import numpy
from ODESolver import RungeKutta4

def rhs(u, t):
R =1

return alpha*u*(1 - u/R)

Hans Petter Langtangen

A Primer on Scientific
Programming
with Python

Third Edition

Editorial Board
T.).Barth
M. Griebel

@ Springer T. Schlick

http://www.springer.com
http://www.springer.com/mycopy

Texts in Computational Science
and Engineering

Editors

Timothy J. Barth
Michael Griebel
David E. Keyes
Risto M. Nieminen
Dirk Roose

Tamar Schlick

http://www.springer.com
http://www.springer.com/mycopy

Hans Petter Langtangen

A Primer on Scientific
Programming
with Python

Third Edition

@ Springer

Hans Petter Langtangen
Simula Research Laboratory
Lysaker, Fornebu

Norway

On leave from:

Department of Informatics
University of Oslo
Oslo, Norway

ISSN 1611-0994 Texts in Computational Science and Engineering

ISBN 978-3-642-30292-3 ISBN 978-3-642-30293-0 (eBook)
DOI 10.1007/978-3-642-30293-0

Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2012942179

Mathematics Subject Classification (2000): 26-01, 34A05, 34A30, 34A34, 39-01, 40-01, 65D15, 65D25,
65D30, 68-01, 68NO1, 68N19, 68N30, 70-01, 92D25, 97-04, 97U50

© Springer-Verlag Berlin Heidelberg 2009, 2011, 2012

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this pub-
lication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s
location, in its current version, and permission for use must always be obtained from Springer. Permis-
sions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable
to prosecution under the respective Copyright Law.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

While the advice and information in this book are believed to be true and accurate at the date of publica-
tion, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors
or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

http://www.springer.com
http://www.springer.com/mycopy

Preface

The aim of this book is to teach computer programming using exam-
ples from mathematics and the natural sciences. We have chosen to use
the Python programming language because it combines remarkable ex-
pressive power with very clean, simple, and compact syntax. Python is
easy to learn and very well suited for an introduction to computer pro-
gramming. Python is also quite similar to Matlab and a good language
for doing mathematical computing. It is easy to combine Python with
compiled languages, like Fortran, C, and C++, which are widely used
languages for scientific computations. A seamless integration of Python
with Java is offered by a special version of Python called Jython.

The examples in this book integrate programming with applications
to mathematics, physics, biology, and finance. The reader is expected to
have knowledge of basic one-variable calculus as taught in mathematics-
intensive programs in high schools. It is certainly an advantage to take
a university calculus course in parallel, preferably containing both clas-
sical and numerical aspects of calculus. Although not strictly required,
a background in high school physics makes many of the examples more
meaningful.

Many introductory programming books are quite compact and focus
on listing functionality of a programming language. However, learning
to program is learning how to think as a programmer. This book has its
main focus on the thinking process, or equivalently: programming as a
problem solving technique. That is why most of the pages are devoted
to case studies in programming, where we define a problem and explain
how to create the corresponding program. New constructions and pro-
gramming styles (what we could call theory) is also usually introduced
via examples. Special attention is paid to verification of programs and
to finding errors. These topics are very demanding for mathematical
software, because the unavoidable numerical approximation errors are
possibly mixed with programming mistakes.

vi

Preface

By studying the many examples in the book, I hope readers will
learn how to think right and thereby write programs in a quicker and
more reliable way. Remember, nobody can learn programming by just
reading — one has to solve a large amount of exercises hands on. The
book is therefore full of exercises of various types: modifications of
existing examples, completely new problems, or debugging of given
programs.

To work with this book, I recommend to use Python version 2.7 (al-
though version 2.6 will work for most of the material). For Chapters 5-9
and Appendices A—E you need the NumPy, Matplotlib, SciTools pack-
ages, and for Appendix G Cython is also required. There is a web page
associated with this book, http:/hplgit.github.com/scipro-primer,
which lists the software you need and explains briefly how to install
it. This page also contains all the files associated with the program
examples in this book.

Python Version 2 or 8 A common problem among Python program-
mers is to choose between version 2 or 3, which at the time of this
writing means choosing between version 2.7 and 3.3. The general rec-
ommendation is to go for version 3, but programs are then not com-
patible with version 2 and vice versa. There is still a problem that
much useful mathematical software in Python has not yet been ported
to version 3. Therefore, scientific computing with Python still goes
mostly with version 2. A widely used strategy for software developers
who want to write Python code that works with both versions, is to
develop for v2.7, which is very close to what is accepted in version 3,
and then use the translation tool 2to3 to automatically translate the
code to version 3.

When using v2.7, one should employ the newest syntax and modules
that make the differences between version 2 and 3 very small. This
strategy is adopted in the present book. Only two differences between
versions 2 and 3 are expected to be significant for the programs in
the book: a/b implies float division in version 3 if a and b are inte-
gers, and print ’Hello’ in version 2 must be turned into a function
call print(’Hello’) in version 3. None of these differences should lead
to any annoying problems when future readers study the book’s v2.7
examples, but program in version 3. Anyway, running 2to3 on the ex-
ample files generates the corresponding version 3 code.

