplitude, and ω is the frequency.

7. “Bump” force: F (t) = H(t− t1)(1−H(t− t2))F0, where H(t) is the
Heaviside function from Exercise 3.24, t1 and t2 are two given time
points, and F0 is the size of the force. This F (t) is zero for t < t1
and t > t2, and F0 for t ∈ [t1, t2].

8. Random force 1: F (t) = F0 + A · U(t;B), where F0 and A are con-
stants, and U(t;B) denotes a function whose value at time t is ran-
dom and uniformly distributed in the interval [−B,B].

9. Random force 2: F (t) = F0 + A · N(t;μ, σ), where F0 and A are
constants, and N(t;μ, σ) denotes a function whose value at time t
is random, Gaussian distributed number with mean μ and standard
deviation σ.

Make a module functions where each of the choices above are imple-
mented as a class with a __call__ special method. Also add a class Zero
for a function whose value is always zero. It is natural that the parame-
ters in a function are set as arguments to the constructor. The different

E.3 Exercises 733

classes for spring functions can all have a common base class holding
the k parameter as attribute. Name of program file: functions.py. �
Exercise E.49. Use the modules from Exer. E.47 and E.48.

The purpose of this exercise is to demonstrate the use of the classes
from Exercise E.48 to solve problems described by (E.86).

With a lot of models for f(u̇), s(u), and F (t) available as classes in
functions.py, the initialization of self.friction, self.spring, etc.,
from the command line does not work, because we assume simple
string formulas on the command line. Now we want to write things
like -spring ’LinearSpring(1.0)’. There is a quite simple remedy: re-
place all the special conversion functions to StringFunction objects by
evalcmlarg in the type specifications in the parser.add_argument calls.
If a from functions import * is also performed in the oscillator.py

file, a simple eval will turn strings like ’LinearSpring(1.0)’ into living
objects.

However, we shall here follow a simpler approach, namely dropping
initializing parameters on the command line and instead set them di-
rectly in the code. Here is an example:

problem = Problem()
problem.m = 1.0
k = 1.2
problem.spring = CubicSpring(k)
problem.friction = Zero()
problem.T = 8*pi/sqrt(k)
...

This is the simplest way of making use of the objects in the functions

module.
Note that the set method in classes Solver and Visualizer is unaf-

fected by the new objects from the functionsmodule, so flexible initial-
ization via command-line arguments works as before for -dt, -method,
and plot. One may also dare to call the set method in the problem
object to set parameters like m, initial_u, etc., or one can choose the
safer approach of not calling set but initialize all attributes explicitly
in the user’s code.

Make a new file say oscillator_test.py where you import class
Problem, Sover, and Visualizer, plus all classes from the functions

module. Provide a main1 function for solving the following problem:
m = 1, u(0) = 1, u̇(0) = 0, no friction (use class Zero), no external
forcing (class Zero), a linear spring s(u) = u, Δt = π/20, T = 8π, and
exact u(t) = cos(t). Use the Forward Euler method.

Then make another function main2 for the case withm = 5, u(0) = 1,
u̇(0) = 0, linear friction f(u̇) = 0.1u̇, s(u) = u, F (t) = sin(12 t), Δt =
π/80, T = 60π, and no knowledge of an exact solution. Use the 4-th
order Runge-Kutta method.

Let a test block use the first command-line argument to indicate a
call to main1 or main2. Name of program file: oscillator_test.py. �

734 E Programming of Differential Equations

Exercise E.50. Model the economy of fishing.
A population of fish is governed by the differential equation

dx

dt
=

1

10
x

(
1− x

100

)
− h, x(0) = 500, (E.87)

where x(t) is the size of the population at time t and h is the harvest.

(a) Assume h = 0. Find an exact solution for x(t). For which value of t
is dx

dt largest? For which value of t is 1
x
dx
dt largest?

(b) Solve the differential equation (E.87) by the Forward Euler method.
Plot the numerical and exact solution in the same plot.

(c) Suppose the harvest h depends on the fishers’ efforts, E, in the
following way: h = qxE, with q as a constant. Set q = 0.1 and
assume E is constant. Show the effect of E on x(t) by plotting several
curves, corresponding to different E values, in the same figure.

(d) The fishers’ total revenue is given by π = ph − c
2E

2, where p is a
constant. In the literature about the economy of fisheries, one is often
interested in how a fishery will develop in the case the harvest is not
regulated. Then new fishers will appear as long as there is money
to earn (π > 0). It can (for simplicity) be reasonable to model the
dependence of E on π as

dE

dt
= γπ, (E.88)

where γ is a constant. Solve the system of differential equations for
x(t) and E(t) by the 4th-order Runge-Kutta method, and plot the
curve with points (x(t), E(t)) in the two cases γ = 1/2 and γ → ∞.
Choose c = 0.3, p = 10, E(0) = 0.5, and T = 1.

Name of program file: fishery.py. �

Debugging F

F.1 Using a Debugger

A debugger is a program that can help you to find out what is going on
in a computer program. You can stop the execution at any prescribed
line number, print out variables, continue execution, stop again, execute
statements one by one, and repeat such actions until you track down
abnormal behavior and find bugs.

Here we shall use the debugger to demonstrate the program flow of
the Simpson.py code from Chapter 3.4.2. You are strongly encouraged
to carry out the steps below on your computer to get a glimpse of what
a debugger can do.

1. Go to the folder src/funcif associated with Chapter 3.
2. Start IPython:

Terminal

Terminal> ipython

3. Run the program Simpson.py with the debugger on (-d):

In [1]: run -d Simpson.py

We now enter the debugger and get a prompt

ipdb>

After this prompt we can issue various debugger commands. The most
important ones will be described as we go along.

4. Type continue or just c to go to the first line in the file. Now you
can see a printout of where we are in the program:

H.P. Langtangen, A Primer on Scientific Programming with Python,
Texts in Computational Science and Engineering 6,

DOI 10.1007/978-3-642-30293-0, c© Springer-Verlag Berlin Heidelberg 2012

735

http://dx.doi.org/10.1007/978-3-642-30293-0

736 F Debugging

1---> 1 def Simpson(f, a, b, n=500):
2 """
3 Return the approximation of the integral of f

Each program line is numbered and the arrow points to the next line
to be executed. This is called the current line.

5. You can set a break point where you want the program to stop
so that you can examine variables and perhaps follow the execution
closely. We start by setting a break point in the application function:

ipdb> break application
Breakpoint 2 at /home/.../src/funcif/Simpson.py:30

You can also say break X, where X is a line number in the file.
6. Continue execution until the break point by writing continue or c.

Now the program stops at line 31 in the application function:

ipdb> c
> /home/.../src/funcif/Simpson.py(31)application()
2 30 def application():
---> 31 from math import sin, pi

32 print’Integral of 1.5*sin^3 from 0 to pi:’

7. Typing step or just s executes one statement at a time. Let us
test this feature:

ipdb> s
> /home/.../src/funcif/Simpson.py(32)application()

31 from math import sin, pi
---> 32 print ’Integral of 1.5*sin^3 from 0 to pi:’

33 for n in 2, 6, 12, 100, 500:

ipdb> s
Integral of 1.5*sin^3 from 0 to pi:
> /home/.../src/funcif/Simpson.py(33)application()

32 print ’Integral of 1.5*sin^3 from 0 to pi:’
---> 33 for n in 2, 6, 12, 100, 500:

34 approx = Simpson(h, 0, pi, n)

Typing another s reaches the call to Simpson, and a new s steps into
the function Simpson:

ipdb> s
--Call--
> /home/.../src/funcif/Simpson.py(1)Simpson()
1---> 1 def Simpson(f, a, b, n=500):

2 """
3 Return the approximation of the integral of f

Type a few more s to step ahead of the if tests.
8. Examining the contents of variables is easy with the print (or p)

command:

ipdb> print f, a, b, n
<function h at 0x898ef44> 0 3.14159265359 2

We can also check the type of the objects:

F.1 Using a Debugger 737

ipdb> whatis f
Function h
ipdb> whatis a
<type’int’>
ipdb> whatis b
<type’float’>
ipdb> whatis n
<type’int’>

9. Set a new break point in the application function so that we
can jump directly there without having to go manually through all
the statements in the Simpson function. To see line numbers and cor-
responding statements around some line with number X, type list X.
For example,

ipdb> list 32
27 def h(x):
28 return (3./2)*sin(x)**3
29
30 from math import sin, pi
31

2 32 def application():
33 print ’Integral of 1.5*sin^3 from 0 to pi:’
34 for n in 2, 6, 12, 100, 500:
35 approx = Simpson(h, 0, pi, n)
36 print ’n=%3d, approx=%18.15f, error=%9.2E’ % \
37 (n, approx, 2-approx)

We set a line break at line 35:

ipdb> break 35
Breakpoint 3 at /home/.../src/funcif/Simpson.py:35

Typing c continues execution up to the next break point, line 35.
10. The command next or n is like step or s in that the current line

is executed, but the execution does not step into functions, instead the
function calls are just performed and the program stops at the next
line:

ipdb> n
> /home/.../src/funcif/Simpson.py(36)application()
3 35 approx = Simpson(h, 0, pi, n)
---> 36 print ’n=%3d, approx=%18.15f, error=%9.2E’ % \

37 (n, approx, 2-approx)
ipdb> print approx, n
1.9891717005835792 6

11. The command disable X Y Z disables break points with numbers
X, Y, and Z, and so on. To remove our three break points and continue
execution until the program naturally stops, we write

ipdb> disable 1 2 3
ipdb> c
n=100, approx= 1.999999902476350, error= 9.75E-08
n=500, approx= 1.999999999844138, error= 1.56E-10

In [2]:

738 F Debugging

At this point, I hope you realize that a debugger is a very handy
tool for monitoring the program flow, checking variables, and thereby
understanding why errors occur.

F.2 How to Debug

Most programmers will claim that writing code consumes a small por-
tion of the time it takes to develop a program – the major portion of
the work concerns testing the program and finding errors1. Newcom-
ers to programming often panic when their program runs for the first
time and aborts with a seemingly cryptic error message. How do you
approach the art of debugging? This appendix summarizes some im-
portant working habits in this respect. Some of the tips are useful for
problem solving in general, not only when writing and testing Python
programs.

F.2.1 A Recipe for Program Writing and Debugging

1. Make sure that you understand the problem the program is supposed
to solve. We can make a general claim: If you do not understand the
problem and the solution method, you will never be able to make a
correct program2. It may be necessary to read a problem description
or exercise many times and study relevant background material.

2. Work out some examples on input and output of the program. Such
examples are important for controlling the understanding of the pur-
pose of the program, and for verifying the implementation.

3. Decide on a user interface, i.e., how you want to get data into the
program (command-line input, file input, questions and answers,
etc.).

4. Sketch rough algorithms for various parts of the program. Some pro-
grammers prefer to do this on a piece of paper, others prefer to start
directly in Python and write Python-like code with comments to
sketch the program (this is easily developed into real Python code
later).

5. Look up information on how to program different parts of the prob-
lem. Few programmers can write the whole program without con-

1 “Debugging is twice as hard as writing the code in the first place. Therefore, if you write
the code as cleverly as possible, you are, by definition, not smart enough to debug it.”
–Brian W. Kernighan, computer scientist, 1942–.
2 This is not entirely true. Sometimes students with limited understanding of the problem
are able to grab a similar program and guess at a few modifications – and get a program that

works. But this technique is based on luck and not on understanding. The famous Norwegian
computer scientist Kristen Nygaard (1926–2002) phrased it precisely: “Programming is

understanding”.

F.2 How to Debug 739

sulting manuals, books, and the Internet. You need to know and
understand the basic constructs in a language and some fundamen-
tal problem solving techniques, but technical details can be looked
up.
The more program examples you have studied (in this book, for
instance), the easier it is to adapt ideas from an existing example
to solve a new problem3. Remember that exercises in this book are
often closely linked to examples in the text.

6. Write the program. Be extremely careful with what you write. In par-
ticular, compare all mathematical statements and algorithms with
the original mathematical expressions on paper.
In longer programs, do not wait until the program is complete before
you start testing it – test parts while you write.

7. Run the program. If the program aborts with an error message from
Python, these messages are fortunately quite precise and helpful.
First, locate the line number where the error occurs and read the
statement, then carefully read the error message. The most common
errors (exceptions) are listed below.
SyntaxError: Illegal Python code.

File "somefile.py", line 5
x = . 5

^
SyntaxError: invalid syntax

Often the error is precisely indicated, as above, but sometimes you
have to search for the error on the previous line.
NameError: A name (variable, function, module) is not defined.

File "somefile.py", line 20, in <module>
table(10)

File "somefile.py", line 16, in table
value, next, error = L(x, n)

File "somefile.py", line 8, in L
exact_error = log(1+x) - value_of_sum

NameError: global name ’value_of_sum’ is not defined

Look at the last of the lines starting with File to see where in the
program the error occurs. The most common reasons for a NameError

are

−a misspelled name,
−a variable that is not initialized,
−a function that you have forgotten to define,
−a module that is not imported.

TypeError: An object of wrong type is used in an operation.

File "somefile.py", line 17, in table
value, next, error = L(x, n)

File "somefile.py", line 7, in L

3 “The secret to creativity is knowing how to hide your sources.” –Albert Einstein, physicist,

1879–1955.

740 F Debugging

first_neglected_term = (1.0/(n+1))*(x/(1.0+x))**(n+1)
TypeError: unsupported operand type(s) for +: ’float’ and ’str’

Print out objects and their types (here: print x, type(x), n,

type(n)), and you will most likely get a surprise. The reason for
a TypeError is often far away from the line where the TypeError

occurs.
ValueError: An object has an illegal value.

File "somefile.py", line 8, in L
y = sqrt(x)

ValueError: math domain error

Print out the value of objects that can be involved in the error (here:
print x).
IndexError: An index in a list, tuple, string, or array is too large.

File "somefile.py", line 21
n = sys.argv[i+1]

IndexError: list index out of range

Print out the length of the list, and the index if it involves a variable
(here: print len(sys.argv), i).

8. Verify the implementation. Assume now that we have a program
that runs without error messages from Python. Before judging the
results of the program, set precisely up a test case where you know
the exact solution4. Insert print statements for all key results in the
program so that you can easily compare calculations in the program
with those done by hand.
If your program produces wrong answers, start to examine inter-
mediate results. Also remember that your hand calculations may be
wrong!

9. If you need a lot of print statements in the program, you may use
a debugger as explained in Appendix F.1.

Some may think that this list is very comprehensive. However, it just
contains the items that you should always address when developing
programs. Never forget that computer programming is a difficult task5!

F.2.2 Application of the Recipe

Let us illustrate the points above in a specific programming problem.

Problem. Implement the Midpoint rule for numerical integration. The
Midpoint rule for approximating an integral

∫ b
a f(x)dx reads

4 This is in general quite difficult. In complicated mathematical problems it is an art to

construct good test problems and procedures for providing evidence that the program works.
5 “Program writing is substantially more demanding than book writing.” “Why is it so?

I think the main reason is that a larger attention span is needed when working on a large
computer program than when doing other intellectual tasks.” –Donald Knuth [4, p. 18],

computer scientist, 1938–.

F.2 How to Debug 741

I = h
n∑

i=1

f

(
a+

(
i− 1

2

)
h

)
, h =

b− a

n
. (F.1)

Solution. We just follow the individual steps in the recipe.
1. Understand the problem. In this problem we must understand

how to program the formula (F.1). Observe that we do not need to
understand how the formula is derived, because we do not apply the
derivation in the program6. What is important, is to notice that the
formula is an approximation of an integral. If we try to integrate a
function f(x), we will probably not get an exact answer. Whether we
have an approximation error or a programming error is always difficult
to judge. We will meet this difficulty below.

2. Work out examples. As a test case we choose to integrate

f(x) = sin−1(x) (F.2)

between 0 and π. From a table of integrals we find that this integral
equals [

x sin−1(x) +
√

1− x2
]π
0
. (F.3)

The formula (F.1) gives an approximation to this integral, so the pro-
gram will (most likely) print out a result different from (F.3). It would
therefore be very helpful to construct a calculation where there are
no approximation errors. Numerical integration rules usually integrate
some polynomial of low order exactly. For the Midpoint rule it is ob-
vious, if you understand the derivation of this rule, that a constant
function will be integrated exactly. We therefore also introduce a test
problem where we integrate g(x) = 1 from 0 to 10. The answer should
be exactly 10.

Input and output : The input to the calculations is the function to
integrate, the integration limits a and b, and the n parameter (number
of intervals) in the formula (F.1). The output from the calculations is
the approximation to the integral.

3. User interface. We decide to program the two functions f(x) and
g(x) directly in the program. We also specify the corresponding inte-
gration limits a and b in the program, but we read a common n for
both integrals from the command line. Note that this is not a flexible
user interface, but it suffices as a start for creating a working program.
A much better user interface is to read f , a, b, and n from the com-
mand line, which will be done later in a more complete solution to the
present problem.

4. Algorithm. Like most mathematical programming problems, also
this one has a generic part and an application part. The generic part

6 You often need to understand the background for and the derivation of a mathematical
formula in order to work out sensible test problems for verification. Sometimes this must

be done by experts on the particular problem at hand.