Contents. Chapter 1 introduces variables, objects, modules, and text
formatting through examples concerning evaluation of mathematical
formulas. Chapter 2 presents programming with while and for loops
as well as lists, including nested lists. The next chapter deals with two
other fundamental concepts in programming: functions and if-else
tests. Successful further reading of the book demands that Chapters 1—
3 are digested.

http://hplgit.github.com/scipro-primer

Preface

How to read data into programs and deal with errors in input are the
subjects of Chapter 4. Chapter 5 introduces arrays and array computing
(including vectorization) and how this is used for plotting y = f(x)
curves and making animation of curves. Many of the examples in the
first five chapters are strongly related. Typically, formulas from the first
chapter are used to produce tables of numbers in the second chapter.
Then the formulas are encapsulated in functions in the third chapter.
In the next chapter, the input to the functions are fetched from the
command line, or from a question-answer dialog with the user, and
validity checks of the input are added. The formulas are then shown
as graphs in Chapter 5. After having studied Chapters 1-5, the reader
should have enough knowledge of programming to solve mathematical
problems by what many refer to as “Matlab-style” programming.

Chapter 6 explains how to work with files and text data. Class pro-
gramming, including user-defined types for mathematical computations
(with overloaded operators), is introduced in Chapter 7. Chapter 8
deals with random numbers and statistical computing with applica-
tions to games and random walks. Object-oriented programming, in the
meaning of class hierarchies and inheritance, is the subject of Chap-
ter 9. The key examples here deal with building toolkits for numerical
differentiation and integration as well as graphics.

Appendix A introduces mathematical modeling, using sequences and
difference equations. We also treat sound as a sequence. Only program-
ming concepts from Chapters 1-5 are used in this appendix, the aim
being to consolidate basic programming knowledge and apply it to
mathematical problems. Some important mathematical topics are in-
troduced via difference equations in a simple way: Newton’s method,
Taylor series, inverse functions, and dynamical systems.

Appendix B deals with functions on a mesh, numerical differenti-
ation, and numerical integration. A simple introduction to ordinary
differential equations and their numerical treatment is provided in Ap-
pendix C. Appendix D shows how a complete project in physics can be
solved by mathematical modeling, numerical methods, and program-
ming elements from Chapters 1-5. This project is a good example on
problem solving in computational science, where it is necessary to in-
tegrate physics, mathematics, numerics, and computer science.

How to create software for solving systems of ordinary differential
equations, primarily using classes and object-oriented programming,
is the subject of Appendix E. The material in this appendix brings
together many of the programming concepts from Chapters 1-9 in a
mathematical setting and ends up with a flexible and general tool for
solving differential equations.

Appendix F is devoted to the art of debugging, and in fact problem
solving in general. Speeding up numerical computations in Python by

vii

viii

Preface

migrating code to C via Cython is exemplified in Appendix G. Finally,
Appendix H deals with various more advanced technical topics.

Most of the examples and exercises in this book are quite short.
However, many of the exercises are related, and together they form
larger projects, for example on Fourier Series (3.13, 4.18-4.20, 5.30,
5.31), numerical integration (3.5-3.8, 5.38-5.39, A.16), Taylor series
(3.30, 5.21, 5.28, A.18-A.19, 7.29), piecewise constant functions (3.24—
3.28, 5.23, 5.36-5.37, 7.19-7.25), inverse functions (7.26, E.7-E.10),
falling objects (E.11-E.13, E.31-E.32), oscillatory population growth
(A.23-A.25, 7.40-7.41), epidemic disease modeling (E.35-E.42), analy-
sis of web data (6.22, 6.27-6.29), optimization and finance (A.26, 8.44—
8.45), statistics and probability (4.24-4.26, 8.23-8.25), hazard games
(8.8-8.14), random walk and statistical physics (8.34-8.42), noisy data
analysis (8.46-8.50), numerical methods (5.14-5.16, 7.8-7.9, A.12, 7.28,
9.16-9.18, E.21-E.29), building a calculus calculator (7.42, 7.43, 9.19,
9.20), and creating a toolkit for simulating vibrating engineering sys-
tems (E.44-E.49).

Chapters 1-9 and Appendix E have from 2007 formed the core of an
introductory first semester course on scientific programming (INF1100)
at the University of Oslo.

Changes to the First Edition. Besides numerous corrections of mis-
prints, the second edition features a major reorganization of several
chapters. Chapter 2 in the first edition, Basic Constructions, was a
comprehensive chapter, both with respect to length and topics. This
chapter has therefore been split in two for the second edition: a new
Chapter 2 Loops and Lists and a new Chapter 3 Functions and Branch-
ing. A new Chapter 2.1.4 explicitly explains how to implement a sum-
mation expression by a loop, and later examples present alternative
implementations.

All text and program files that used the getopt module to parse
command-line options in the first edition now make use of the sim-
pler and more flexible argparse module (new in Python v2.7/3.1). The
material on curve plotting in Chapter 5 has been thoroughly revised.
Now we give an introduction to plotting with Matplotlib as well as
SciTools/Easyviz.

While the first edition almost exclusively used “star import” for con-
venience (e.g., from numpy import * and from scitools.std import *),
the second edition tries to adhere to the standard import numpy as
np. However, in mathematical formulas that are to work with scalar
and array variables, we do not want an explicit prefix. Avoiding the
namespace prefixes is important for making formulas as close to the
mathematical notation as possible as well as for making the transition
from or to Matlab smooth. The two import styles have different merits
and applications. The choice of style in various examples is carefully
thought through in the second edition.

Preface

Chapter 5 in the first edition, Sequences and Difference Equations,
has now become Appendix A. Chapter 6 in the first edition, Files,
Strings, and Dictionaries, has been substantially revised. Chapter 6.4
on downloading and interpreting data from web pages have now com-
pletely new examples. Exercises are also reworked to fit with the new
examples.

The material on differential equations in chapters on classes (Ch. 7
and 9 in the first edition) has been extracted, reworked, slightly ex-
panded, and placed in Appendix E. This restructuring allows a more
flexible treatment of differential equations, and parts of this important
topic can be addressed right after Chapter 3, if desired.

To distinguish between Python’s random module and the one in
numpy, we have in Chapter 8 changed practice compared with the first
edition. Now random always refers to Python’s random module, while
the random module in numpy is normally invoked as np.random (or oc-
casionally as numpy.random). The associated software has been revised
similarly.

Changes to the Second Edition. Many typos have been fixed in the
third edition, a lot of examples have been improved, some material has
been reorganized and extended, some material is new, several exercises
have been removed and many new ones added, and numerous exercises
are reformulated after feedback from teachers. The associated SciTools
package is also extensively upgraded.

The reorganized and extended material covers Chapter 4.2.4
on command-line parsing, Chapter 5.5 on vectorization, and Ap-
pendix E.2.8 on building simulation software for ODEs. The new ma-
terial consists of Chapter 6.2.4 on dictionaries with default values and
ordering, Chapter 9.4 on making a drawing program, Appendix A.1.7
on integrals as difference equations, Appendix G on using Cython and
combining Python with fast C code, and the bioinformatics examples
in Chapters 3.3, 6.6, 8.3.4, and 9.5.

Four new projects are added: numerical integration (Exercises 3.5—
3.8, 5.38-5.39, A.16), piecewise constant functions (Exercises 3.24-3.28,
5.23, 5.36-5.37, 7.19-7.25), inverse functions (Exercises 7.26, E.7-E.10),
and epidemic modeling (Exercises E.35-E.42).

The software for ODEs derived in Appendix E and the drawing pro-
gram from Chapter 9.4 have been much further developed into the
packages Odespy and Pysketcher, both available from github.com.

Acknowledgments. First, I want to express my thanks to Aslak Tveito
for his enthusiastic role in the initiation of this book project and for
writing Appendices B and C about numerical methods. Without Aslak
there would be no book. Another key contributor is Ilmar Wilbers.
His extensive efforts with assisting the book project and help estab-
lishing the associated course (INF1100) at the University of Oslo are

Preface

greatly appreciated. Without Ilmar and his solutions to numerous tech-
nical problems the book would never have been completed. Johannes
H. Ring also deserves a special acknowledgment for the development of
the Easyviz graphics tool and for his careful maintenance and support
of software associated with the book. Professor Loyce Adams studied
the entire book, solved all the exercises, found numerous errors, and
suggested many improvements. Her contributions are so much appre-
ciated. I also want to thank Geir Kjetil Sandve for being the primary
author of the third edition’s new series of computational bioinformat-
ics examples in Chapters 3.3, 6.6, 8.3.4, and 9.5, with contributions
from Sveinung Gundersen, Ksenia Khelik, Halfdan Rydbeck, and Kai
Trengereid.

Several people have helped to make substantial improvements of the
text, the exercises, and the associated software components. The author
is thankful to Ingrid Eide, Stale Zerener Haugneess, Kristian Hiorth,
Arve Knudsen, Tobias Vidarssgnn Langhoff, Martin Vonheim Larsen,
Kine Veronica Lund, Solveig Masvie, Hakon Mgller, Rebekka Mgrken,
Mathias Nedrebg, Marit Sandstad, Helene Norheim Semmerud, Lars
Storjord, Fredrik Heffer Valdmanis, and Torkil Vederhus for their con-
tributions. Hakon Adler is greatly acknowledged for his careful reading
of early various versions of the manuscript. The professors Fred Es-
pen Bent, Ornulf Borgan, Geir Dahl, Knut Mgrken, and Geir Pedersen
have contributed with many exciting exercises from various application
fields. Great thanks also go to Jan Olav Langseth for creating the cover
image.