742 F Debugging

is the formula (F.1), which is applicable to an arbitrary function f(x).
The implementation should reflect that we can specify any Python
function f(x) and get it integrated. This principle calls for calculating
(F.1) in a Python function where the input to the computation (f , a,
b, n) are arguments. The function heading can look as integrate(f,

a, b, n), and the value of (F.1) is returned.
The test part of the program consists of defining the test functions

f(x) and g(x) and writing out the calculated approximations to the
corresponding integrals.

A first rough sketch of the program can then be

def integrate(f, a, b, n):
compute integral, store in I
return I

def f(x):
...

def g(x):
...

test/application part:
n = sys.argv[1]
I = integrate(g, 0, 10, n)
print "Integral of g equals %g" % I
I = integrate(f, 0, pi, n)
calculate and print out the exact integral of f

The next step is to make a detailed implementation of the integrate
function. Inside this function we need to compute the sum (F.1). In
general, sums are computed by a for loop over the summation index,
and inside the loop we calculate a term in the sum and add it to an
accumulation variable. Here is the algorithm:

s = 0
for i from 1 to n:

s = s+ f(a+ (i− 1
2)h)

I = sh

5. Look up information. Our test function f(x) = sin−1(x) must
be evaluated in the program. How can we do this? We know that
many common mathematical functions are offered by the math mod-
ule. It is therefore natural to check if this module has an inverse sine
function. The best place to look for Python modules is the Python
Library Reference (see Chapter 2.6.3). We go to the index of this man-
ual, find the “math” entry, and click on it. Alternatively, you can write
pydoc math on the command line. Browsing the manual for the math

module shows that there is an inverse sine function, with the name
asin.

In this simple problem, where we use very basic constructs from
Chapters 1–4, there is hardly any need for looking at similar examples.

F.2 How to Debug 743

Nevertheless, if you are uncertain about programming a mathematical
sum, you may look at examples from Chapters 2.1.4 and 3.1.4.

6. Write the program. Here is our first attempt to write the program.
You can find the whole code in the file appendix/integrate_v1.py.

def integrate(f, a, b, n):
s = 0
for i in range(1, n):

s += f(a + i*h)
return s

def f(x):
return asin(x)

def g(x):
return 1

Test/application part
n = sys.argv[1]
I = integrate(g, 0, 10, n)
print "Integral of g equals %g" % I
I = integrate(f, 0, pi, n)
I_exact = pi*asin(pi) - sqrt(1 - pi**2) - 1
print "Integral of f equals %g (exact value is %g)’ % \
(I, I_exact)

7. Run the program. We try a first execution from IPython

In [1]: run integrate_v1.py

Unfortunately, the program aborts with an error:

File "integrate_v1.py", line 8
return asin(x)

^
IndentationError: expected an indented block

We go to line 8 and look at that line and the surrounding code:

def f(x):
return asin(x)

Python expects that the return line is indented, because the function
body must always be indented. By the way, we realize that there is a
similar error in the g(x) function as well. We correct these errors:

def f(x):
return asin(x)

def g(x):
return 1

Running the program again makes Python respond with

File "integrate_v1.py", line 24
(I, I_exact)^

SyntaxError: EOL while scanning single-quoted string

There is nothing wrong with line 24, but line 24 is a part of the state-
ment starting on line 23:

744 F Debugging

print "Integral of f equals %g (exact value is %g)’ % \
(I, I_exact)

A SyntaxError implies that we have written illegal Python code. In-
specting line 23 reveals that the string to be printed starts with a
double quote, but ends with a single quote. We must be consistent and
use the same enclosing quotes in a string. Correcting the statement,

print "Integral of f equals %g (exact value is %g)" % \
(I, I_exact)

and rerunning the program yields the output

Traceback (most recent call last):
File "integrate_v1.py", line 18, in <module>
n = sys.argv[1]

NameError: name ’sys’ is not defined

Obviously, we need to import sys before using it. We add import sys

and run again:

Traceback (most recent call last):
File "integrate_v1.py", line 19, in <module>
n = sys.argv[1]

IndexError: list index out of range

This is a very common error: We index the list sys.argv out of range
because we have not provided enough command-line arguments. Let
us use n = 10 in the test and provide that number on the command
line:

In [5]: run integrate_v1.py 10

We still have problems:

Traceback (most recent call last):
File "integrate_v1.py", line 20, in <module>
I = integrate(g, 0, 10, n)

File "integrate_v1.py", line 7, in integrate
for i in range(1, n):

TypeError: range() integer end argument expected, got str.

It is the final File line that counts (the previous ones describe the
nested functions calls up to the point where the error occurred). The
error message for line 7 is very precise: The end argument to range, n,
should be an integer, but it is a string. We need to convert the string
sys.argv[1] to int before sending it to the integrate function:

n = int(sys.argv[1])

After a new edit-and-run cycle we have other error messages waiting:

Traceback (most recent call last):
File "integrate_v1.py", line 20, in <module>
I = integrate(g, 0, 10, n)

File "integrate_v1.py", line 8, in integrate
s += f(a + i*h)

NameError: global name ’h’ is not defined

F.2 How to Debug 745

The h variable is used without being assigned a value. From the formula
(F.1) we see that h = (b−a)/n, so we insert this assignment at the top
of the integrate function:

def integrate(f, a, b, n):
h = (b-a)/n
...

A new run results in a new error:
Integral of g equals 9
Traceback (most recent call last):
File "integrate_v1.py", line 23, in <module>
I = integrate(f, 0, pi, n)

NameError: name ’pi’ is not defined

Looking carefully at all output, we see that the program managed to
call the integrate function with g as input and write out the inte-
gral. However, in the call to integrate with f as argument, we get a
NameError, saying that pi is undefined. When we wrote the program
we took it for granted that pi was π, but we need to import pi from
math to get this variable defined, before we call integrate:

from math import pi
I = integrate(f, 0, pi, n)

The output of a new run is now
Integral of g equals 9
Traceback (most recent call last):
File "integrate_v1.py", line 24, in <module>
I = integrate(f, 0, pi, n)

File "integrate_v1.py", line 9, in integrate
s += f(a + i*h)

File "integrate_v1.py", line 13, in f
return asin(x)

NameError: global name ’asin’ is not defined

A similar error occurred: asin is not defined as a function, and we need
to import it from math. We can either do a

from math import pi, asin

or just do the rough

from math import *

to avoid any further errors with undefined names from the math module
(we will get one for the sqrt function later, so we simply use the last
“import all” kind of statement).

There are still more errors:
Integral of g equals 9
Traceback (most recent call last):
File "integrate_v1.py", line 24, in <module>
I = integrate(f, 0, pi, n)

File "integrate_v1.py", line 9, in integrate
s += f(a + i*h)

File "integrate_v1.py", line 13, in f
return asin(x)

ValueError: math domain error

746 F Debugging

Now the error concerns a wrong x value in the f function. Let us print
out x:

def f(x):
print x
return asin(x)

The output becomes
Integral of g equals 9
0.314159265359
0.628318530718
0.942477796077
1.25663706144
Traceback (most recent call last):
File "integrate_v1.py", line 25, in <module>
I = integrate(f, 0, pi, n)

File "integrate_v1.py", line 9, in integrate
s += f(a + i*h)

File "integrate_v1.py", line 14, in f
return asin(x)

ValueError: math domain error

We see that all the asin(x) computations are successful up to and
including x = 0.942477796077, but for x = 1.25663706144 we get an
error. A “math domain error” may point to a wrong x value for sin−1(x)
(recall that the domain of a function specifies the legal x values for that
function).

To proceed, we need to think about the mathematics of our problem:
Since sin(x) is always between −1 and 1, the inverse sine function
cannot take x values outside the interval [−1, 1]. The problem is that we
try to integrate sin−1(x) from 0 to π, but only integration limits within
[−1, 1] make sense (unless we allow for complex-valued trigonometric
functions). Our test problem is hence wrong from a mathematical point
of view. We need to adjust the limits, say 0 to 1 instead of 0 to π. The
corresponding program modification reads

I = integrate(f, 0, 1, n)

We run again and get
Integral of g equals 9
0
0
0
0
0
0
0
0
0
Traceback (most recent call last):
File "integrate_v1.py", line 26, in <module>
I_exact = pi*asin(pi) - sqrt(1 - pi**2) - 1

ValueError: math domain error

It is easy to go directly to the ValueError now, but one should always
examine the output from top to bottom. If there is strange output
before Python reports an error, there may be an error indicated by our
print statements which causes Python to abort the program. This is
not the case in the present example, but it is a good habit to start at

F.2 How to Debug 747

the top of the output anyway. We see that all our print x statements
inside the f function say that x is zero. This must be wrong – the idea
of the integration rule is to pick n different points in the integration
interval [0, 1].

Our f(x) function is called from the integrate function. The ar-
gument to f, a + i*h, is seemingly always 0. Why? We print out the
argument and the values of the variables that make up the argument:

def integrate(f, a, b, n):
h = (b-a)/n
s = 0
for i in range(1, n):

print a, i, h, a+i*h
s += f(a + i*h)

return s

Running the program shows that h is zero and therefore a+i*h is zero.
Why is h zero? We need a new print statement in the computation

of h:

def integrate(f, a, b, n):
h = (b-a)/n
print b, a, n, h
...

The output shows that a, b, and n are correct. Now we have encoun-
tered an error that we often discuss in this book: integer division (see
Chapter 1.3.1). The formula (1− 0)/10 = 1/10 is zero according to in-
teger division. The reason is that a and b are specified as 0 and 1 in the
call to integrate, and 0 and 1 imply int objects. Then b-a becomes an
int, and n is an int, causing an int/int division. We must ensure that
b-a is float to get the right mathematical division in the computation
of h:

def integrate(f, a, b, n):
h = float(b-a)/n
...

Thinking that the problem with wrong x values in the inverse sine
function is resolved, we may remove all the print statements in the
program, and run again.

The output now reads

Integral of g equals 9
Traceback (most recent call last):
File "integrate_v1.py", line 25, in <module>
I_exact = pi*asin(pi) - sqrt(1 - pi**2) - 1

ValueError: math domain error

That is, we are back to the ValueError we have seen before. The rea-
son is that asin(pi) does not make sense, and the argument to sqrt

is negative. The error is simply that we forgot to adjust the upper in-
tegration limit in the computation of the exact result. This is another
very common error. The correct line is

748 F Debugging

I_exact = 1*asin(1) - sqrt(1 - 1**2) - 1

We could avoided the error by introducing variables for the integration
limits, and a function for

∫
f(x)dx would make the code cleaner:

a = 0; b = 1
def int_f_exact(x):

return x*asin(x) - sqrt(1 - x**2)
I_exact = int_f_exact(b) - int_f_exact(a)

Although this is more work than what we initially aimed at, it usually
saves time in the debugging phase to do things this proper way.

Eventually, the program seems to work! The output is just the result
of our two print statements:

Integral of g equals 9
Integral of f equals 5.0073 (exact value is 0.570796)

8. Verify the results. Now it is time to check if the numerical results
are correct. We start with the simple integral of 1 from 0 to 10: The
answer should be 10, not 9. Recall that for this particular choice of in-
tegration function, there is no approximation error involved (but there
could be a small round-off error). Hence, there must be a programming
error.

To proceed, we need to calculate some intermediate mathematical
results by hand and compare these with the corresponding statements
in the program. We choose a very simple test problem with n = 2 and
h = (10− 0)/2 = 5. The formula (F.1) becomes

I = 5 · (1 + 1) = 10.

Running the program with n = 2 gives

Integral of g equals 1

We insert some print statements inside the integrate function:

def integrate(f, a, b, n):
h = float(b-a)/n
s = 0
for i in range(1, n):

print ’i=%d, a+i*h=%g’ % (i, a+i*h)
s += f(a + i*h)

return s

Here is the output:

i=1, a+i*h=5
Integral of g equals 1
i=1, a+i*h=0.5
Integral of f equals 0.523599 (exact value is 0.570796)

There was only one pass in the i loop in integrate. According to the
formula, there should be n passes, i.e., two in this test case. The limits
of i must be wrong. The limits are produced by the call range(1,n).
We recall that such a call results in integers going from 1 up to n, but

F.2 How to Debug 749

not including n. We need to include n as value of i, so the right call to
range is range(1,n+1).

We make this correction and rerun the program. The output is now
i=1, a+i*h=5
i=2, a+i*h=10
Integral of g equals 2
i=1, a+i*h=0.5
i=2, a+i*h=1
Integral of f equals 2.0944 (exact value is 0.570796)

The integral of 1 is still not correct. We need more intermediate results!
In our quick hand calculation we knew that g(x) = 1 so all the

f(a+ (i− 1
2)h) evaluations were rapidly replaced by ones. Let us now

compute all the x coordinates a+(i− 1
2)h that are used in the formula:

i = 1 : a+

(
i− 1

2

)
h = 2.5, i = 2 : a+

(
i− 1

2

)
h = 7.5.

Looking at the output from the program, we see that the argument to
g has a different value – and fortunately we realize that the formula we
have coded is wrong. It should be a+(i-0.5)*h.

We correct this error and run the program:

i=1, a+(i-0.5)*h=2.5
i=2, a+(i-0.5)*h=7.5
Integral of g equals 2
...

Still the integral is wrong7.
Now we read the code more carefully and compare expressions with

those in the mathematical formula. We should, of course, have done
this already when writing the program, but it is easy to get excited
when writing code and hurry for the end. This ongoing story of de-
bugging probably shows that reading the code carefully can save much
debugging time8. We clearly add up all the f evaluations correctly, but
then this sum must be multiplied by h, and we forgot that in the code.
The return statement in integrate must therefore be modified to

return s*h

Eventually, the output is
Integral of g equals 10
Integral of f equals 0.568484 (exact value is 0.570796)

and we have managed to integrate a constant function in our program!
Even the second integral looks promising!

To judge the result of integrating the inverse sine function, we need
to run several increasing n values and see that the approximation gets

7 At this point you may give up programming, but the more skills you pick up in debugging,
the more fun it is to hunt for errors! Debugging is like reading an exciting criminal novel:

the detective follows different ideas and tracks, but never gives up before the culprit is
caught.
8 Actually, being extremely careful with what you write, and comparing all formulas with
the mathematics, may be the best way to get more spare time when taking a programming

course!

750 F Debugging

better. For n = 2, 10, 100, 1000 we get 0.550371, 0.568484, 0.570714,
0.570794, to be compared to the exact9 value 0.570796. The decreasing
error provides evidence for a correct program, but it is not a strong
proof. We should try out more functions. In particular, linear functions
are integrated exactly by the Midpoint rule. We can also measure the
speed of the decrease of the error and check that the speed is consistent
with the properties of the Midpoint rule, but this is a mathematically
more advanced topic.

The very important lesson learned from these debugging sessions is
that you should start with a simple test problem where all formulas
can be computed by hand. If you start out with n = 100 and try to
integrate the inverse sine function, you will have a much harder job
with tracking down all the errors.

9. Use a debugger. Another lesson learned from these sessions is that
we needed many print statements to see intermediate results. It is an
open question if it would be more efficient to run a debugger and stop
the code at relevant lines. In an edit-and-run cycle of the type we met
here, we frequently need to examine many numerical results, correct
something, and look at all the intermediate results again. Plain print

statements are often better suited for this massive output than the
pure manual operation of a debugger, unless one writes a program to
automate the interaction with the debugger.

The correct code for the implementation of the Midpoint rule is
found in integrate_v2.py. Some readers might be frightened by all
the energy it took to debug this code, but this is just the nature of
programming. The experience of developing programs that finally work
is very awarding10.

Refining the User Interface. We briefly mentioned that the chosen
user interface, where the user can only specify n, is not particularly
user friendly. We should allow f , a, b, and n to be specified on the
command line. Since f is a function and the command line can only
provide strings to the program, we may use the StringFunction object
from scitools.std to convert a string expression for the function to
be integrated to an ordinary Python function (see Chapter 4.1.4). The
other parameters should be easy to retrieve from the command line if
Chapter 4.2 is understood. As suggested in Chapter 4.3, we enclose the
input statements in a try-except block, here with a specific exception
type IndexError (because an index in sys.argv out of bounds is the
only type of error we expect to handle):

9 This is not the mathematically exact value, because it involves computations of sin−1(x),
which is only approximately calculated by the asin function in the math module. However,

the approximation error is very small (∼ 10−16).
10 “People only become computer programmers if they’re obsessive about details, crave

power over machines, and can bear to be told day after day exactly how stupid they are.”
–Gregory J.E. Rawlins, computer scientist. Quote from the book “Slaves of the Machine:

The Quickening of Computer Technology”, MIT Press, 1997.

F.2 How to Debug 751

try:
f_formula = sys.argv[1]
a = eval(sys.argv[2])
b = eval(sys.argv[3])
n = int(sys.argv[4])

except IndexError:
print ’Usage: %s f-formula a b n’ % sys.argv[0]
sys.exit(1)

Note that the use of eval allows us to specify a and b as pi or exp(5)

or another mathematical expression.
With the input above we can perform the general task of the pro-

gram:

from scitools.std import StringFunction
f = StringFunction(f_formula)
I = integrate(f, a, b, n)
print I

Instead of having these test statements as a main program we follow the
good habits of Chapter 4.5 and make a module with (i) the integrate

function, (ii) a verify function for testing the integrate function’s
ability to exactly integrate linear functions, and (iii) a main function
for reading data from the command line and calling integrate for the
user’s problem at hand. Any module should also have a test block, and
doc strings for the module itself and all functions.

The verify function performs a loop over some specified n values and
checks that the Midpoint rule integrates a linear function exactly11.
In the test block we can either run the verify function or the main

function.
The final solution to the problem of implementing the Midpoint rule

for numerical integration is now the following complete module file
integrate.py:

"""Module for integrating functions by the Midpoint rule."""
from math import *
import sys

def integrate(f, a, b, n):
"""Return the integral of f from a to b with n intervals."""
h = float(b-a)/n
s = 0
for i in range(1, n+1):

s += f(a + (i-0.5)*h)
return s*h

def verify():
"""Check that linear functions are integrated exactly."""

def g(x):
return p*x + q # general linear function

def int_g_exact(x): # integral of g(x)
return 0.5*p*x**2 + q*x

11 We must be prepared for round-off errors, so “exactly” means errors less than

(say) 10−14.

752 F Debugging

a = -1.2; b = 2.8 # "arbitrary" integration limits
p = -2; q = 10
passed = True # True if all tests below are passed
for n in 1, 10, 100:

I = integrate(g, a, b, n)
I_exact = int_g_exact(b) - int_g_exact(a)
error = abs(I_exact - I)
if error > 1E-14:

print ’Error=%g for n=%d’ % (error, n)
passed = False

if passed: print ’All tests are passed.’

def main():
"""
Read f-formula, a, b, n from the command line.
Print the result of integrate(f, a, b, n).
"""
try:

f_formula = sys.argv[1]
a = eval(sys.argv[2])
b = eval(sys.argv[3])
n = int(sys.argv[4])

except IndexError:
print ’Usage: %s f-formula a b n’ % sys.argv[0]
sys.exit(1)

from scitools.std import StringFunction
f = StringFunction(f_formula)
I = integrate(f, a, b, n)
print I

if __name__ == ’__main__’:
if sys.argv[1] == ’verify’:

verify()
else:

Compute the integral specified on the command line
main()

Here is a short demo computing
∫ 2π
0 (cos(x) + sin(x))dx:

Terminal

integrate.py’cos(x)+sin(x)’ 0 2*pi 10
-3.48786849801e-16

Migrating Python to Compiled Code G

Python is a very convenient language for implementing scientific com-
putations as the code can be made very close to the mathematical
algorithms. However, the execution speed of the code is significantly
lower than what can be obtained by programming in languages such
as Fortran, C, or C++. These languages compile the program to ma-
chine language, which enables the computing resources to be utilized
with very high efficiency. Frequently, and this includes almost all ex-
amples in the present book, Python is fast enough. But in the cases
where speed really matters, can we increase the efficiency without
rewriting the whole program in Fortran, C, or C++? The answer is
yes, which will be illustrated through a case study in the forthcoming
text.

Fortunately, Python was initially designed for being integrated
with C. This feature has spawned the development of several tech-
niques and tools for calling compiled languages from Python, allowing
us to relatively easily reuse fast and well-tested scientific libraries in
Fortran, C, or C++ from Python, or migrate slow Python code to
compiled languages. It often turns out that only smaller parts of the
code, usually for loops doing heavy numerical computations, suffer
from low speed and can benefit from being implemented in Fortran, C,
or C++.

The primary technique to be advocated here is to use Cython.
Cython can be viewed as an extension of the Python language where
variables can be declared with a type and other information such that
Cython is able to automatically generate special-purpose, fast C code
from the Python code. We will show how to utilize Cython and what
the computational gain might be.

The present case study starts with stating a computational prob-
lem involving statistical simulations, which are known to cause long
execution times, especially if accurate results are desired.

H.P. Langtangen, A Primer on Scientific Programming with Python,
Texts in Computational Science and Engineering 6,

DOI 10.1007/978-3-642-30293-0, c© Springer-Verlag Berlin Heidelberg 2012

753

http://dx.doi.org/10.1007/978-3-642-30293-0

754 G Migrating Python to Compiled Code

G.1 Pure Python Code for Monte Carlo Simulation

A short, intuitive algorithm in Python is first developed. Then this
code is vectorized using functionality of the Numerical Python package.
Later sections migrate the algorithm to Cython code and also plain C
code for comparison. At the end the various techniques are ranked
according to their computational efficiency.

G.1.1 The Computational Problem

A die is thrown m times. What is the probability of getting six eyes at
least n times? For example, if m = 5 and n = 3, this is the same as
asking for the probability that three or more out of five dice show six
eyes.

The probability can be estimated by Monte Carlo simulation. Chap-
ter 8.3 provides a background for this technique: We simulate the pro-
cess a large number of times, N , and count how many times, M , the
experiment turned out successfully, i.e., when we got at least n out of
m dice with six eyes in a throw.

Monte Carlo simulation has traditionally been viewed as a very
costly computational method, normally requiring very sophisticated,
fast computer implementations in compiled languages. An interesting
question is how useful high-level languages like Python and associated
tools are for Monte Carlo simulation. This will now be explored.

G.1.2 A Scalar Python Implementation

Let us introduce the more descriptive variables ndice for m and nsix

for n. The Monte Carlo method is simply a loop, repeated N times,
where the body of the loop may directly express the problem at hand.
Here, we draw ndice random integers r in [1, 6] inside the loop and
count of many (six) that equal 6. If six >= nsix, the experiment is a
success and we increase the counter M by one.

A Python function implementing this approach may look as follows:

import random

def dice6_py(N, ndice, nsix):
M = 0 # no of successful events
for i in range(N): # repeat N experiments

six = 0 # how many dice with six eyes?
for j in range(ndice):

r = random.randint(1, 6) # roll die no. j
if r == 6:

six += 1
if six >= nsix: # successful event?

M += 1
p = float(M)/N
return p

G.1 Pure Python Code for Monte Carlo Simulation 755

The float(M) transformation is important since M/N will imply inte-
ger division when M and N both are integers in Python v2.x and many
other languages.

We will refer to this implementation is the plain Python implemen-
tation. Timing the function can be done by:

import time
t0 = time.clock()
p = dice6_py(N, ndice, nsix)
t1 = time.clock()
print’CPU time for loops in Python:’, t1-t0

The table to appear later shows the performance of this plain, pure
Python code relative to other approaches. There is a factor of 30+ to
be gained in computational efficiency by reading on.

The function above can be verified by studying the (somewhat sim-
plified) casem = n where the probability becomes 6−n. The probability
quickly becomes small with increasing n. For such small probabilities
the number of successful events M is small, and M/N will not be a
good approximation to the probability unless M is reasonably large,
which requires a very large N . For example, with n = 4 and N = 105

the average probability in 25 full Monte Carlo experiments is 0.00078
while the exact answer is 0.00077. With N = 106 we get the two correct
significant digits from the Monte Carlo simulation, but the extra digit
costs a factor of 10 in computing resources since the CPU time scales
linearly with N .

G.1.3 A Vectorized Python Implementation

A vectorized version of the previous program consists of replacing the
explicit loops in Python by efficient operations on vectors or arrays,
using functionality in the Numerical Python (numpy) package. Each
array operation takes place in C or Fortran and is hence much more
efficient than the corresponding loop version in Python.

First, we must generate all the random numbers to be used in one
operation, which runs fast since all numbers are then calculated in
efficient C code. This is accomplished using the numpy.random module.
Second, the analysis of the large collection of random numbers must be
done by appropriate vector/array operations such that no looping in
Python is needed. The solution algorithm must therefore be expressed
through a series of function calls to the numpy library. Vectorization
requires knowledge of the library’s functionality and how to assemble
the relevant building blocks to an algorithm without operations on
individual array elements.

Generation of ndice random number of eyes for N experiments is
performed by

756 G Migrating Python to Compiled Code

import numpy as np
eyes = np.random.random_integers(1, 6, size=(N, ndice))

Each row in the eyes array corresponds to one Monte Carlo experiment.
The next step is to count the number of successes in each experiment.

This counting should not make use of any loop. Instead we can test
eyes == 6 to get a boolean array where an element i,j is True if throw
(or die) number j in Monte Carlo experiment number i gave six eyes.
Summing up the rows in this boolean array (True is interpreted as 1
and False as 0), we are interested in the rows where the sum is equal
to or greater than nsix, because the number of such rows equals the
number of successful events. The vectorized algorithm can be expressed
as

def dice6_vec1(N, ndice, nsix):
eyes = np.random.random_integers(1, 6, size=(N, ndice))
compare = eyes == 6
throws_with_6 = np.sum(compare, axis=1) # sum over columns
nsuccesses = throws_with_6 >= nsix
M = np.sum(nsuccesses)
p = float(M)/N
return p

The use of np.sum instead of Python’s own sum function is essential
for the speed of this function: using M = sum(nsucccesses) instead slows
down the code by a factor of almost 10! We shall refer to the dice6_vec1
function as the vectorized Python, version1 implementation.

The criticism against the vectorized version is that the original prob-
lem description, which was almost literally turned into Python code in
the dice6_py function, has now become much more complicated. We
have to decode the calls to various numpy functionality to actually real-
ize that dice6_py and dice6_vec correspond to the same mathematics.

Here is another possible vectorized algorithm, which is easier to un-
derstand, because we retain the Monte Carlo loop and vectorize only
each individual experiment:

def dice6_vec2(N, ndice, nsix):
eyes = np.random.random_integers(1, 6, (N, ndice))
six = [6 for i in range(ndice)]
M = 0
for i in range(N):

Check experiment no. i:
compare = eyes[i,:] == six
if np.sum(compare) >= nsix:

M += 1
p = float(M)/N
return p

We refer to this implementation as vectorized Python, version 2. As
will be shown later, this implementation is significantly slower than
the plain Python implementation (!) and very much slower than the
vectorized Python, version 1 approach. A conclusion is that readable,

G.2 Migrating Scalar Python Code to Cython 757

partially vectorized code, may run slower than straightforward scalar
code.

G.2 Migrating Scalar Python Code to Cython

G.2.1 A Plain Cython Implementation

A Cython program starts with the scalar Python implementation, but
all variables are specified with their types, using Cython’s variable dec-
laration syntax, like cdef int M = 0 where we in standard Python just
write M = 0. Adding such variable declarations in the scalar Python
implementation is straightforward:

import random

def dice6_cy1(int N, int ndice, int nsix):
cdef int M = 0 # no of successful events
cdef int six, r
cdef double p
for i in range(N): # repeat N experiments

six = 0 # how many dice with six eyes?
for j in range(ndice):

r = random.randint(1, 6) # roll die no. j
if r == 6:

six += 1
if six >= nsix: # successful event?

M += 1
p = float(M)/N
return p

This code must be put in a separate file with extension .pyx. Running
Cython on this file translates the Cython code to C. Thereafter, the
C code must be compiled and linked to form a shared library, which
can be imported in Python as a module. All these tasks are normally
automated by a setup.py script. Let the dice6_cy1 function above be
stored in a file dice6.pyx. A proper setup.py script looks as follows:

from distutils.core import setup
from distutils.extension import Extension
from Cython.Distutils import build_ext

setup(
name=’Monte Carlo simulation’,
ext_modules=[Extension(’_dice6_cy’, [’dice6.pyx’],)],
cmdclass={’build_ext’: build_ext},

)

Running

Terminal

Terminal> python setup.py build_ext --inplace

generates the C code and creates a (shared library) file _dice6_cy.so

(known as a C extension module) which can be loaded into Python as
a module with name _dice6_cy:

758 G Migrating Python to Compiled Code

from_dice6_cy import dice6_cy1
import time
t0 = time.clock()
p = dice6_cy1(N, ndice, nsix)
t1 = time.clock()
print t1 - t0

We refer to this implementation as Cython random.randint. Although
most of the statements in the dice6_cy1 function are turned into plain
and fast C code, the speed is not much improved compared with the
original scalar Python code.

To investigate what takes time in this Cython implementation, we
can perform a profiling. The template for profiling a Python function
whose call syntax is stored in some string statement, reads

import cProfile, pstats
cProfile.runctx(statement, globals(), locals(),’.prof’)
s = pstats.Stats(’.prof’)
s.strip_dirs().sort_stats(’time’).print_stats(30)

Here, we set

statement =’dice6_cy1(N, ndice, nsix)’

In addition, a Cython file in which there are functions we want to profile
must start with the line

cython: profile=True

to turn on profiling when creating the extension module. The profiling
output from the present example looks like

5400004 function calls in 7.525 CPU seconds

Ordered by: internal time

ncalls tottime percall cumtime percall filename:lineno(function)
1800000 4.511 0.000 4.863 0.000 random.py:160(randrange)
1800000 1.525 0.000 6.388 0.000 random.py:224(randint)

1 1.137 1.137 7.525 7.525 dice6.pyx:6(dice6_cy1)
1800000 0.352 0.000 0.352 0.000 {method ’random’ ...

1 0.000 0.000 7.525 7.525 {dice6_cy.dice6_cy1}

We easily see that it is the call to random.randint that consumes almost
all the time. The reason is that the generated C code must call a Python
module (random), which implies a lot of overhead. The C code should
only call plain C functions, or if Python functions must be called,
they should involve so much computations that the overhead in calling
Python from C is negligible.

Instead of profiling the code to uncover inefficient constructs we can
generate a visual representation of how the Python code is translated
to C. Running

Terminal

Terminal> cython -a dice6.pyx

G.2 Migrating Scalar Python Code to Cython 759

creates a file dice6.html which can be loaded into a web browser to
inspect what Cython has done with the Python code.

White lines indicate that the Python code is translated into C code,
while the yellow lines indicate that the generated C code must make
calls back to Python (using the Python C API, which implies overhead).
Here, the random.randint call is in yellow, so this call is not translated
to efficient C code.

G.2.2 A Better Cython Implementation

To speed up the previous Cython code, we have to get rid of the
random.randint call every time we need a random variable. Either we
must call some C function for generating a random variable or we must
create a bunch of random numbers simultaneously as we did in the
vectorized functions shown above. We first try the latter well-known
strategy and apply the numpy.randommodule to generate all the random
numbers we need at once:

import numpy as np
cimport numpy as np

cdef np.ndarray[np.int_t,
ndim=2,
negative_indices=False,
mode=’c’] eyes = \
np.random.random_integers(1, 6, (N, ndice))

This code needs some explanation. The cimport statement imports a
special version of numpy for Cython and is needed after the standard
numpy import. The declaration of the array of random numbers could
just go as

760 G Migrating Python to Compiled Code

cdef np.ndarray eyes = np.random.random_integers(1, 6, (N, ndice))

However, the processing of the eyes array will then be slow because
Cython does not have enough information about the array. To generate
optimal C code, we must provide information on the element types in
the array, the number of dimensions of the array, that the array is
stored in contiguous memory, and that we do not need negative indices
(which slows down array indexing). All this information is inserted in
square brackets: np.int_t denotes integer array elements (np.int is the
usual data type object, but np.int_t is a Cython precompiled version of
this object), ndim=2 tells that the array has two dimensions (indices),
negative_indices=False turns off the possibility for negative indices
(counting from the end), and mode=’c’ indicates contiguous storage of
the array. We also insert a line @cython.boundscheck(False) at the line
before the function to tell Cython to turn off the costly check that
array indices stay within their bounds. With all this extra information,
Cython can generate C code that works with numpy arrays as efficiently
as native C arrays.

The rest of the code is a plain copy of the dice6_py function, but
with the random.randint call replaced by an array look-up eyes[i,j]

to retrieve the next random number. The two loops will now be as
efficient as if they were coded directly in pure C.

The complete code for the efficient version of the dice6_cy1 function
looks as follows:

import numpy as np
cimport numpy as np
import cython
@cython.boundscheck(False)
def dice6_cy2(int N, int ndice, int nsix):

Use numpy to generate all random numbers
cdef int M = 0 # no of successful events
cdef int six, r
cdef double p
cdef np.ndarray[np.int_t,

ndim=2,
negative_indices=False,
mode=’c’] eyes = \
np.random.random_integers(1, 6, (N, ndice))

for i in range(N):
six = 0 # how many dice with six eyes?
for j in range(ndice):

r = eyes[i,j] # roll die no. j
if r == 6:

six += 1
if six >= nsix: # successful event?

M += 1
p = float(M)/N
return p

This Cython implementation is named Cython numpy.random.
The disadvantage with the dice6_cy2 function is that large simu-

lations (large N) also require large amounts of memory, which usually
limits the possibility for high accuracy much more than the CPU time.

G.3 Migrating Code to C 761

It would be advantageous to have a fast random number generator a la
random.randint in C. The C library stdlib has a generator of random
integers, rand(), generating numbers from 0 to up RAND_MAX. Both the
rand function and the RAND_MAX integer are easy to access in a Cython
program:

from libc.stdlib cimport rand, RAND_MAX

r = 1 + int(rand()/(RAND_MAX*6.0)) # random integer 1,...,6

Note that rand() returns an integer so we must avoid integer division
by ensuring that the denominator is a real number. We also need to
explicitly convert the resulting real fraction to int since r is declared
as int.

With this way of generating random numbers we can create a ver-
sion of dice6_cy1 that is as fast as dice6_cy, but avoids all the memory
demands and the somewhat complicated array declarations of the lat-
ter:

from libc.stdlib cimport rand, RAND_MAX
def dice6_cy3(int N, int ndice, int nsix):

cdef int M = 0 # no of successful events
cdef int six, r
cdef double p
for i in range(N):

six = 0 # how many dice with six eyes?
for j in range(ndice):

Roll die no. j
r = 1 + int(rand()/(RAND_MAX*6.0))
if r == 6:

six += 1
if six >= nsix: # successful event?