This book and the associated course are parts of a comprehensive re-
form at the University of Oslo, called Computing in Science Education.
The goal of the reform is to integrate computer programming and sim-
ulation in all bachelor courses in natural science where mathematical
models are used. The present book lays the foundation for the modern
computerized problem solving technique to be applied in later courses.
It has been extremely inspiring to work with the driving forces behind
this reform, especially the professors Morten Hjorth—Jensen, Anders
Malthe—-Sgrenssen, Knut Mgrken, and Arnt Inge Vistnes.

The excellent assistance from the Springer system, in particular
Martin Peters, Thanh-Ha Le Thi, Ruth Allewelt, Peggy Glauch-Ruge,
Nadja Kroke, Thomas Schmidt, Patrick Waltemate, Donatas Akma-
navicius, and Edita Baronaité, is highly appreciated, and ensured a
smooth and rapid production of all editions of this book.

Oslo Hans Petter Langtangen

1

Contents

Computing with Formulas

1.1

1.2
1.3

1.4

1.5

1.6

The First Programming Encounter: A Formula........
1.1.1 Using a Program as a Calculator
1.1.2 About Programs and Programming
1.1.3 Tools for Writing Programs
1.1.4 Using Idle to Write the Program..............
1.1.5 How to Run the Program
1.1.6 Verifying the Result..................
1.1.7 Using Variables
1.1.8 Names of Variables
1.1.9 Reserved Words in Python................ ...
1.1.10 Commentscouiniii ..
1.1.11 Formatting Text and Numbers
Computer Science Glossary,
Another Formula: Celsius-Fahrenheit Conversion
1.3.1 Potential Error: Integer Division..............
1.3.2 Objectsin Python
1.3.3 Avoiding Integer Division....................
1.3.4 Arithmetic Operators and Precedence
Evaluating Standard Mathematical Functions
1.4.1 Example: Using the Square Root Function
1.4.2 Example: Using More Mathematical Functions .
1.4.3 A First Glimpse of Round-Off Errors..........
Interactive Computing i,
1.5.1 Using the Python Shell
1.5.2 Type Conversionc.couuuuuninrn..
1.5.3 IPython i
Complex Numbers.
1.6.1 Complex Arithmetics in Python

© 00 00 J = W NN - -

NN DD = = = =
R OO O = OO

xii

Contents

1.6.2 Complex Functions in Python 33
1.6.3 Unified Treatment of Complex and Real Functions 34
1.7 Summary ... 35
1.7.1 Chapter Topics, 35
1.7.2 Example: Trajectory of a Ball 39
1.7.3 About Typesetting Conventions in This Book ... 40
1.8 EXercises...... ..o 41
Loopsand Lists 49
2.1 While Loops 49
2.1.1 A Naive Solution 49
2.1.2 While Loops 50
2.1.3 Boolean Expressions 52
2.1.4 Loop Implementation of a Sum 54
2.2 LSS . . 59
2.2.1 Basic List Operations 55
2.2.2 For LOOpS ... vii i 58
2.3 Alternative Implementations with Lists and Loops. 60
2.3.1 While Loop Implementation of a For Loop 60
2.3.2 The Range Construction...................... 60
2.3.3 For Loops with List Indices 61
2.3.4 Changing List Elements 63
2.3.5 List Comprehension 63
2.3.6 Traversing Multiple Lists Simultaneously 64
2.4 Nested Listsot 64
2.4.1 A Table as a List of Rows or Columns.......... 65
2.4.2 Printing Objects. 66
2.4.3 Extracting Sublists 67
2.4.4 Traversing Nested Lists....................... 69
2.5 Tuples ..o 71
2.6 SUIMINATY « ottt ettt e e e e e 72
2.6.1 Chapter Topicsc.ooviiii i 72
2.6.2 Example: Analyzing List Data................. 75
2.6.3 How to Find More Python Information 78
2.7 EXEICISES . ..t vitt e 79
Functions and Branching......................... ... 87
3.1 Functionso i 87
3.1.1 Functions of One Variable 87
3.1.2 Local and Global Variables 89
3.1.3 Multiple Arguments.......................... 91
3.1.4 Multiple Return Values....................... 93
3.1.5 Functions with No Return Values 95
3.1.6 Keyword Arguments 96

3.1.7 Doc Stringsovii 99

Contents xiii

3.1.8 Function Input and Output 100
3.1.9 Functions as Arguments to Functions 100
3.1.10 The Main Program 102
3.1.11 Lambda Functions 103
3.2 Branching 104
3.2.1 If-Else Blockso i i 104
3.22 Inline If Tests 106