M += 1
p = float(M)/N
return p

This final Cython implementation will be referred to as Cython
stdlib.rand.

G.3 Migrating Code to C

G.3.1 Writing a C Program

A natural next improvement would be to program the Monte Carlo
simulation loops directly in a compiled programming language, which
guarantees optimal speed. Here we choose the C programming language
for this purpose. The C version of our dice6 function and an associated
main program take the form

#include <stdio.h>
#include <stdlib.h>

double dice6(int N, int ndice, int nsix)

762 G Migrating Python to Compiled Code

{
int M = 0;
int six, r, i, j;
double p;

for (i = 0; i < N; i++) {
six = 0;
for (j = 0; j < ndice; j++) {
r = 1 + rand()/(RAND_MAX*6.0); /* roll die no. j */
if (r == 6)
six += 1;

}
if (six >= nsix)
M += 1;

}
p = ((double) M)/N;
return p;

}

int main(int nargs, const char* argv[])
{
int N = atoi(argv[1]);
int ndice = 6;
int nsix = 3;
double p = dice6(N, ndice, nsix);
printf("C code: N=%d, p=%.6f\n", N, p);
return 0;

}

This code is placed in a file dice6_c.c. The file can typically be
compiled and run by

Terminal

Terminal> gcc -O3 -o dice6.capp dice6_c.c
Terminal> ./dice6.capp 1000000

This solution is later referred to as C program.

G.3.2 Migrating Loops to C Code via F2PY

Instead of programming the whole application in C, we may consider
migrating the loops to the C function dice6 shown above and then
have the rest of the program (essentially the calling main program) in
Python. This is a convenient solution if we were to do many other, less
CPU-time critical things for convenience in Python.

There are many alternative techniques for calling C functions from
Python. Here we shall explain two. The first applies the program f2py

to generate the necessary code that glues Python and C. The f2py

program was actually made for gluing Python and Fortran, but it can
work with C too. We need a specification of the C function to call
in terms of a Fortran 90 module. Such a module can be written by
hand, but f2py can also generate it. To this end, we make a Fortran
file dice6_c_signature.f with the signature of the C function written
in Fortran 77 syntax with some annotations:

G.3 Migrating Code to C 763

real*8 function dice6(n, ndice, nsix)
Cf2py intent(c) dice6

integer n, ndice, nsix
Cf2py intent(c) n, ndice, nsix

return
end

The annotations intent(c) are necessary to tell f2py that the Fortran
variables are to be treated as plain C variables and not as pointers
(which is the default interpretation of variables in Fortran). The C2fpy

are special comment lines that f2py recognizes, and these lines are used
to provide extra information to f2py which have no meaning in plain
Fortran 77.

We must run f2py to generate a .pyf file with a Fortran 90 module
specification of the C function to call:

Terminal

Terminal> f2py -m_dice6_c1 -h dice6_c.pyf \
dice6_c_signature.f

Here _dice6_c1 is the name of the module with the C function that is
to be imported in Python, and dice6_c.pyf is the name of the Fortran
90 module file to be generated. Programmers who know Fortran 90
may want to write the dice6_c.pyf file by hand.

The next step is to use the information in dice6_c.pyf to generate a
(C extension) module _dice6_c1. Fortunately, f2py generates the nec-
essary code, and compiles and links the relevant files, to form a shared
library file _dice6_c1.so, by a short command:

Terminal

Terminal> f2py -c dice6_c.pyf dice6_c.c

We can now test the module:

>>> import _dice6_c1
>>> print dir(_dice6_c1) # module contents
[’__doc__’, ’__file__’, ’__name__’, ’__package__’,
’__version__’, ’dice6’]

>>> print _dice6_c1.dice6.__doc__
dice6 - Function signature:
dice6 = dice6(n,ndice,nsix)

Required arguments:
n : input int
ndice : input int
nsix : input int

Return objects:
dice6 : float

>>> _dice6_c1.dice6(N=1000, ndice=4, nsix=2)
0.145

The method of calling the C function dice6 via an f2py generated
module is referred to as C via f2py.

764 G Migrating Python to Compiled Code

G.3.3 Migrating Loops to C Code via Cython

The Cython tool can also be used to call C code, not only generating C
code from the Cython language. Our C code is in the file dice6_c.c, but
for Cython to see this code we need to create a header file dice6_c.h

listing the definition of the function(s) we want to call from Python.
The header file takes the form

#include <stdio.h>
#include <stdlib.h>

extern double dice6(int N, int ndice, int nsix);

The next step is to make a .pyx file with a definition of the C function
from the header file and a Python function that calls the C function:

cdef extern from "dice6_c.h":
double dice6(int N, int ndice, int nsix)

def dice6_cwrap(int N, int ndice, int nsix):
return dice6(N, ndice, nsix)

Cython must use this file, named dice6_cwrap.pyx, to generate C
code, which is to be compiled and linked with the dice6_c.c code. All
this is accomplished in a setup.py script:

from distutils.core import setup
from distutils.extension import Extension
from Cython.Distutils import build_ext

sources = [’dice6_cwrap.pyx’, ’dice6_c.c’]

setup(
name=’Monte Carlo simulation’,
ext_modules=[Extension(’_dice6_c2’, sources)],
cmdclass={’build_ext’: build_ext},

)

This setup.py script is run as

Terminal

Terminal> python setup.py build_ext --inplace

resulting in a shared library file _dice6_c2.so, which can be loaded into
Python as a module:

>>> import _dice6_c2
>>> print dir(_dice6_c2)
[’__builtins__’, ’__doc__’, ’__file__’, ’__name__’,
’__package__’, ’__test__’, ’dice6_cwrap’]

We see that the module contains the function dice6_cwrap, which was
made to call the underlying C function dice6.

G.3 Migrating Code to C 765

G.3.4 Comparing Efficiency

All the files corresponding to the various techniques described above
are available in the directory src/cython. A file make.sh performs all
the compilations, while compare.py runs all methods and prints out
the CPU time required by each method, normalized by the fastest
approach. The results for N = 450, 000 are listed below (MacBook Air
running Ubuntu in a VMWare Fusion virtual machine).

Method Timing

C program 1.0
Cython stdlib.rand 1.2
Cython numpy.random 1.2
C via f2py 1.2
C via Cython 1.2
vectorized Python, version 1 1.9
Cython random.randint 33.6
plain Python 37.7
vectorized Python, version 2 105.0

The CPU time of the plain Python version was 10 s, which is reasonably
fast for obtaining a fairly accurate result in this problem. The lesson
learned is therefore that a Monte Carlo simulation can be implemented
in plain Python first. If more speed is needed, one can just add type
information and create a Cython code. Studying the HTML file with
what Cython manages to translate to C may give hints about how
successful the Cython code is and point to optimizations, like avoiding
the call to random.randint in the present case. Optimal Cython code
runs here at approximately the same speed as calling a handwritten C
function with the time-consuming loops. It is to be noticed that the
stand-alone C program here ran faster than calling C from Python,
probably because the amount of calculations is not large enough to
make the overhead of calling C negligible.

Vectorized Python do give a great speed-up compared to plain loops
in Python, if done correctly, but the efficiency is not on par with Cython
or handwritten C. Even more important is the fact that vectorized code
is not at all as readable as the algorithm expressed in plain Python,
Cython, or C. Cython therefore provides a very attractive combination
of readability, ease of programming, and high speed.

http://www.springer.com
http://www.springer.com/mycopy

Technical Topics H

H.1 Different Ways of Running Python Programs

Python programs are compiled and interpreted by another program
called python. To run a Python program, you need to tell the operating
system that your program is to be interpreted by the python program.
This section explains various ways of doing this.

H.1.1 Executing Python Programs in IPython

The simplest and most flexible way of executing a Python program is
to run it inside IPython. See Chapter 1.5.3 for a quick introduction
to IPython. You start IPython either by the command ipython in a
terminal window, or by double-clicking the IPython program icon (on
Windows). Then, inside IPython, you can run a program prog.py by

In [1]: run prog.py arg1 arg2

where arg1 and arg2 are command-line arguments.
This method of running Python programs works the same way on

all platforms. One additional advantage of running programs under
IPython is that you can automatically enter the Python debugger if an
exception is raised (see Appendix F.1. Although we advocate running
Python programs under IPython in this book, you can also run them
directly under specific operating systems. This is explained next for
Unix, Windows, and Mac OS X.

H.1.2 Executing Python Programs on Unix

There are two ways of executing a Python program prog.py on Unix.
The first explicitly tells which Python interpreter to use:

H.P. Langtangen, A Primer on Scientific Programming with Python,
Texts in Computational Science and Engineering 6,

DOI 10.1007/978-3-642-30293-0, c© Springer-Verlag Berlin Heidelberg 2012

767

http://dx.doi.org/10.1007/978-3-642-30293-0

768 H Technical Topics

Terminal

Unix> python prog.py arg1 arg2

Here, arg1 and arg2 are command-line arguments.
There may be many Python interpreters on your computer system,

usually corresponding to different versions of Python or different sets
of additional packages and modules. The Python interpreter (python)
used in the command above is the first program with the name python

appearing in the folders listed in your PATH environment variable. A spe-
cific python interpreter, say in /home/hpl/local/bin, can easily be used
to run a program prog.py in the current working folder by specifying
the interpreter’s complete filepath:

Terminal

Unix> /home/hpl/bin/python prog.py arg1 arg2

The other way of executing Python programs on Unix consists of
just writing the name of the file:

Terminal

Unix> ./prog.py arg1 arg2

The leading ./ is needed to tell that the program is located in the
current folder. You can also just write

Terminal

Unix> prog.py arg1 arg2

but then you need to have the dot1 in the PATH variable, and this is not
recommended for security reasons.

In the two latter commands there is no information on which Python
interpreter to use. This information must be provided in the first line
of the program, normally as

#!/usr/bin/env python

This looks like a comment line, and behaves indeed as a comment line
when we run the program as python prog.py. However, when we run
the program as ./prog.py, the first line beginning with #! tells the
operating system to use the program specified in the rest of the first
line to interpret the program. In this example, we use the first python

program encountered in the folders in your PATH variable. Alternatively,
a specific python program can be specified as

1 The dot acts as the name of the current folder (usually known as the current working

directory). A double dot is the name of the parent folder.

H.1 Different Ways of Running Python Programs 769

#!/home/hpl/special/tricks/python

It is a good habit to always include such a first line (also called she-
bang line) in all Python programs and modules, but we have not done
that in this book.

H.1.3 Executing Python Programs on Windows

In a DOS window you can always run a Python program by

Terminal

DOS> python prog.py arg1 arg2

if prog.py is the name of the program, and arg1 and arg2 are command-
line arguments. The extension .py can be dropped:

Terminal

DOS> python prog arg1 arg2

If there are several Python installations on your system, a particular
installation can be specified:

Terminal

DOS> E:\hpl\myprogs\Python2.5.3\python prog arg1 arg2

Files with a certain extension can on Windows be associated with a
file type, and a file type can be associated with a particular program to
handle the file. For example, it is natural to associate the extension .py

with Python programs. The corresponding program needed to interpret
.py files is then python.exe. When we write just the name of the Python
program file, as in

Terminal

DOS> prog arg1 arg2

the file is always interpreted by the specified python.exe program. The
details of getting .py files to be interpreted by python.exe go as follows:

Terminal

DOS> assoc .py=PyProg
DOS> ftype PyProg=python.exe "%1" %*

Depending on your Python installation, such file extension bindings
may already be done. You can check this with

770 H Technical Topics

Terminal

DOS> assoc | find "py"

To see the programs associated with a file type, write ftype name where
name is the name of the file type as specified by the assoc command.
Writing help ftype and help assoc prints out more information about
these commands along with examples.

One can also run Python programs by writing just the basename of
the program file, i.e., prog.py instead of prog.py, if the file extension is
registered in the PATHEXT environment variable.

Double-Clicking Python Files. The usual way of running programs on
Windows is to double click on the file icon. This does not work well with
Python programs without a graphical user interface. When you double
click on the icon for a file prog.py, a DOS window is opened, prog.py
is interpreted by some python.exe program, and when the program
terminates, the DOS window is closed. There is usually too little time
for the user to observe the output in this short-lived DOS window.

One can always insert a final statement that pauses the program by
waiting for input from the user:

raw_input(’Type CR:’)

or

sys.stdout.write(’Type CR:’); sys.stdin.readline()

The program will “hang” until the user presses the Return key. During
this pause the DOS window is visible and you can watch the output
from previous statements in the program.

The downside of including a final input statement is that you must
always hit Return before the program terminates. This is inconvenient
if the program is moved to a Unix-type machine. One possibility is to
let this final input statement be active only when the program is run
on Windows:

if sys.platform[:3] ==’win’:
raw_input(’Type CR:’)

Python programs that have a graphical user interface can be double-
clicked in the usual way if the file extension is .pyw.

Gnuplot Plots on Windows. Programs that call plot to visualize a
graph with the aid of Gnuplot suffer from the same problem as de-
scribed above: the plot window disappears quickly. Again, the recipe is
to insert a raw_input call at the end of the program.

H.2 Integer and Float Division 771

H.1.4 Executing Python Programs on Macintosh

Since a variant of Unix is used as core in the Mac OS X operating
system, you can always launch a Unix terminal and use the techniques
from Appendix H.1.2 to run Python programs.

H.1.5 Making a Complete Stand-Alone Executable

Python programs need a Python interpreter and usually a set of mod-
ules to be installed on the computer system. Sometimes this is incon-
venient, for instance when you want to give your program to somebody
who does not necessarily have Python or the required set of modules
installed.

Fortunately, there are tools that can create a stand-alone executable
program out of a Python program. This stand-alone executable can
be run on every computer that has the same type of operating system
and the same chip type. Such a stand-alone executable is a bundling
of the Python interpreter and the required modules, along with your
program, in a single file. Details of producing this single file are given
in the book [9].

H.2 Integer and Float Division

Many languages, including C, C++, Fortran, and classical Python,
interpret the division operator in two ways:

1. Integer division: If both operands a and b are integers, the result a/b
is the floor of the mathematical result a/b. This yields the largest
integer that b can be multiplied with such that the product is less
than or equal to a. Or phrased simpler: The result of a/b is an integer
which is “rounded down”. As an example, 5/2 becomes 2.

2. Float division: If one of the operands is a floating-point number
or a complex number, a/b returns the mathematical result of the
division.

Accidental integer division in places where mathematical division is
needed, constitutes a very common source of errors in numerical pro-
grams.

It is often argued that in a statically typed language, where each
variable is declared with a fixed type, the programmer always knows
the type of the operands involved in a division expression. Therefore the
programmer can determine whether an expression has the right form
or not (the programmer can still oversee such errors). In a dynamically
typed language, such as Python, variables can hold objects of any type.
If a or b is provided by the user of the program, one can never know if
both types end up as integer and a/b will imply integer division.

772 H Technical Topics

The only safe solution is to have two different operands for inte-
ger division and mathematical division. Python is currently moving in
this direction. By default, a/b still has its original double meaning, de-
pending on the types of operands. A new operator // is introduced for
explicitly employing integer division. To force a/b to mean standard
mathematical float division, one can write

from__future__ import division

This import statement must be present in every module file or script
where the / operator always shall imply float division. Alternatively,
one can run a Python program someprogram.py from the command line
with the argument -Qnew to the Python interpreter:

Terminal> python -Qnew someprogram.py

The future Python 3.0 is suggested to abandon integer division inter-
pretation of a/b, i.e., a/b will always mean the relevant float division,
depending on the operands (float division for int and float operands,
and complex division if one of the operands is a complex).

Running a Python program with the -Qwarnall argument, say

Terminal> python -Qwarnall someprogram.py

will print out a warning every time an integer division expression is
encountered.

There are currently alternative ways out of the integer division prob-
lem:

1. If the operands involve an integer with fixed value, such as in a/2,
the integer can be written as a floating-point number, as in a/2.0

or a/2., to enforce mathematical division regardless of whether a is
integer, float, or complex.

2. If both operands are variables, as in a/b, the only safe way out of
the problem is to write 1.0*a/b. Note that float(a)/b or a/float(b)
will work correctly from a mathematical viewpoint if a and b are of
integer or floating-point type, but not if the argument to float is
complex.

H.3 Visualizing a Program with Lumpy

Lumpy is a nice tool for graphically displaying the relations between
the variables in a program. Consider the following program (inspired
by Chapter 2.4.3), where we extract a sublist and modify the original
list:

l0 = [1, 4, 3]
l1 = l0
l2 = l1[:-1]
l1[0] = 100

H.3 Visualizing a Program with Lumpy 773

Fig. H.1 Output from Lumpy: (a) program with three lists; (b) extended program with
another list, two floats, and a string.

The point is that the change in l1 is reflected in l0, but not in l2,
because sublists are created by taking a copy of the original list, while
l1 and l0 refer to the same object. Lumpy can visually display the
variables and how they relate, and thereby making it obvious that l0

and l1 refer to the same object and that l2 is a different object. To use
Lumpy, some extra statements must be inserted in the program:

from scitools.Lumpy import Lumpy
lumpy = Lumpy()
lumpy.make_reference()
l0 = [1, 4, 3]
l1 = l0
l2 = l1[:-1]
l1[0] = 100
lumpy.object_diagram()

By running this program a graphical window is shown on the screen
with the variables in the program, see Figure H.1a. The variables have
lines to the object they point to, and inside the objects we can see the
contents, i.e., the list elements in this case.

We can add some lines to the program above and make a new, ad-
ditional drawing:

lumpy = Lumpy()
lumpy.make_reference()
n1 = 21.5
n2 = 21
l3 = [l1, l2, [n1, n2]]
s1 =’some string’
lumpy.object_diagram()

774 H Technical Topics

Figure H.1b shows the second object diagram with the additional vari-
ables.

We recommend to actively use Lumpy to make graphical illustrations
of programs, especially if you search for an error and you are not 100%
sure of how all variables related to each other.

H.4 Doing Operating System Tasks in Python

Python has extensive support for operating system tasks, such as file
and folder management. The great advantage of doing operating sys-
tem tasks in Python and not directly in the operating system is that
the Python code works uniformly on Unix/Linux, Windows, and Mac
(there are exceptions, but they are few). Below we list some useful op-
erations that can be done inside a Python program or in an interactive
session.

Make a folder:

import os
os.mkdir(foldername)

Recall that Python applies the term directory instead of folder. Ordi-
nary files are created by the open and close functions in Python.

Make intermediate folders: Suppose you want to make a subfolder
under your home folder:

$HOME/python/project1/temp

but the intermediate folders python and project1 do not exist. This
requires each new folder to be made separately by os.mkdir, or you
can make all folders at once with os.makedirs:

foldername = os.path.join(os.environ[’HOME’],’python’,
’project1’,’temp’)

os.makedirs(foldername)

With os.environ[var] we can get the value of any environment variable
var as a string.

Move to a folder:

origfolder = os.getcwd() # get name of current folder
os.chdir(foldername) # move ("change directory")
...
os.chdir(origfolder) # move back

Rename a file or folder:

os.rename(oldname, newname)

H.4 Doing Operating System Tasks in Python 775

List files (using Unix shell wildcard notation):

import glob
filelist1 = glob.glob(’*.py’)
filelist2 = glob.glob(’*[1-4]*.dat’)

List all files and folders in a folder:

filelist1 = os.listdir(foldername)
filelist1 = os.listdir(os.curdir) # current folder (directory)

Check if a file or folder exists:

if os.path.isfile(filename):
f = open(filename)
...

if os.path.isdir(foldername):
filelist = os.listdir(foldername)
...

Remove files:

import glob
filelist = glob.glob(’tmp_*.eps’)
for filename in filelist:

os.remove(filename)

Remove a folder and all its subfolders:

import shutil
shutil.rmtree(foldername)

It goes without saying that this command may be dangerous!

Copy a file to another file or folder:

shutil.copy(sourcefile, destination)

Copy a folder and all its subfolders:

shutil.copytree(sourcefolder, destination)

Run any operating system command:

cmd = ’c2f.py 21’ # command to be run
failure = os.system(cmd)
if failure:

print ’Execution of "%s" failed!\n’ % cmd
sys.exit(1)

record output from the command:
from subprocess import Popen, PIPE
p = Popen(cmd, shell=True, stdout=PIPE)

776 H Technical Topics

output, errors = p.communicate()
output contains text sent to standard output
errors contains text sent to standard error

process output:
for line in output.splitlines():

process line

simpler recording of output on Linux/Unix:
import commands
failure, output = commands.getstatusoutput(cmd)
if failure:

print ’Execution of "%s" failed!\n’ % cmd, output
sys.exit(1)

The constructions above are mainly used for running stand-alone pro-
grams. Any file or folder listing or manipulation should be done by the
functionality in os or other modules.

Split file or folder name:

>>> fname = os.path.join(os.environ[’HOME’], ’data’, ’file1.dat’)
>>> foldername, basename = os.path.split(fname)
>>> foldername
’/home/hpl/data’
>>> basename
’file1.dat’
>>> outfile = basename[:-4] + ’.out’
>>> outfile
’file1.out’

H.5 Variable Number of Function Arguments

Arguments to Python functions are of four types:

1. positional arguments, where each argument has a name,
2. keyword arguments, where each argument has a name and a default

value,
3. a variable number of positional arguments, where each argument has

no name, but just a location in a list,
4. a variable number of keyword arguments, where each argument is a

(name, default value) pair in a dictionary.

The corresponding general function definition can be sketched as

def f(pos1, pos2, key1=val1, key2=val2, *args, **kwargs):

Here, pos1 and pos2 are positional arguments, key1 and key2 are key-
word arguments, args is a tuple holding a variable number of positional
arguments, and kwargs is a dictionary holding a variable number of
keyword arguments. This appendix describes how to program with the
args and kwargs variables and why these are handy in many situations.

H.5 Variable Number of Function Arguments 777

H.5.1 Variable Number of Positional Arguments

Let us start by making a function that takes an arbitrary number of
arguments and computes their sum:

>>> def add(*args):
... print’args:’, args
... return sum(args)
...
>>> add(1)
args: (1,)
1
>>> add(1,5,10)
args: (1, 5, 10)
16

We observe that args is a tuple and that all the arguments we provide
in a call to add are stored in args.

Combination of ordinary positional arguments and a variable number
of arguments is allowed, but the *args argument must appear after the
ordinary positional arguments, e.g.,

def f(pos1, pos2, pos3, *args):

In each call to f we must provide at least three arguments. If more
arguments are supplied in the call, these are collected in the args tuple
inside the f function.

Example. Chapter 7.1.1 describes functions with parameters, e.g.,
y(t; v0) = v0t − 1

2gt
2, or the more general case f(x; p1, . . . , pn). The

Python implementation of such functions can take both the indepen-
dent variable and the parameters as arguments: y(t, v0) and f(x,

p1, p2, ...,pn). Suppose that we have a general library routine that
operates on functions of one variable. Relevant operations can be nu-
merical differentiation, integration, or root finding. A simple example
is a numerical differentiation function

def diff(f, x, h):
return (f(x+h) - f(x))/h

This diff function cannot be used with functions f that take more
than one argument, e.g., passing an y(t, v0) function as f leads to the
exception

TypeError: y() takes exactly 2 arguments (1 given)

Chapter 7.1.1 provides a solution to this problem where y becomes a
class instance. Here we can describe an alternative solution that allows
our y(t, v0) function to be used as is.

The idea is that we pass additional arguments for the parameters
in the f function through the diff function. That is, we view the f

function as f(x, *f_prms). Our diff routine can then be written as

778 H Technical Topics

def diff(f, x, h, *f_prms):
print’x:’, x,’h:’, h,’f_prms:’, f_prms
return (f(x+h, *f_prms) - f(x, *f_prms))/h

Before explaining this function in detail, we “prove” that it works in
an example:

def y(t, v0):
g = 9.81; return v0*t - 0.5*g*t**2

dydt = diff(y, 0.1, 1E-9, 3) # t=0.1, h=1E-9, v0=3

The output from the call to diff becomes

x: 0.1 h: 1e-09 f_prms: (3,)

The point is that the v0 parameter, which we want to pass on to our y
function, is now stored in f_prms. Inside the diff function, calling

f(x, *f_prms)

is the same as if we had written

f(x, f_prms[0], f_prms[1], ...)

That is, *f_prms in a call takes all the values in the tuple *f_prms and
places them after each other as positional arguments. In the present
example with the y function, f(x, *f_prms) implies f(x, f_prms[0]),
which for the current set of argument values in our example becomes
a call y(0.1, 3).

For a function with many parameters,

def G(x, t, A, a, w):
return A*exp(-a*t)*sin(w*x)

the output from

dGdx = diff(G, 0.5, 1E-9, 0, 1, 0.6, 100)

becomes

x: 0.5 h: 1e-09 f_prms: (0, 1, 1.5, 100)

We pass here the arguments t, A, a, and w, in that sequence, as the
last four arguments to diff, and all the values are stored in the f_prms

tuple.
The diff function also works for a plain function f with one argu-

ment:

from math import sin
mycos = diff(sin, 0, 1E-9)

In this case, *f_prms becomes an empty tuple, and a call like
f(x, *f_prms) is just f(x).

H.5 Variable Number of Function Arguments 779

The use of a variable set of arguments for sending problem-specific
parameters “through” a general library function, as we have demon-
strated here with the diff function, is perhaps the most frequent use
of *args-type arguments.

H.5.2 Variable Number of Keyword Arguments

A simple test function

>>> def test(**kwargs):
... print kwargs

exemplifies that kwargs is a dictionary inside the test function, and
that we can pass any set of keyword arguments to test, e.g.,

>>> test(a=1, q=9, method=’Newton’)
{’a’: 1,’q’: 9,’method’:’Newton’}

We can combine an arbitrary set of positional and keyword arguments,
provided all the keyword arguments appear at the end of the call:

>>> def test(*args, **kwargs):
... print args, kwargs
...
>>> test(1,3,5,4,a=1,b=2)
(1, 3, 5, 4) {’a’: 1,’b’: 2}

From the output we understand that all the arguments in the call where
we provide a name and a value are treated as keyword arguments and
hence placed in kwargs, while all the remaining arguments are positional
and placed in args.

Example. We may extend the example in Appendix H.5.1 to make
use of a variable number of keyword arguments instead of a variable
number of positional arguments. Suppose all functions with parameters
in addition to an independent variable take the parameters as keyword
arguments. For example,

def y(t, v0=1):
g = 9.81; return v0*t - 0.5*g*t**2

In the diff function we transfer the parameters in the f function as a
set of keyword arguments **f_prms:

def diff(f, x, h=1E-10, **f_prms):
print’x:’, x,’h:’, h,’f_prms:’, f_prms
return (f(x+h, **f_prms) - f(x, **f_prms))/h

In general, the **f_prms argument in a call

780 H Technical Topics

f(x, **f_prms)

implies that all the key-value pairs in **f_prms are provided as keyword
arguments:

f(x, key1=f_prms[key1], key2=f_prms[key2], ...)

In our special case with the y function and the call

dydt = diff(y, 0.1, h=1E-9, v0=3)

f(x, **f_prms) becomes y(0.1, v0=3). The output from diff is now

x: 0.1 h: 1e-09 f_prms: {’v0’: 3}

showing explicitly that our v0=3 in the call to diff is placed in the
f_prms dictionary.

The G function from Appendix H.5.1 can also have its parameters as
keyword arguments:

def G(x, t=0, A=1, a=1, w=1):
return A*exp(-a*t)*sin(w*x)

We can now make the call

dGdx = diff(G, 0.5, h=1E-9, t=0, A=1, w=100, a=1.5)

and view the output from diff,

x: 0.5 h: 1e-09 f_prms: {’A’: 1,’a’: 1.5,’t’: 0,’w’: 100}

to see that all the parameters get stored in f_prms. The h parameter
can be placed anywhere in the collection of keyword arguments, e.g.,

dGdx = diff(G, 0.5, t=0, A=1, w=100, a=1.5, h=1E-9)

We can allow the f function of one variable and a set of parame-
ters to have the general form f(x, *f_args, **f_kwargs). That is, the
parameters can either be positional or keyword arguments. The diff

function must take the arguments *f_args and **f_kwargs and transfer
these to f:

def diff(f, x, h=1E-10, *f_args, **f_kwargs):
print f_args, f_kwargs
return (f(x+h, *f_args, **f_kwargs) -

f(x, *f_args, **f_kwargs))/h

This diff function gives the writer of an f function full freedom to
choose positional and/or keyword arguments for the parameters. Here is
an example of the G function where we let the t parameter be positional
and the other parameters be keyword arguments:

H.6 Evaluating Program Efficiency 781

def G(x, t, A=1, a=1, w=1):
return A*exp(-a*t)*sin(w*x)

A call

dGdx = diff(G, 0.5, 1E-9, 0, A=1, w=100, a=1.5)

gives the output

(0,) {’A’: 1,’a’: 1.5,’w’: 100}

showing that t is put in f_args and transferred as positional argument
to G, while A, a, and w are put in f_kwargs and transferred as keyword
arguments. We remark that in the last call to diff, h and t must be
treated as positional arguments, i.e., we cannot write h=1E-9 and t=0

unless all arguments in the call are on the name=value form.
In the case we use both *f_args and **f_kwargs arguments in f and

there is no need for these arguments, *f_args becomes an empty tuple
and **f_kwargs becomes an empty dictionary. The example

mycos = diff(sin, 0)

shows that the tuple and dictionary are indeed empty since diff just
prints out

() {}

Therefore, a variable set of positional and keyword arguments can be
incorporated in a general library function such as diff without any
disadvantage, just the benefit that diff works with different types f

functions: parameters as global variables, parameters as additional po-
sitional arguments, parameters as additional keyword arguments, or
parameters as instance variables (Chapter 7.1.2).

The program varargs1.py in the appendix folder implements the
examples in this appendix.

H.6 Evaluating Program Efficiency

H.6.1 Making Time Measurements

Time is not just “time” on a computer. The elapsed time or wall clock
time is the same time as you can measure on a watch or wall clock,
while CPU time is the amount of time the program keeps the central
processing unit busy. The system time is the time spent on operating
system tasks like I/O. The concept user time is the difference between
the CPU and system times. If your computer is occupied by many
concurrent processes, the CPU time of your program might be very
different from the elapsed time.

782 H Technical Topics

The time Module. Python has a timemodule with some useful functions
for measuring the elapsed time and the CPU time:

import time
e0 = time.time() # elapsed time since the epoch
c0 = time.clock() # total CPU time spent in the program so far
<do tasks...>
elapsed_time = time.time() - e0
cpu_time = time.clock() - c0

The term epoch means initial time (time.time() would return 0),
which is 00:00:00 January 1, 1970. The time module also has numerous
functions for nice formatting of dates and time, and the more recent
datetime module has more functionality and an improved interface.
Although the timing has a finer resolution than seconds, one should
construct test cases that last some seconds to obtain reliable results.

The timeit Module. To measure the efficiency of a certain set of state-
ments or an expression, the code should be run a large number of
times so the overall CPU-time is of order seconds. The timeit mod-
ule has functionality for running a code segment repeatedly. Below is
an illustration of timeit for comparing the efficiency sin(1.2) versus
math.sin(1.2):

>>> import timeit
>>> t = timeit.Timer(’sin(1.2)’, setup=’from math import sin’)
>>> t.timeit(10000000) # run’sin(1.2)’ 10000000 times
11.830688953399658
>>> t = timeit.Timer(’math.sin(1.2)’, setup=’import math’)
>>> t.timeit(10000000)
16.234833955764771

The first argument to the Timer constructor is a string containing the
code to execute repeatedly, while the second argument is the necessary
code for initialization. From this simple test we see that math.sin(1.2)
runs almost 40 percent slower than sin(1.2)!

If you want to time a function, say f, defined in the same program
as where you have the timeit call, the setup procedure must import f
and perhaps other variables from the program, as exemplified in

t = timeit.Timer(’f(a,b)’, setup=’from__main__ import f, a, b’)

Here, f, a, and b are names initialized in the main program. Another
example is found in src/random/smart_power.py.

Hardware Information. Along with CPU-time measurements it is often
convenient to print out information about the hardware on which the
experiment was done. Python has a module platform with information
on the current hardware. The function scitools.misc.hardware_info

applies the platform module to extract relevant hardware information.
A sample call is

H.6 Evaluating Program Efficiency 783

>>> import scitools.misc, pprint
>>> pprint.pprint(scitools.misc.hardware_info())
{’cpuinfo’:
{’CPU speed’: ’1196.170 Hz’,
’CPU type’: ’Mobile Intel(R) Pentium(R) III CPU - M 1200MHz’,
’cache size’: ’512 KB’,
’vendor ID’: ’GenuineIntel’},

’identifier’: ’Linux-2.6.12-i686-with-debian-testing-unstable’,
’python build’: (’r25:409’, ’Feb 27 2007 19:35:40’),
’python version’: ’2.5.0’,
’uname’: (’Linux’,

’ubuntu’,
’2.6.12’,
’#1 Fri Nov 25 10:58:24 CET 2005’,
’i686’,
’’)}

H.6.2 Profiling Python Programs

A profiler computes the time spent in the various functions of a pro-
gram. From the timings a ranked list of the most time-consuming func-
tions can be created. This is an indispensable tool for detecting bot-
tlenecks in the code, and you should always perform a profiling before
spending time on code optimization. The golden rule is to first write
an easy-to-understand program, then verify it, then profile it, and then
think about optimization2.

Python comes with two profilers implemented in the profile and
hotshot modules, respectively. The Python Library Reference has a
good introduction to profiling in Python (Chapter 10: “The Python
Profiler”). The results produced by the two alternative modules are
normally processed by a special statistics utility pstats developed for
analyzing profiling results. The usage of the profile, hotshot, and
pstats modules is straightforward, but somewhat tedious so SciTools
comes with a command scitools profiler that allows you to profile
any program (say) m.py by writing

Terminal

Terminal> scitools profiler m.py c1 c2 c3

Here, c1, c2, and c3 are command-line arguments to m.py.
We refer to the Python Library Reference for detailed information

on how to interpret the output. A sample output might read

1082 function calls (728 primitive calls) in 17.890 CPU seconds

Ordered by: internal time
List reduced from 210 to 20 due to restriction <20>

ncalls tottime percall cumtime percall filename:lineno(function)
5 5.850 1.170 5.850 1.170 m.py:43(loop1)
1 2.590 2.590 2.590 2.590 m.py:26(empty)

2 “Premature optimization is the root of all evil.” –Donald Knuth, computer scientist,

1938–.