3.3 Mixing Loops, Branching, and Functions in
Bioinformatics Examples 107
3.3.1 Counting Letters in DNA Strings 107
3.3.2 Efficiency Assessment 113
3.4 SUIMIMATY « ot vttt e 115
3.4.1 Chapter Topicso, 115
3.4.2 Example: Numerical Integration 116
3.0 EXercises 120
4 Input Data and Error Handling 137
4.1 Asking Questions and Reading Answers 138
4.1.1 Reading Keyboard Input 138
4.1.2 The Magic “eval” Function 139
4.1.3 The Magic “exec” Function 143
4.1.4 Turning String Expressions into Functions 144
4.2 Reading from the Command Line 145
4.2.1 Providing Input on the Command Line 145
4.2.2 A Variable Number of Command-Line Arguments 146
4.2.3 More on Command-Line Arguments............ 147
4.2.4 Option—Value Pairs on the Command Line 148
4.3 Handling Errors........ i, 152
4.3.1 Exception Handling 153
4.3.2 Raising Exceptions........... 156
4.4 A Glimpse of Graphical User Interfaces 158
4.5 Making Modules i 161
4.5.1 Example: Interest on Bank Deposits............ 161
4.5.2 Collecting Functions in a Module File 162
4.5.3 Using Modules 167
4.6 SUININATY .o\ttt ettt et e ettt 169
4.6.1 Chapter TopiCcS .. oo vvvv e 169
4.6.2 Example: Bisection Root Finding 172
4.7 EXEICISES . ..ttt 180
5 Array Computing and Curve Plotting............... 187
5.1 VeCtors . ..ot 188
5.1.1 The Vector Concept.........coovvivinininnn... 188
5.1.2 Mathematical Operations on Vectors 189

5.1.3 Vector Arithmetics and Vector Functions 191

Xiv

Contents

5.2 Arrays in Python Programs 193
5.2.1 Using Lists for Collecting Function Data........ 193
5.2.2 Basics of Numerical Python Arrays 194
5.2.3 Computing Coordinates and Function Values.... 195
5.2.4 Vectorization................ 196

5.3 Curve Plotting i 198
5.3.1 Matplotlib; Pylab....... 198
5.3.2 Matplotlib; Pyplot 202
5.3.3 SciTools and Easyviz 204
5.3.4 Making Animations 209
5.3.5 Curves in Pure Text 214

5.4 Plotting Difficulties......... L 215
5.4.1 Piecewisely Defined Functions 216
5.4.2 Rapidly Varying Functions.................... 218

5.5 More Advanced Vectorization of Functions 219
5.5.1 Vectorizing StringFunction Objects 220
5.5.2 Vectorization of the Heaviside Function......... 221
5.5.3 Vectorization of a Hat Function 224

5.6 More on Numerical Python Arrays 226
5.6.1 Copying Arraysc.ooeuiiininin... 226
5.6.2 In-Place Arithmetics 227
5.6.3 Allocating Arrays...........cvuiiiinenan... 228
5.6.4 Generalized Indexing 228
5.6.5 Testing for the Array Type 229
5.6.6 Compact Syntax for Array Generation.......... 230
5.6.7 Shape Manipulation.......................... 230

5.7 Higher-Dimensional Arrays 231
5.7.1 Matrices and Arraysoiiiiii... 231
5.7.2 Two-Dimensional Numerical Python Arrays. 232
5.7.3 Array Computing, 235
5.7.4 Two-Dimensional Arrays and Functions of Two

Variables 235
5.7.5 Matrix Objects 236

5.8 SUMIMATY « vttt ettt e e e e e 237
5.8.1 Chapter Topicscoiiiii ... 237
5.8.2 Example: Animating a Function 239

5.9 EXErCISest 243

Files, Strings, and Dictionaries................... ... 257

6.1 Reading Data from File 257
6.1.1 Reading a File Line by Line................... 258
6.1.2 Reading a Mixture of Text and Numbers 261
6.1.3 What Is a File, Really? 262

6.2 Dictionaries 266

6.2.1 Making Dictionaries. 266

Contents

6.2.2 Dictionary Operations.
6.2.3 Example: Polynomials as Dictionaries
6.2.4 Dictionaries with Default Values and Ordering . .
6.2.5 Example: File Data in Dictionaries.............
6.2.6 Example: File Data in Nested Dictionaries
6.2.7 Example: Comparing Stock Prices
6.3 SErings.t
6.3.1 Common Operations on Strings
6.3.2 Example: Reading Pairs of Numbers
6.3.3 Example: Reading Coordinates
6.4 Reading Data from Web Pages................... ...
6.4.1 About Web Pages
6.4.2 How to Access Web Pages in Programs
6.4.3 Example: Reading Pure Text Files
6.4.4 Example: Extracting Data from HTML.........
6.5 Writing Datato File........
6.5.1 Example: Writing a Table to File
6.5.2 Standard Input and Output as File Objects
6.5.3 Reading and Writing Spreadsheet Files
6.6 Examples from Analyzing DNA
6.6.1 Computing Frequencies.......................
6.6.2 Analyzing the Frequency Matrix
6.6.3 Finding Base Frequencies
6.6.4 Translating Genes into Proteins
6.6.5 Some Humans Can Drink Milk, While Others

6.7 Summary
6.7.1 Chapter Topicso
6.7.2 Example: A File Database

6.8 EXercises

Introduction to Classes
7.1 Simple Function Classes..........
7.1.1 Problem: Functions with Parameters
7.1.2 Representing a Function as a Class.............
7.1.3 Another Function Class Example
7.1.4 Alternative Function Class Implementations.
7.1.5 Making Classes Without the Class Construct
7.2 More Examples on Classes.
7.2.1 Bank Accounts
7.2.2 Phone Book.......... i
723 ACircle
7.3 Special Methods il
7.3.1 The Call Special Method
7.3.2 Example: Automagic Differentiation............