784 H Technical Topics

5 2.510 0.502 2.510 0.502 m.py:32(myfunc2)
5 2.490 0.498 2.490 0.498 m.py:37(init)
1 2.190 2.190 2.190 2.190 m.py:13(run1)
6 0.050 0.008 17.720 2.953 funcs.py:126(timer)

...

In this test, loop1 is the most expensive function, using 5.85 seconds,
which is to be compared with 2.59 seconds for the next most time-
consuming function, empty. The tottime entry is the total time spent
in a specific function, while cumtime reflects the total time spent in the
function and all the functions it calls.

The CPU time of a Python program typically increases with a factor
of about five when run under the administration of the profilemodule.
Nevertheless, the relative CPU time among the functions are probably
not much affected by the profiler overhead.

References

[1] D. Beazley. Python Essential Reference. SAMS, Indianapolis, 2nd
edition, 2001.

[2] J. E. Grayson. Python and Tkinter Programming. Manning,
Greenwich, 2000.

[3] D. Harms and K. McDonald. The Quick Python Book. Manning,
Greenwich, 1999.

[4] D. E. Knuth. Theory and practice. EATCS Bull., 27:14–21, 1985.
[5] H. P. Langtangen. Python Scripting for Computational Science,

volume 3 of Texts in Computational Science and Engineering.
Springer, Berlin, 3rd edition, 2009.

[6] L. S. Lerner. Physics for Scientists and Engineers. Jones and Bar-
lett, Sudbury, 1996.

[7] M. Lutz. Programming Python. O’Reilly, Sebastopol, 2nd edition,
2001.

[8] M. Lutz and D. Ascher. Learning Python. O’Reilly, Sebastopol,
1999.

[9] A. Martelli. Python in a Nutshell. O’Reilly, Sebastopol, 2003.
[10] J.D. Murray. Mathematical Biology I: An Introduction. Springer,

Berlin, 3rd edition, 2007.
[11] F.M. White. Fluid Mechanics. McGraw-Hill, New York, 2nd edi-

tion, 1986.

H.P. Langtangen, A Primer on Scientific Programming with Python,
Texts in Computational Science and Engineering 6,

DOI 10.1007/978-3-642-30293-0, c© Springer-Verlag Berlin Heidelberg 2012

785

http://dx.doi.org/10.1007/978-3-642-30293-0

http://www.springer.com
http://www.springer.com/mycopy

Index

**kwargs, 779
*=, 52
*args, 777
+=, 52
-=, 52
/=, 52
\n, 14

allocate, 195
animate, 457
API, 381
aplotter (from scitools), 214
append (list), 56
application, 15
application programming

interface, 381
argparse module, 149
array (from numpy), 194
array computing, 194
array (datatype), 194
array shape, 230, 231
array slicing, 195
asarray (from numpy), 228
attribute (class), 346
average, 418

backend (Easyviz), 205, 208
base class, 484
bin (histogram), 416
binomial distribution, 185
bioinformatics, 107

bits, 263

blank lines in files, 285

blanks, 17

body of a function, 88

boolean expressions, 53

boolean indexing, 223, 224

break, 260

bytes, 263

callable objects, 361

callback function, 651

check an object’s type, 29, 229,
382, 487

check file/folder existence (in
Python), 775

class hierarchy, 483

class relationship

derived class, 484

has-a, 488

inheritance, 484

is-a, 488

subclass, 484

superclass, 484

closure, 502

cmath module, 33

command-line arguments, 145

commands module, 775

comments, 10

comparing

floating-point numbers, 84

H.P. Langtangen, A Primer on Scientific Programming with Python,
Texts in Computational Science and Engineering 6,

DOI 10.1007/978-3-642-30293-0, c© Springer-Verlag Berlin Heidelberg 2012

787

http://dx.doi.org/10.1007/978-3-642-30293-0

788 Index

comparing (cont.)
objects, 84
real numbers, 84

complex numbers, 32
concatenate (from numpy), 580
console (terminal) window, 4
constructor (class), 345
convergence rate, 553, 716
convert program, 457
copy files (in Python), 775
copy folders (in Python), 775
CPU time measurements, 114,

781
cumulative sum, 471
curve plotting, 198

datetime module, 273, 560, 782
debugger tour, 735
del, 56
delete files (in Python), 213, 407,

775
delete folders (in Python), 775
derived class, 484
dictionary, 266, 308

comprehensions, 270
functionality, 324
nested, 275

difference equations, 558
nonlinear, 576

differential equations, 625, 667,
668, 677

dir function, 386
directory, 1, 4, 774
DNA, 107
doc strings, 99
dtype, 228
duck typing, 384
dynamic binding, 495
dynamic typing, 383

editor, 3
efficiency, 781
efficiency measure, 450
elapsed time, 781
enumerate function, 63, 404
environment variables, 774

eval function, 139, 496
event loop, 160
except, 153
Exception, 157
exceptions, 153
execute programs (from Python),

775
execute Python program, 7, 30,

767
expression, 16

factorial, 54
factorial function, 126
factory function, 497
find (string method), 283
first-order ODEs, 634
float eq, 84
format (string method), 13
format string syntax, 13
formatting text and numbers, 11
Forward Euler scheme, 670
Fourier series, 124
frequency matrix, 305
function arguments

keyword, 97
named, 97
positional, 97

function body, 88
function header, 88
function inside function, 689
functional programming, 502

Gaussian function, 45
glob.glob function, 407, 775
global, 90
globals function, 89, 220, 656
grid, 594

has-a class relationship, 488
Heaviside function, 128
heterogeneous lists, 193
histogram (normalized), 416

Idle, 4
immutable objects, 269, 371
in-place array arithmetics, 227
IndexError, 154, 155

Index 789

information hiding, 381
initial condition, 558, 626, 646
input (data), 18
insert (list), 56
instance (class), 346
integer random numbers, 420
interactive sessions

IPython, 29
standard Python shell, 27

interpolation, 246
interval arithmetics, 391
IPython, 29
is, 96
is-a class relationship, 488
isdigit (string method), 285
isinstance function, 73, 229, 382,

487
isspace (string method), 285

join (string method), 285

keys (dictionaries), 267
keyword arguments, 97, 776

Lagrange’s interpolation formula,
246

lambda functions, 103, 106
least squares approximation, 330
len (list), 56
line break, 14
linspace (from numpy), 195, 230
list, nested, 64
list comprehension, 63, 66, 111
list files (in Python), 775
list functionality, 73
list iteration, 107
lists, 55
logical expressions, 53
loops, 50
lower (string method), 284
lstrip (string method), 285

Mac OS X, 18
main program, 102
make a folder (in Python), 774
making graphs, 198

making movie, 457
math module, 24
mean, 418
mean (from numpy), 419, 460
measure time in programs, 450
mesh, 594
method (class), 58
method (in class), 346
mod function, 119, 419
module folders, 168
modules, 161
Monte Carlo integration, 446
Monte Carlo simulation, 428
move to a folder (in Python), 774
multiple inheritance, 552
mutable objects, 269, 371

named arguments, 97
NameError, 155
namespace, 354
nested dictionaries, 275
nested lists, 65
nested loops, 70
newline character (line break), 14
Newton’s method, 363, 572
None, 96
nonlinear difference equations,

576
normal (from numpy.random), 420
normally distributed random

numbers, 419
not, 53
np prefix (numpy), 194
np.array function, 194
np.linspace function, 195
np.zeros function, 194
np.zeros like function, 195
Numerical Python, 194
NumPy, 194
numpy, 194
numpy.lib.scimath module, 34

object-based programming, 483
object-oriented programming, 483
objects, 21
ODE, 625, 667

790 Index

operating system (OS), 18
optimization of Python code, 783
option-value pairs (command

line), 148
OrderedDict class, 268
ordinary differential equations,

625, 667, 668
os module, 774
os.chdir function, 774
os.listdir function, 775
os.makedirs function, 774
os.mkdir function, 774
os.pardir, 169
os.path.isdir function, 775
os.path.isfile function, 775
os.path.join function, 169, 774
os.path.split function, 776
os.remove function, 213, 407, 775
os.rename function, 774
os.system function, 775
oscillating systems, 634, 641, 648,

700
output (data), 18
overloading (of methods), 506

parent class, 484
pass, 381
plot (from scitools), 205
plotting, 198
Poisson distribution, 185
polymorphism, 506
positional arguments, 97, 776
pprint.pformat, 67
pprint.pprint, 66
pprint2 (from scitools), 66
pretty print, 66
printf syntax, 11
private attributes (class), 381
probability, 428
profiler.py, 783
profiling, 783
protected attributes (class), 371,

381
pydoc program, 78
Python Online Tutor, 109

r (array creation), 230

raise, 156

randint (from numpy.random), 455

randn (from numpy.random), 420

random module, 414

random (from numpy.random), 417

random (from numpy), 417

random numbers, 413

histogram, 416

integers, 420

integration, 446

Monte Carlo simulation, 428

normal distribution, 419

random walk, 451

statistics, 418

uniform distribution, 415

vectorization, 417

random strings, 113

random walk, 451

random.normalvariate function,
420

random integers (from
numpy.random), 455

raw input function, 138

refactoring, 176

remove files (in Python), 213,
407, 775

remove folders (in Python), 775

rename file/folder (in Python),
774

replace (string method), 283

resolution (mesh), 594

round function, 29

round-off errors, 26

rounding float to integer, 29

rstrip (string method), 285

run programs (from Python), 775

run Python program, 7, 30, 767

scalar code, 197

scalar differential equation, 668

scalar differential equations, 634

scalar function, 668

scalar (math. quantity), 190

scaling, 565

Index 791

scitools.pprint2 module, 66

scitools.pprint2.pprint, 67

scitools.std, 204

search for module files, 168

Secant method, 587

second-order ODEs, 634, 645, 700

seed, 414

sequence (data type), 74

sequence (mathematical), 557

shape (of an array), 230, 231

shutil.copy function, 775

shutil.copytree function, 775

shutil.rmtree function, 775∑
notation, 74

slicing, 67, 283

sort (list), 131

source code, 14

special methods (in classes), 360

split (string method), 284

split filename, 776

spread of a disease (model), 637

standard deviation, 418

standard error, 299

standard input, 298

standard output, 298

statements, 16

static class attributes, 387

static class methods, 388

static class variables, 387

static typing, 383

std (from numpy), 419, 460

str2obj (from scitools), 170

string, 11

case change, 284

joining list elements, 285

searching, 283

splitting, 284

stripping leading/trailing
blanks, 285

substitution, 283

substrings, 283

testing for number, 285

string iteration, 108

string slicing, 283

StringFunction (from scitools),
144

strip (string method), 285

strong typing, 383

subarrays, 195

subclass, 484

sublist, 67

subprocess module, 775

substitution (in text), 283

substrings, 283

sum, 111

sum iterator, 112

sum (from numpy), 422

superclass, 484

syntax, 17

SyntaxError, 155

sys module, 145

sys.argv, 145

sys.exit function, 152

sys.path, 168

sys.stderr, 299

sys.stdin, 298

sys.stdout, 298

system time, 781

systems of differential equations,
634, 677

terminal window, 4

test block (in module files), 163

time module, 85, 115, 450, 452,
782

time

CPU, 781

elapsed, 781

system, 781

user, 781

timeit module, 782

timing utilities, 781

triple-quoted strings, 13

try, 153

tuples, 71

type function, 29, 73

type conversion, 28

TypeError, 155

792 Index

UML class diagram, 345
uniform (from numpy.random), 417
uniformly distributed random

numbers, 415
Unix, 19
upper (string method), 284
urllib, 316
user (of a program), 18
user time, 781
user-defined datatype (class), 346
using a debugger, 109, 735

v1 (version numbering), 20
ValueError, 154, 155
var (from numpy), 419, 460
variable no. of function

arguments, 776
variance, 418
vector computing, 189
vectorization, 194, 196

vectorized drawing of random
numbers, 417

vectors, 188

weak typing, 383
where (from numpy), 223
whitespace, 17, 18, 285
widgets, 159
Windows, 18
wrap2callable function, 403
wrap2callable, 672
wrapper code, 365

xrange function, 196, 422

ZeroDivisionError, 155
zeros (from numpy), 194
zeros like (from numpy), 195
zip function, 64
zombies, 722

Editorial Policy

§1. Textbooks on topics in the field of computational science and engineering will be considered. They should be
written for courses in CSE education. Both graduate and undergraduate textbooks will be published in TCSE. Multi-
disciplinary topics and multidisciplinary teams of authors are especially welcome.

§2. Format: Only works in English will be considered. For evaluation purposes, manuscripts may be submitted in print
or electronic form, in the latter case, preferably as pdf- or zipped ps- files. Authors are requested to use the LaTeX style
files available from Springer at: http://www.springer.com/authors/book+authors?SGWID=0-154102-12-417900-0
(for monographs, textbooks and similar)
Electronic material can be included if appropriate. Please contact the publisher.

§3. Those considering a book which might be suitable for the series are strongly advised to contact the publisher or the
series editors at an early stage.

General Remarks

Careful preparation of manuscripts will help keep production time short and ensure a satisfactory appearance of the
finished book.

The following terms and conditions hold:

Regarding free copies and royalties, the standard terms for Springer mathematics textbooks hold. Please write to
martin.peters@springer.com for details.

Authors are entitled to purchase further copies of their book and other Springer books for their personal use, at a
discount of 33.3 % directly from Springer-Verlag.

http://www.springer.com/authors/book+authors?SGWID=0-154102-12-417900-0
mailto:martin.peters@springer.com

Series Editors

Timothy J. Barth
NASA Ames Research Center
NAS Division
Moffett Field, CA 94035, USA
barth@nas.nasa.gov

Michael Griebel
Institut fur Numerische Simulation
der Universitat Bonn
Wegelerstr. 6
53115 Bonn, Germany
griebel@ins.uni-bonn.de

David E. Keyes
Mathematical and Computer Sciences
and Engineering
King Abdullah University of Science
and Technology
P.O. Box 55455
Jeddah 21534, Saudi Arabia
david.keyes@kaust.edu.sa

and

Department of Applied Physics
and Applied Mathematics
Columbia University
500 W. 120th Street
New York, NY 10027, USA
kd2112@columbia.edu

Risto M. Nieminen
Department of Applied Physics
Aalto University School of Science
and Technology
00076 Aalto, Finland
risto.nieminen@tkk.fi

Dirk Roose
Department of Computer Science
Katholieke Universiteit Leuven
Celestijnenlaan 200A
3001 Leuven-Heverlee, Belgium
dirk.roose@cs.kuleuven.be

Tamar Schlick
Department of Chemistry
and Courant Institute
of Mathematical Sciences
New York University
251 Mercer Street
New York, NY 10012, USA
schlick@nyu.edu

Editor for Computational Science
and Engineering at Springer:
Martin Peters
Springer-Verlag
Mathematics Editorial IV
Tiergartenstrasse 17
69121 Heidelberg, Germany
martin.peters@springer.com

mailto:barth@nas.nasa.gov
mailto:griebel@ins.uni-bonn.de
mailto:david.keyes@kaust.edu.sa
mailto:kd2112@columbia.edu
mailto:risto.nieminen@tkk.fi
mailto:dirk.roose@cs.kuleuven.be
mailto:schlick@nyu.edu
mailto:martin.peters@springer.com

Texts
in Computational Science
and Engineering

1. H. P. Langtangen, Computational Partial Differential Equations. Numerical Methods and Diffpack Programming.
2nd Edition

2. A. Quarteroni, F. Saleri, P. Gervasio, Scientific Computing with MATLAB and Octave. 3rd Edition

3. H. P. Langtangen, Python Scripting for Computational Science. 3rd Edition

4. H. Gardner, G. Manduchi, Design Patterns for e-Science.

5. M. Griebel, S. Knapek, G. Zumbusch, Numerical Simulation in Molecular Dynamics.

6. H. P. Langtangen, A Primer on Scientific Programming with Python. 3rd Edition

7. A. Tveito, H. P. Langtangen, B. F. Nielsen, X. Cai, Elements of Scientific Computing.

8. B. Gustafsson, Fundamentals of Scientific Computing.

9. M. Bader, Space-Filling Curves.

For further information on these books please have a look at our mathematics catalogue at the following URL:
www.springer.com/series/5151

Monographs
in Computational
Science and Engineering

1. J. Sundnes, G.T. Lines, X. Cai, B.F Nielsen, K.-A. Mardal, A. Tveito, Computing the Electrical Activity in
the Heart.

For further information on this book, please have a look at our mathematics catalogue at the following URL:
www.springer.com/series/7417

Lecture Notes
in Computational Science
and Engineering

1. D. Fimaro, Spectral Elements for Transport-Dominated Equations.

2. H.P Langtangen, Computational Partial Differential Equations. Numerical Methods and Diffpack Program-
ming.

3. W. Hackbusch, G. Wittum (eds.), Multigrid Methods V.

4. P. Deuflhard, J. Hermans, B. Leimkuhler, A.E. Mark, S. Reich, R.D. Skeel (eds.), Computational Molecular
Dynamics: Challenges, Methods, Ideas.

http://www.springer.com/series/5151
http://www.springer.com/series/7417

5. D. Kröner, M. Ohlberger, C. Rohde (eds.), An Introduction to Recent Developments in Theory and Numerics
for Conservation Laws.