XV

267
269
271
273
274
278
282
282
286
288
291
291
292
293
295
296
296
298
300
305
305
312
315
317

322
323
323
325
329

XVi

Contents

7.3.3 Example: Automagic Integration............... 364
7.3.4 Turning an Instance into a String 366
7.3.5 Example: Phone Book with Special Methods 367
7.3.6 Adding Objects, 369
7.3.7 Example: Class for Polynomials 369
7.3.8 Arithmetic Operations and Other Special
Methods........ i 373
7.3.9 Special Methods for String Conversion.......... 374
7.4 Example: Class for Vectors in the Plane 375
7.4.1 Some Mathematical Operations on Vectors. 376
7.4.2 Implementation 376
743 USAZE ..ot 378
7.5 Example: Class for Complex Numbers 379
7.5.1 Implementation 380
7.5.2 Illegal Operations.coviininon... 381
7.5.3 Mixing Complex and Real Numbers............ 382
7.5.4 Special Methods for “Right” Operands 384
7.5.5 Inspecting Instances 386
7.6 Static Methods and Attributes 387
T.7 SUMMATY ..ottt e et e et 388
7.7.1 Chapter Topicsoviii i 388
7.7.2 FExample: Interval Arithmetics................. 389
7.8 EXEICISESt vi e 395
Random Numbers and Simple Games 413
8.1 Drawing Random Numbers 414
81.1 TheSeedo 414
8.1.2 Uniformly Distributed Random Numbers 415
8.1.3 Visualizing the Distribution 416
8.1.4 Vectorized Drawing of Random Numbers 417
8.1.5 Computing the Mean and Standard Deviation ... 418
8.1.6 The Gaussian or Normal Distribution 419
8.2 Drawing Integers 420
8.2.1 Random Integer Functions 421
8.2.2 Example: Throwing a Die..................... 422
8.2.3 Drawing a Random Element from a List 422
8.2.4 Example: Drawing Cards from a Deck 423
8.2.5 Example: Class Implementation of a Deck 425
8.3 Computing Probabilities 428
8.3.1 Principles of Monte Carlo Simulation........... 428
8.3.2 Example: Throwing Dice 429
8.3.3 Example: Drawing Balls from a Hat 432
8.3.4 Random Mutations of Genes 434

8.4

8.3.5 Example: Policies for Limiting Population Growth 439
Simple Gamesooitti 442

Contents xvii

8.4.1 Guessing a Number 442
8.4.2 Rolling Two Dice 443
8.5 Monte Carlo Integration 446
8.5.1 Standard Monte Carlo Integration 446
8.5.2 Area Computing by Throwing Random Points. .. 448
8.6 Random Walk in One Space Dimension 450
8.6.1 Basic Implementation 451
8.6.2 Visualization 452
8.6.3 Random Walk as a Difference Equation......... 452
8.6.4 Computing Statistics of the Particle Positions ... 453
8.6.5 Vectorized Implementation.................... 454
8.7 Random Walk in T'wo Space Dimensions 456
8.7.1 Basic Implementation 456
8.7.2 Vectorized Implementation.................... 457
8.8 Summary 459
8.8.1 Chapter Topicsooviiii i 459
8.8.2 Example: Random Growth.................... 460
8.9 EXEerCisesot 466
9 Object-Oriented Programming 483
9.1 Inheritance and Class Hierarchies 483
9.1.1 A Class for Straight Lines 484
9.1.2 A First Try on a Class for Parabolas 485
9.1.3 A Class for Parabolas Using Inheritance 485
9.1.4 Checking the Class Type 487
9.1.5 Attribute Versus Inheritance 488
9.1.6 Extending Versus Restricting Functionality 489
9.1.7 Superclass for Defining an Interface 490
9.2 Class Hierarchy for Numerical Differentiation 492
9.2.1 Classes for Differentiation..................... 493
9.2.2 A Flexible Main Program 496
9.2.3 Extensionsc..o i 497
9.2.4 Alternative Implementation via Functions. 500
9.2.5 Alternative Implementation via Functional
Programming 501
9.2.6 Alternative Implementation via a Single Class ... 502
9.3 Class Hierarchy for Numerical Integration 504
9.3.1 Numerical Integration Methods 504
9.3.2 Classes for Integration........................ 505
9.3.3 Using the Class Hierarchy 509
9.3.4 About Object-Oriented Programming 511
9.4 Class Hierarchy for Making Drawings 513
9.4.1 Using the Object Collection 514
9.4.2 Example of Classes for Geometric Objects 523

9.4.3 Adding Functionality via Recursion 528

xviii

Contents

9.4.4 Scaling, Translating, and Rotating a Figure 531

9.5 Classes for DNA Analysis 534
9.5.1 Class for Regions o, 534
9.5.2 Classfor Genes.............coiiiiiii... 534
9.5.3 Subclasses 539