6. S. Turek, Efficient Solvers for Incompressible Flow Problems. An Algorithmic and Computational Approach.

7. R. von Schwerin, Multi Body System SIMulation. Numerical Methods, Algorithms, and Software.

8. H.-J. Bungartz, F. Durst, C. Zenger (eds.), High Performance Scientific and Engineering Computing.

9. TJ. Barth, H. Deconinck (eds.), High-Order Methods for Computational Physics.

10. H.P. Langtangen, A.M. Bruaset, E. Quak (eds.), Advances in Software Tools for Scientific Computing.

11. B. Cockburn, G.E. Karniadakis, C.-W. Shu (eds.), Discontinuous Galerkin Methods. Theory, Computation and Ap-
plications.

12. U. van Rienen, Numerical Methods in Computational Electrodynamics. Linear Systems in Practical Applications.

13. B. Engquist, L. Johnsson, M. Hammill, F. Short (eds.), Simulation and Visualization on the Grid.

14. E. Dick, K. Riemslagh, J. Vierendeels (eds.), Multigrid Methods VI.

15. A. Frommer, T. Lippert, B. Medeke, K. Schilling (eds.), Numerical Challenges in Lattice Quantum Chromody-
namics.

16. J. Lang, Adaptive Multilevel Solution of Nonlinear Parabolic PDE Systems. Theory, Algorithm, and Applications.

17. B.I. Wohlmuth, Discretization Methods and Iterative Solvers Based on Domain Decomposition.

18. U. van Rienen, M. Günther, D. Hecht (eds.), Scientific Computing in Electrical Engineering.

19. I. Babuška, P.G. Ciarlet, T. Miyoshi (eds.), Mathematical Modeling and Numerical Simulation in Continuum
Mechanics.

20. T.J. Barth, T. Chan, R. Haimes (eds.), Multiscale and Multiresolution Methods. Theory and Applications.

21. M. Breuer, F. Durst, C. Zenger (eds.), High Performance Scientific and Engineering Computing.

22. K. Urban, Wavelets in Numerical Simulation. Problem Adapted Construction and Applications.

23. L.F. Pavarino, A. Toselli (eds.), Recent Developments in Domain Decomposition Methods.

24. T. Schlick, H.H. Gan (eds.), Computational Methods for Macromolecules: Challenges and Applications.

25. T.J. Barth, H. Deconinck (eds.), Error Estimation and Adaptive Discretization Methods in Computational Fluid
Dynamics.

26. M. Griebel, M.A. Schweitzer (eds.), Meshfree Methods for Partial Differential Equations.

27. S. Müller, Adaptive Multiscale Schemes for Conservation Laws.

28. C. Carstensen, S. Funken, W. Hackbusch, R.H.W. Hoppe, P. Monk (eds.), Computational Electromagnetics.

29. M.A. Schweitzer, A Parallel Multilevel Partition of Unity Method for Elliptic Partial Differential Equations.

30. T. Biegler, O. Ghattas, M. Heinkenschloss, B. van Bloemen Waanders (eds.), Large-Scale PDE-Constrained Op-
timization.

31. M. Ainsworth, P. Davies, D. Duncan, P. Martin, B. Rynne (eds.), Topics in Computational Wave Propagation.
Direct and Inverse Problems.

32. H. Emmerich, B. Nestler, M. Schreckenberg (eds.), Interface and Transport Dynamics. Computational Modelling.

33. H.P. Langtangen, A. Tveito (eds.), Advanced Topics in Computational Partial Differential Equations. Numerical
Methods and Diffpack Programming.

34. V. John, Large Eddy Simulation of Turbulent Incompressible Flows. Analytical and Numerical Results for a Class
of LES Models.

35. E. Bänsch (ed.), Challenges in Scientific Computing – CISC 2002.

36. B.N. Khoromskij, G. Wittum, Numerical Solution of Elliptic Differential Equations by Reduction to the Interface.

37. A. Iske, Multiresolution Methods in Scattered Data Modelling.

38. S.-I. Niculescu, K. Gu (eds.), Advances in Time-Delay Systems.

39. S. Attinger, P. Koumoutsakos (eds.), Multiscale Modelling and Simulation.

40. R. Kornhuber, R. Hoppe, J. Périaux, O. Pironneau, O. Wildlund, J. Xu (eds.), Domain Decomposition Methods in
Science and Engineering.

41. T. Plewa, T. Linde, V.G. Weirs (eds.), Adaptive Mesh Refinement – Theory and Applications.

42. A. Schmidt, K.G. Siebert, Design of Adaptive Finite Element Software. The Finite Element Toolbox ALBERTA.

43. M. Griebel, M.A. Schweitzer (eds.), Meshfree Methods for Partial Differential Equations II.

44. B. Engquist, P. Lötstedt, O. Runborg (eds.), Multiscale Methods in Science and Engineering.

45. P. Benner, V. Mehrmann, D.C. Sorensen (eds.), Dimension Reduction of Large-Scale Systems.

46. D. Kressner, Numerical Methods for General and Structured Eigenvalue Problems.

47. A. Boriçi, A. Frommer, B. Joo, A. Kennedy, B. Pendleton (eds.), QCD and Numerical Analysis III.

48. F. Graziani (ed.), Computational Methods in Transport.

49. B. Leimkuhler, C. Chipot, R. Elber, A. Laaksonen, A. Mark, T. Schlick, C. Schutte, R. Skeel (eds.), New Algo-
rithms for Macromolecular Simulation.

50. M. Bücker, G. Corliss, P. Hovland, U. Naumann, B. Norris (eds.), Automatic Differentiation: Applications, Theory,
and Implementations.

51. A.M. Bruaset, A. Tveito (eds.), Numerical Solution of Partial Differential Equations on Parallel Computers.

52. K.H. Hoffmann, A. Meyer (eds.), Parallel Algorithms and Cluster Computing.

53. H.-J. Bungartz, M. Schafer (eds.), Fluid-Structure Interaction.

54. J. Behrens, Adaptive Atmospheric Modeling.

55. O. Widlund, D. Keyes (eds.), Domain Decomposition Methods in Science and Engineering XVI.

56. S. Kassinos, C. Langer, G. Iaccarino, P. Moin (eds.), Complex Effects in Large Eddy Simulations.

57. M. Griebel, M.A Schweitzer (eds.), Meshfree Methods for Partial Differential Equations III.

58. A.N. Gorban, B. Kégl, D.C. Wunsch, A. Zinovyev (eds.), Principal Manifolds for Data Visualization and Dimen-
sion Reduction.

59. H. Ammari (ed.), Modeling and Computations in Electromagnetics: A Volume Dedicated to Jean-Claude Nédélec.

60. U. Langer, M. Discacciati, D. Keyes, O. Widlund, W Zulehner (eds.), Domain Decomposition Methods in Science
and Engineering XVII.

61. T. Mathew, Domain Decomposition Methods for the Numerical Solution of Partial Differential Equations.

62. F. Graziani (ed.), Computational Methods in Transport: Verification and Validation.

63. M. Bebendorf, Hierarchical Matrices. A Means to Efficiently Solve Elliptic Boundary Value Problems.

64. C.H. Bischof, H.M. Bücker, P. Hovland, U. Naumann, J. Utke (eds.), Advances in Automatic Differentiation.

65. M. Griebel, M.A. Schweitzer (eds.), Meshfree Methods for Partial Differential Equations IV.

66. B. Engquist, P. Lötstedt, O. Runborg (eds.), Multiscale Modeling and Simulation in Science.

67. I.H. Tuncer, Ü. Giilcat, D.R. Emerson, K. Matsuno (eds.), Parallel Computational Fluid Dynamics 2007.

68. S. Yip, T. Diaz de la Rubia (eds.), Scientific Modeling and Simulations.

69. A. Hegarty, N. Kopteva, E. O’Riordan, M. Stynes (eds.), BAIL 2008 – Boundary and Interior Layers.

70. M. Bercovier, M.J. Gander, R. Kornhuber, O. Widlund (eds.), Domain Decomposition Methods in Science and
Engineering XVIII.

71. B. Koren, C. Vuik (eds.), Advanced Computational Methods in Science and Engineering.

72. M. Peters (ed.), Computational Fluid Dynamics for Sport Simulation.

73. H.-J. Bungartz, M. Mehl, M. Schafer (eds.), Fluid Structure Interaction II – Modelling, Simulation, Optimization.

74. D. Tromeur-Dervout, G. Brenner, D.R. Emerson, J. Erhel (eds.), Parallel Computational Fluid Dynamics 2008.

75. A.N. Gorban, D. Roose (eds.), Coping with Complexity: Model Reduction and Data Analysis.

76. J.S. Hesthaven, E.M. Rønquist (eds.), Spectral and High Order Methods for Partial Differential Equations.

77. M. Holtz, Sparse Grid Quadrature in High Dimensions with Applications in Finance and Insurance.

78. Y. Huang, R. Kornhuber, O. Widlund, J. Xu (eds.), Domain Decomposition Methods in Science and Engineering
XIX.

79. M. Griebel, M.A. Schweitzer (eds.), Meshfree Methods for Partial Differential Equations V.

80. P.H. Lauritzen, C. Jablonowski, M.A. Taylor, R.D. Nair (eds.), Numerical Techniques for Global Atmospheric
Models.

81. C. Clavero, J.L. Gracia, F. Lisbona (eds.), BAIL 2010 – Boundary and Interior Layers, Computational and Asymp-
totic Methods.

82. B. Engquist, O. Runborg, Y.R. Tsai (eds.), Numerical Analysis and Multiscale Computations.

83. I.G. Graham, T.Y. Hou, O. Lakkis, R. Scheichl (eds.), Numerical Analysis of Multiscale Problems.

84. A. Logg, K.-A. Mardal, G.N. Wells (eds.), Automated Solution of Differential Equations by the Finite Element
Method.

85. J. Blowey, M. Jensen (eds.), Frontiers in Numerical Analysis – Durham 2010.

86. O. Kolditz, U.-J. Gorke, H. Shao, W. Wang (eds.), Thermo-Hydro-Mechanical-Chemical Processes in Fractured
Porous Media – Benchmarks and Examples.

87. S. Forth, P. Hovland, E. Phipps, J. Utke, A. Walther (eds.), Recent Advances in Algorithmic Differentiation.

88. J. Garcke, M. Griebel (eds.), Sparse Grids and Applications.

For further information on these books please have a look at our mathematics catalogue at the following URL:
www.springer.com/series/3527

http://www.springer.com/series/3527

	Cover
	Preface
	Contents
	List of Exercises
	1 Computing with Formulas
	1.1 The First Programming Encounter: A Formula
	1.1.1 Using a Program as a Calculator
	1.1.2 About Programs and Programming
	1.1.3 Tools for Writing Programs
	1.1.4 Using Idle to Write the Program
	Warning About Typing Program Text

	1.1.5 How to Run the Program
	1.1.6 Verifying the Result
	1.1.7 Using Variables
	1.1.8 Names of Variables
	1.1.9 Reserved Words in Python
	1.1.10 Comments
	1.1.11 Formatting Text and Numbers
	Printf Syntax
	Format String Syntax
	The Newline Character

	1.2 Computer Science Glossary
	1.3 Another Formula: Celsius-Fahrenheit Conversion
	1.3.1 Potential Error: Integer Division
	Straightforward Coding of the Formula
	Verifying the Results
	Float and Integer Division

	1.3.2 Objects in Python
	1.3.3 Avoiding Integer Division
	Comment

	1.3.4 Arithmetic Operators and Precedence

	1.4 Evaluating Standard Mathematical Functions
	1.4.1 Example: Using the Square Root Function
	Problem
	The Program
	Two Ways of Importing a Module
	Import with New Names

	1.4.2 Example: Using More Mathematical Functions
	1.4.3 A First Glimpse of Round-Off Errors

	1.5 Interactive Computing
	1.5.1 Using the Python Shell
	1.5.2 Type Conversion
	1.5.3 IPython
	Running Programs
	Quick Recovery of Previous Output
	TAB Completion
	Recovering Previous Commands
	Running Unix/Windows Commands
	Remark

	1.6 Complex Numbers
	1.6.1 Complex Arithmetics in Python
	1.6.2 Complex Functions in Python
	1.6.3 Uniﬁed Treatment of Complex and Real Functions

	1.7 Summary
	1.7.1 Chapter Topics
	Program Files
	Programs Must Be Accurate!
	Variables
	Comment Lines
	Object Types
	Operators
	Common Mathematical Functions
	Print
	Integer Division
	Complex Numbers
	Terminology

	1.7.2 Example: Trajectory of a Ball
	Problem
	Solution

	1.7.3 About Typesetting Conventions in This Book

	1.8 Exercises
	What Does It Mean to Solve an Exercise?

	2 Loops and Lists
	2.1 While Loops
	2.1.1 A Naive Solution
	2.1.2 While Loops
	2.1.3 Boolean Expressions
	2.1.4 Loop Implementation of a Sum

	2.2 Lists
	2.2.1 Basic List Operations
	2.2.2 For Loops
	The Nature of For Loops
	Making the Table

	2.3 Alternative Implementations with Lists and Loops
	2.3.1 While Loop Implementation of a For Loop
	2.3.2 The Range Construction
	2.3.3 For Loops with List Indices
	2.3.4 Changing List Elements
	2.3.5 List Comprehension
	2.3.6 Traversing Multiple Lists Simultaneously

	2.4 Nested Lists
	2.4.1 A Table as a List of Rows or Columns
	2.4.2 Printing Objects
	Modules for Pretty Print of Objects
	Manual Printing

	2.4.3 Extracting Sublists
	Example

	2.4.4 Traversing Nested Lists

	2.5 Tuples
	2.6 Summary
	2.6.1 Chapter Topics
	While Loops
	Lists
	Nested Lists
	Tuples
	For Loops
	Pretty Print
	Terminology

	2.6.2 Example: Analyzing List Data
	Problem
	Solution

	2.6.3 How to Find More Python Information

	2.7 Exercises

	3 Functions and Branching
	3.1 Functions
	3.1.1 Functions of One Variable
	3.1.2 Local and Global Variables
	3.1.3 Multiple Arguments
	3.1.4 Multiple Return Values
	3.1.5 Functions with No Return Values
	3.1.6 Keyword Arguments
	Example: Function with Default Parameters
	Example: Computing a Sum with Default Tolerance

	3.1.7 Doc Strings
	3.1.8 Function Input and Output
	3.1.9 Functions as Arguments to Functions
	The Behavior of the Numerical Derivative as h → 0

	3.1.10 The Main Program
	3.1.11 Lambda Functions

	3.2 Branching
	3.2.1 If-Else Blocks
	3.2.2 Inline If Tests

	3.3 Mixing Loops, Branching, and Functions in Bioinformatics Examples
	3.3.1 Counting Letters in DNA Strings
	List Iteration
	String Iteration
	Program Flow
	Index Iteration
	While Loops
	Summing a Boolean List
	Inline If Test
	Using Boolean Values Directly
	List Comprehensions
	Using a Sum Iterator
	Extracting Indices
	Using Python's Library

	3.3.2 Efﬁciency Assessment
	Generating Random DNA Strings
	Measuring CPU Time

	3.4 Summary
	3.4.1 Chapter Topics
	User-Deﬁned Functions
	Keyword Arguments
	If Tests
	Inline If Tests
	Terminology

	3.4.2 Example: Numerical Integration
	Problem
	Solution

	3.5 Exercises

	4 Input Data and Error Handling
	4.1 Asking Questions and Reading Answers
	4.1.1 Reading Keyboard Input
	4.1.2 The Magic “eval” Function
	4.1.3 The Magic “exec” Function
	4.1.4 Turning String Expressions into Functions

	4.2 Reading from the Command Line
	4.2.1 Providing Input on the Command Line
	4.2.2 A Variable Number of Command-Line Arguments
	4.2.3 More on Command-Line Arguments
	4.2.4 Option-Value Pairs on the Command Line

	4.3 Handling Errors
	4.3.1 Exception Handling
	Testing for a Speciﬁc Exception
	Examples on Exception Types
	Digression

	4.3.2 Raising Exceptions
	Example

	4.4 A Glimpse of Graphical User Interfaces
	4.5 Making Modules
	4.5.1 Example: Interest on Bank Deposits
	4.5.2 Collecting Functions in a Module File
	Test Block
	Flexible Test Blocks

	4.5.3 Using Modules

	4.6 Summary
	4.6.1 Chapter Topics
	Question and Answer Input
	Getting Command-Line Arguments
	Using Option-Value Pairs
	Generating Code on the Fly
	Turning String Formulas into Python Functions
	Handling Exceptions
	Raising Exceptions
	Modules

	4.6.2 Example: Bisection Root Finding
	Problem
	Solution
	Veriﬁcation
	Making a Function
	Making a Module
	Using the Module
	A Flexible Program for Solving f(x) = 0

	4.7 Exercises

	5 Array Computing and Curve Plotting
	5.1 Vectors
	5.1.1 The Vector Concept
	5.1.2 Mathematical Operations on Vectors
	5.1.3 Vector Arithmetics and Vector Functions

	5.2 Arrays in Python Programs
	5.2.1 Using Lists for Collecting Function Data
	5.2.2 Basics of Numerical Python Arrays
	5.2.3 Computing Coordinates and Function Values
	5.2.4 Vectorization