9.6 SUIMIMATY « .ttt ettt e e e e e 541
9.6.1 Chapter TopicS.......coviiinn... 541
9.6.2 Example: Input Data Reader................. 542

9.7 EXEerCISES . ..o vt i e 548

Sequences and Difference Equations................. 557

A.1 Mathematical Models Based on Difference Equations .. 558
A1l Interest Rates........... 559
A.1.2 The Factorial as a Difference Equation 561
A.1.3 Fibonacci Numbers 562
A.1.4 Growth of a Population 563
A.1.,5 Logistic Growth 564
A.1.6 Paybackofaloan.......................... 566
A.1.7 The Integral as a Difference Equation 567
A.1.8 Taylor Series as a Difference Equation......... 569
A.1.9 Making a Living from a Fortune 571
A.1.10 Newton’s Method........................... 571
A.1.11 The Inverse of a Function.................... 575

A.2 Programming with Sound LY
A.2.1 Writing Sound to File 578
A.2.2 Reading Sound from File 579
A.2.3 Playing Many Notes 580
A.2.4 Music of a Sequence 580

A3 EXErCiSes . .o oot 583

Introduction to Discrete Calculus 593

B.1 Discrete Functions. 593
B.1.1 The Sine Function 594
B.1.2 Imterpolation............. 596
B.1.3 Evaluating the Approximation 596
B.1.4 Generalization 597

B.2 Differentiation Becomes Finite Differences 599
B.2.1 Differentiating the Sine Function 600
B.2.2 Differencesona Mesh 600
B.2.3 Generalizationo 602

B.3 Integration Becomes Summation 603
B.3.1 Dividing into Subintervals 604
B.3.2 Integration on Subintervals 605
B.3.3 Adding the Subintervals 606

B.3.4 Generalization 607

Contents Xix

B.4 Taylor Series 609
B.4.1 Approximating Functions Close to One Point. ... 609
B.4.2 Approximating the Exponential Function 609
B.4.3 More Accurate Expansions.................... 610
B.4.4 Accuracy of the Approximation................ 612
B.4.5 Derivatives Revisited 614
B.4.6 More Accurate Difference Approximations 615
B.4.7 Second-Order Derivatives 617

B.5 Exerciseso 619

C Introduction to Differential Equations 625

C.1 The Simplest Caseoiiiiiiiiiiii.. 626

C.2 Exponential Growth 628

C.3 Logistic Growth...... i 633

C.4 A Simple Pendulum 634

C.5 A Model for the Spread of a Disease 637

C.6 EXErCiSes . .. ovt i e 639

D A Complete Differential Equation Project 641

D.1 About the Problem: Motion and Forces in Physics 641
D.1.1 The Physical Problem 641
D.1.2 The Computational Algorithm 644
D.1.3 Derivation of the Mathematical Model.......... 644
D.1.4 Derivation of the Algorithm 646

D.2 Program Development and Testing 648
D.2.1 Implementation 648
D.2.2 Callback Functionality 651
D.2.3 Makinga Module.............. 652
D.2.4 Verification 653

D.3 Visualization 655
D.3.1 Simultaneous Computation and Plotting 655
D.3.2 Some Applications 658
D.3.3 Remark on Choosing At 658
D.3.4 Comparing Several Quantities in Subplots 659
D.3.5 Comparing Approximate and Exact Solutions ... 660
D.3.6 Evolution of the Error as At Decreases 661

D4 EXercisesoouinii 665

E Programming of Differential Equations.............. 667

E.1 Scalar Ordinary Differential Equations 668
E.1.1 Examples on Right-Hand-Side Functions........ 668
E.1.2 The Forward Euler Scheme 670
E.1.3 Function Implementation 671
E.1.4 Verifying the Implementation 671
E.1.5 From Discrete to Continuous Solution 672

E.1.6 Switching Numerical Method 673

XX

Contents

E.1.7 Class Implementation 674
E.1.8 Example: Logistic Growth 677
E.2 Systems of Ordinary Differential Equations 677
E.2.1 Mathematical Problem 678
E.2.2 Example of a System of ODEs 680
E.2.3 From Scalar ODE Code to Systems 681
E.2.4 Numerical Methods 684
E.2.5 The ODE Solver Class Hierarchy 685
E.2.6 The Backward Euler Method 688
E.2.7 Application 1: v/ = —w 691
E.2.8 Application 2: The Logistic Equation.......... 693
E.2.9 Application 3: An Oscillating System.......... 700
E.2.10 Application 4: The Trajectory of a Ball........ 702
E.2.11 Further Developments of ODESolver 704
E.3 Exerciseso 705
Debugging 735
F.1 Using a Debugger 735
F2 HowtoDebug i 738
F.2.1 A Recipe for Program Writing and Debugging.. 738
F.2.2 Application of the Recipe 740
Migrating Python to Compiled Code 753
G.1 Pure Python Code for Monte Carlo Simulation. 754
G.1.1 The Computational Problem 754
G.1.2 A Scalar Python Implementation 754
G.1.3 A Vectorized Python Implementation 755
G.2 Migrating Scalar Python Code to Cython 757
G.2.1 A Plain Cython Implementation 757
G.2.2 A Better Cython Implementation 759
G.3 Migrating Codeto C 761
G.3.1 Writing a C Program 761
G.3.2 Migrating Loops to C Code via F2PY 762
G.3.3 Migrating Loops to C Code via Cython........ 764
G.3.4 Comparing Efficiency 765
Technical Topics 767
H.1 Different Ways of Running Python Programs 767
H.1.1 Executing Python Programs in IPython 767
H.1.2 Executing Python Programs on Unix.......... 767
H.1.3 Executing Python Programs on Windows 769
H.1.4 Executing Python Programs on Macintosh 771
H.1.5 Making a Complete Stand-Alone Executable ... 771
H.2 Integer and Float Division.......................... 771
H.3 Visualizing a Program with Lumpy 772