	5.3 Curve Plotting
	5.3.1 Matplotlib; Pylab
	A Basic Plot
	Decorating the Plot
	Plotting Multiple Curves
	Placing Several Plots in One Figure

	5.3.2 Matplotlib; Pyplot
	5.3.3 SciTools and Easyviz
	Importing SciTools and Easyviz
	A Basic Plot
	Decorating the Plot
	Plotting Multiple Curves
	Changing Backend
	Placing Several Plots in One Figure

	5.3.4 Making Animations
	Example
	Animation in Matplotlib
	Remarks on Filenames
	Movie Formats

	5.3.5 Curves in Pure Text

	5.4 Plotting Difﬁculties
	5.4.1 Piecewisely Deﬁned Functions
	Example: The Heaviside Function
	Example: A Hat Function

	5.4.2 Rapidly Varying Functions

	5.5 More Advanced Vectorization of Functions
	5.5.1 Vectorizing StringFunction Objects
	5.5.2 Vectorization of the Heaviside Function
	Loop
	Automatic Vectorization
	Mixing Boolean and Floating-Point Calculations
	Manual Vectorization

	5.5.3 Vectorization of a Hat Function

	5.6 More on Numerical Python Arrays
	5.6.1 Copying Arrays
	5.6.2 In-Place Arithmetics
	5.6.3 Allocating Arrays
	5.6.4 Generalized Indexing
	5.6.5 Testing for the Array Type
	Example: Vectorizing a Constant Function

	5.6.6 Compact Syntax for Array Generation
	5.6.7 Shape Manipulation

	5.7 Higher-Dimensional Arrays
	5.7.1 Matrices and Arrays
	5.7.2 Two-Dimensional Numerical Python Arrays
	5.7.3 Array Computing
	Remark

	5.7.4 Two-Dimensional Arrays and Functions of Two Variables
	5.7.5 Matrix Objects

	5.8 Summary
	5.8.1 Chapter Topics
	Array Computing
	Plotting Curves
	Making Movies

	5.8.2 Example: Animating a Function
	Problem
	Solution
	Scaling

	5.9 Exercises

	6 Files, Strings, and Dictionaries
	6.1 Reading Data from File
	6.1.1 Reading a File Line by Line
	For Loop over Lines
	While Loop over Lines
	Reading a File into a String

	6.1.2 Reading a Mixture of Text and Numbers
	6.1.3 What Is a File, Really?
	Pure Text Files
	Word Processor Files
	Image Files
	Music Files
	PDF Files
	Remarks

	6.2 Dictionaries
	6.2.1 Making Dictionaries
	6.2.2 Dictionary Operations
	Remark

	6.2.3 Example: Polynomials as Dictionaries
	6.2.4 Dictionaries with Default Values and Ordering
	Dictionaries with Default Values
	Ordered Dictionaries

	6.2.5 Example: File Data in Dictionaries
	Problem
	Solution

	6.2.6 Example: File Data in Nested Dictionaries
	Problem
	Algorithm
	Implementation
	Dissection

	6.2.7 Example: Comparing Stock Prices
	Problem
	Solution
	Generalization

	6.3 Strings
	6.3.1 Common Operations on Strings
	Substring Speciﬁcation
	Searching for Substrings
	Substitution
	String Splitting
	Upper and Lower Case
	Strings Are Constant
	Strings with Digits Only
	Whitespace
	Joining Strings

	6.3.2 Example: Reading Pairs of Numbers
	Problem
	Solution

	6.3.3 Example: Reading Coordinates
	Problem
	Solution 1: Substring Extraction
	Solution 2: String Search
	Solution 3: String Split

	6.4 Reading Data from Web Pages
	6.4.1 About Web Pages
	6.4.2 How to Access Web Pages in Programs
	6.4.3 Example: Reading Pure Text Files
	6.4.4 Example: Extracting Data from HTML

	6.5 Writing Data to File
	6.5.1 Example: Writing a Table to File
	Problem
	Solution

	6.5.2 Standard Input and Output as File Objects
	Redirecting Standard Input, Output, and Error
	Note

	6.5.3 Reading and Writing Spreadsheet Files
	Reading CSV Files
	Processing Data
	Writing CSV Files
	Remark
	Representing Number Cells with Numerical Python Arrays

	6.6 Examples from Analyzing DNA
	6.6.1 Computing Frequencies
	Separate Frequency Lists
	Nested List
	Dictionary for More Convenient Indexing
	Numerical Python Array
	Dictionary of Lists
	Dictionary of Dictionaries
	Using Dictionaries with Default Values
	Remark
	Using Arrays and Vectorization

	6.6.2 Analyzing the Frequency Matrix
	List of Lists Frequency Matrix
	Dict of Dicts Frequency Matrix

	6.6.3 Finding Base Frequencies
	6.6.4 Translating Genes into Proteins
	6.6.5 Some Humans Can Drink Milk, While Others Cannot

	6.7 Summary
	6.7.1 Chapter Topics
	File Operations
	Downloading Internet Files
	Dictionaries
	Strings

	6.7.2 Example: A File Database
	Problem
	Solution

	6.8 Exercises

	7 Introduction to Classes
	7.1 Simple Function Classes
	7.1.1 Problem: Functions with Parameters
	Problem
	A Bad Solution: Global Variables

	7.1.2 Representing a Function as a Class
	Implementation
	Usage and Dissection
	The self Variable
	Extension of the Class
	Remark
	Using Methods as Ordinary Functions
	Doc Strings

	7.1.3 Another Function Class Example
	Remark

	7.1.4 Alternative Function Class Implementations
	7.1.5 Making Classes Without the Class Construct
	First Remark
	Second Remark

	7.2 More Examples on Classes
	7.2.1 Bank Accounts
	7.2.2 Phone Book
	7.2.3 A Circle
	Remark

	7.3 Special Methods
	7.3.1 The Call Special Method
	7.3.2 Example: Automagic Differentiation
	Problem
	Solution
	Application: Newton's Method

	7.3.3 Example: Automagic Integration
	A Simple Implementation
	Remark

	7.3.4 Turning an Instance into a String
	7.3.5 Example: Phone Book with Special Methods
	Remark

	7.3.6 Adding Objects
	7.3.7 Example: Class for Polynomials
	Implementation
	Usage
	Pretty Print of Polynomials

	7.3.8 Arithmetic Operations and Other Special Methods
	7.3.9 Special Methods for String Conversion
	Recreating Objects from Strings

	7.4 Example: Class for Vectors in the Plane
	7.4.1 Some Mathematical Operations on Vectors
	7.4.2 Implementation
	7.4.3 Usage
	Comment

	7.5 Example: Class for Complex Numbers
	7.5.1 Implementation
	7.5.2 Illegal Operations
	7.5.3 Mixing Complex and Real Numbers
	Computer Science Discussion

	7.5.4 Special Methods for “Right” Operands
	Remark

	7.5.5 Inspecting Instances

	7.6 Static Methods and Attributes
	7.7 Summary
	7.7.1 Chapter Topics
	Classes
	Special Methods

	7.7.2 Example: Interval Arithmetics
	Problem
	Solution

	7.8 Exercises

	8 Random Numbers and Simple Games
	8.1 Drawing Random Numbers
	8.1.1 The Seed
	8.1.2 Uniformly Distributed Random Numbers
	8.1.3 Visualizing the Distribution
	8.1.4 Vectorized Drawing of Random Numbers
	Warning

	8.1.5 Computing the Mean and Standard Deviation
	8.1.6 The Gaussian or Normal Distribution

	8.2 Drawing Integers
	8.2.1 Random Integer Functions
	8.2.2 Example: Throwing a Die
	8.2.3 Drawing a Random Element from a List
	8.2.4 Example: Drawing Cards from a Deck
	8.2.5 Example: Class Implementation of a Deck

	8.3 Computing Probabilities
	8.3.1 Principles of Monte Carlo Simulation
	8.3.2 Example: Throwing Dice
	Straightforward Solution
	Vectorization
	Exact Solution
	A Game
	Decide If a Game Is Fair

	8.3.3 Example: Drawing Balls from a Hat
	8.3.4 Random Mutations of Genes
	A Simple Mutation Model
	Vectorized Version
	A Markov Chain Mutation Model

	8.3.5 Example: Policies for Limiting Population Growth

	8.4 Simple Games
	8.4.1 Guessing a Number
	The Game
	The Implementation

	8.4.2 Rolling Two Dice
	The Game
	The Implementation
	Example
	A Class Version

	8.5 Monte Carlo Integration
	8.5.1 Standard Monte Carlo Integration
	8.5.2 Area Computing by Throwing Random Points

	8.6 Random Walk in One Space Dimension
	8.6.1 Basic Implementation
	8.6.2 Visualization
	8.6.3 Random Walk as a Difference Equation
	8.6.4 Computing Statistics of the Particle Positions
	8.6.5 Vectorized Implementation

	8.7 Random Walk in Two Space Dimensions
	8.7.1 Basic Implementation
	8.7.2 Vectorized Implementation

	8.8 Summary
	8.8.1 Chapter Topics
	Drawing Random Numbers
	Typical Probability Computation
	Statistical Measures

	8.8.2 Example: Random Growth
	Problem
	Solution

	8.9 Exercises

	9 Object-Oriented Programming
	9.1 Inheritance and Class Hierarchies
	9.1.1 A Class for Straight Lines
	9.1.2 A First Try on a Class for Parabolas
	9.1.3 A Class for Parabolas Using Inheritance
	Program Flow

	9.1.4 Checking the Class Type
	9.1.5 Attribute Versus Inheritance
	9.1.6 Extending Versus Restricting Functionality
	9.1.7 Superclass for Deﬁning an Interface

	9.2 Class Hierarchy for Numerical Differentiation
	9.2.1 Classes for Differentiation
	Computer Science Remark

	9.2.2 A Flexible Main Program
	9.2.3 Extensions
	Application

	9.2.4 Alternative Implementation via Functions
	9.2.5 Alternative Implementation via Functional Programming
	9.2.6 Alternative Implementation via a Single Class
	Remark

	9.3 Class Hierarchy for Numerical Integration
	9.3.1 Numerical Integration Methods
	9.3.2 Classes for Integration
	9.3.3 Using the Class Hierarchy
	9.3.4 About Object-Oriented Programming

	9.4 Class Hierarchy for Making Drawings
	9.4.1 Using the Object Collection
	Basic Drawing
	Groups of Objects
	Changing Line Styles and Colors
	The Figure Composition as an Object Hierarchy
	Animation: Translating the Vehicle
	Animation: Rolling the Wheels

	9.4.2 Example of Classes for Geometric Objects
	Simple Geometric Objects
	Class Curve
	Compound Geometric Objects

	9.4.3 Adding Functionality via Recursion
	Basic Principles of Recursion
	Explaining Recursion

	9.4.4 Scaling, Translating, and Rotating a Figure
	Scaling
	Translation
	Rotation

	9.5 Classes for DNA Analysis
	9.5.1 Class for Regions
	9.5.2 Class for Genes
	Basic Features of class Gene
	Flexible Constructor
	Other Methods

	9.5.3 Subclasses
	Acknowledgments

	9.6 Summary
	9.6.1 Chapter Topics
	Subclass Example
	Subclassing in General

	9.6.2 Example: Input Data Reader
	Problem
	Solution
	Prompting the User
	Reading from File
	Reading from the Command Line
	Reading from a GUI
	More Flexibility in the Superclass
	Demonstrating the Tool

	9.7 Exercises

	A Sequences and Difference Equations
	A.1 Mathematical Models Based on Difference Equations
	A.1.1 Interest Rates
	A.1.2 The Factorial as a Difference Equation
	A.1.3 Fibonacci Numbers
	A.1.4 Growth of a Population
	A.1.5 Logistic Growth
	A.1.6 Payback of a Loan
	A.1.7 The Integral as a Difference Equation
	A.1.8 Taylor Series as a Difference Equation
	A.1.9 Making a Living from a Fortune
	A.1.10 Newton's Method
	A.1.11 The Inverse of a Function

	A.2 Programming with Sound
	A.2.1 Writing Sound to File
	A.2.2 Reading Sound from File
	A.2.3 Playing Many Notes
	A.2.4 Music of a Sequence
	Problem
	Solution

	A.3 Exercises

	B Introduction to Discrete Calculus
	B.1 Discrete Functions
	B.1.1 The Sine Function
	B.1.2 Interpolation
	B.1.3 Evaluating the Approximation
	B.1.4 Generalization

	B.2 Differentiation Becomes Finite Differences
	B.2.1 Differentiating the Sine Function
	B.2.2 Differences on a Mesh
	B.2.3 Generalization

	B.3 Integration Becomes Summation
	B.3.1 Dividing into Subintervals
	B.3.2 Integration on Subintervals
	B.3.3 Adding the Subintervals
	B.3.4 Generalization

	B.4 Taylor Series
	B.4.1 Approximating Functions Close to One Point
	B.4.2 Approximating the Exponential Function
	B.4.3 More Accurate Expansions
	B.4.4 Accuracy of the Approximation
	B.4.5 Derivatives Revisited
	B.4.6 More Accurate Difference Approximations
	B.4.7 Second-Order Derivatives

	B.5 Exercises

	C Introduction to Differential Equations
	C.1 The Simplest Case
	C.2 Exponential Growth
	Analytical Solution
	Numerical Solution

	C.3 Logistic Growth
	C.4 A Simple Pendulum
	C.5 A Model for the Spread of a Disease
	C.6 Exercises

	D A Complete Differential Equation Project
	D.1 About the Problem: Motion and Forces in Physics
	D.1.1 The Physical Problem
	Goal of the Computations
	The Key Quantities

	D.1.2 The Computational Algorithm
	D.1.3 Derivation of the Mathematical Model
	D.1.4 Derivation of the Algorithm

	D.2 Program Development and Testing
	D.2.1 Implementation
	D.2.2 Callback Functionality
	D.2.3 Making a Module
	D.2.4 Veriﬁcation

	D.3 Visualization
	D.3.1 Simultaneous Computation and Plotting
	Fixing Axes

	D.3.2 Some Applications
	D.3.3 Remark on Choosing Δt
	D.3.4 Comparing Several Quantities in Subplots
	D.3.5 Comparing Approximate and Exact Solutions
	D.3.6 Evolution of the Error as Δt Decreases

	D.4 Exercises

	E Programming of Differential Equations
	E.1 Scalar Ordinary Differential Equations
	E.1.1 Examples on Right-Hand-Side Functions
	E.1.2 The Forward Euler Scheme
	E.1.3 Function Implementation
	E.1.4 Verifying the Implementation
	E.1.5 From Discrete to Continuous Solution
	E.1.6 Switching Numerical Method
	E.1.7 Class Implementation
	Class Wrapping of a Function
	Switching Numerical Method
	A More Flexible Class

	E.1.8 Example: Logistic Growth

	E.2 Systems of Ordinary Differential Equations
	E.2.1 Mathematical Problem
	E.2.2 Example of a System of ODEs
	E.2.3 From Scalar ODE Code to Systems
	Function Implementation
	Allowing Lists
	Class Implementation

	E.2.4 Numerical Methods
	E.2.5 The ODE Solver Class Hierarchy
	The Superclass
	The Forward Euler Method
	Remark
	The 4th-order Runge-Kutta Method

	E.2.6 The Backward Euler Method
	E.2.7 Application 1: u' = -u
	E.2.8 Application 2: The Logistic Equation
	Basic Problem and Solver Classes
	Computing an Appropriate Δt
	Dealing with Time-Dependent Coefﬁcients
	Reading Input

	E.2.9 Application 3: An Oscillating System
	E.2.10 Application 4: The Trajectory of a Ball
	E.2.11 Further Developments of ODESolver

	E.3 Exercises

	F Debugging
	F.1 Using a Debugger
	F.2 How to Debug
	F.2.1 A Recipe for Program Writing and Debugging
	F.2.2 Application of the Recipe
	Problem
	Solution
	Reﬁning the User Interface

	G Migrating Python to Compiled Code
	G.1 Pure Python Code for Monte Carlo Simulation
	G.1.1 The Computational Problem
	G.1.2 A Scalar Python Implementation
	G.1.3 A Vectorized Python Implementation

	G.2 Migrating Scalar Python Code to Cython
	G.2.1 A Plain Cython Implementation
	G.2.2 A Better Cython Implementation

	G.3 Migrating Code to C
	G.3.1 Writing a C Program
	G.3.2 Migrating Loops to C Code via F2PY
	G.3.3 Migrating Loops to C Code via Cython
	G.3.4 Comparing Efﬁciency

	H Technical Topics
	H.1 Different Ways of Running Python Programs
	H.1.1 Executing Python Programs in IPython
	H.1.2 Executing Python Programs on Unix
	H.1.3 Executing Python Programs on Windows
	Double-Clicking Python Files
	Gnuplot Plots on Windows

	H.1.4 Executing Python Programs on Macintosh
	H.1.5 Making a Complete Stand-Alone Executable

	H.2 Integer and Float Division
	H.3 Visualizing a Program with Lumpy
	H.4 Doing Operating System Tasks in Python
	H.5 Variable Number of Function Arguments
	H.5.1 Variable Number of Positional Arguments
	Example

	H.5.2 Variable Number of Keyword Arguments
	Example

	H.6 Evaluating Program Efﬁciency
	H.6.1 Making Time Measurements
	The time Module
	The timeit Module
	Hardware Information

	H.6.2 Proﬁling Python Programs

	References
	Index