H.4 Doing Operating System Tasks in Python 774

Contents

H.5 Variable Number of Function Arguments 776
H.5.1 Variable Number of Positional Arguments e

H.5.2 Variable Number of Keyword Arguments 779

H.6 Evaluating Program Efficiency 781
H.6.1 Making Time Measurements 781

H.6.2 Profiling Python Programs.................... 783
References....... 785

XXi

http://www.springer.com
http://www.springer.com/mycopy

List of Exercises

Exercise 1.1
Exercise 1.2
Exercise 1.3
Exercise 1.4
Exercise 1.5
Exercise 1.6
Exercise 1.7
Exercise 1.8
Exercise 1.9
Exercise 1.10
Exercise 1.11
Exercise 1.12
Exercise 1.13
Exercise 1.14
Exercise 1.15
Exercise 1.16
Exercise 1.17
Exercise 2.1
Exercise 2.2

Exercise 2.3
Exercise 2.4
Exercise 2.5
Exercise 2.6
Exercise 2.7
Exercise 2.8
Exercise 2.9
Exercise 2.10
Exercise 2.11
Exercise 2.12

Compute 1+1
Write a “Hello, World!” program...............
Derive and compute a formula
Convert from meters to British length units
Compute the mass of various substances
Compute the growth of money in a bank
Find error(s) in a program
Type in program text...................... ...
Type in programs and debug them
Evaluate a Gaussian function
Compute the air resistance on a football
How to cook the perfect egg
Derive the trajectory of a ball
Find errors in the coding of formulas
Explain why a program does not work
Find errors in Python statements
Find errors in the coding of a formula
Make a Fahrenheit—Celsius conversion table
Write an approximate Fahrenheit—Celsius

conversion table
Generate odd numbers.
Store odd numbers inalist....................
Generate odd numbers by a list comprehension . .
Make a table of values from a formula
Store values from a formula in lists
Work with a list
Simulate operations on lists by hand............
Generate equally spaced coordinates............
Use a list comprehension to solve Exer. 2.10
Compute a mathematical sum

XXV

Exercise 2.13
Exercise 2.14
Exercise 2.15
Exercise 2.16
Exercise 2.17
Exercise 2.18
Exercise 2.19
Exercise 2.20

Exercise 2.21
Exercise 2.22

Exercise 2.23
Exercise 2.24
Exercise 2.25
Exercise 2.26
Exercise 2.27
Exercise 2.28
Exercise 2.29
Exercise 3.1
Exercise 3.2
Exercise 3.3
Exercise 3.4
Exercise 3.5
Exercise 3.6
Exercise 3.7
Exercise 3.8
Exercise 3.9
Exercise 3.10
Exercise 3.11
Exercise 3.12
Exercise 3.13
Exercise 3.14
Exercise 3.15
Exercise 3.16
Exercise 3.17
Exercise 3.18
Exercise 3.19
Exercise 3.20

Exercise 3.21
Exercise 3.22

Exercise 3.23
Exercise 3.24

List of Exercises

Use a for loop in Exer. 2.12 81
Simulate a program by hand................... 81
Explore the Python Library Reference 82
Index anested lists. 82
Construct a double for loop over a nested list 82
Store data in lists in Exercise 2.2............... 82
Store data from Exer. 2.7 in a nested list........ 82
Convert nested list comprehensions to nested
standard loops........ ... i 83
Values of boolean expressions.................. 83
Explore round-off errors from a large number of
inverse operationsc.iiiii.. 83
Explore what zero can be on a computer 84
Compare two real numbers on a computer. 84
Interpret acode L. 84
Explore problems with inaccurate indentation ... 85
Simulate nested loops by hand 85
Explore punctuation in Python programs 86
Investigate a for loop over a changing list 86
Write a Fahrenheit—Celsius conversion function .. 120
Write the program in Exer. 2.12 as a function ... 120
Write a function for solving az? +bx +¢c=0 120
Implement the sum function................... 120
Integrate a function by one trapezoid 121
Integrate a function by two trapezoids 121
Derive the general Trapezoidal integration rule... 121
Derive the general Midpoint integration rule. 122
Compute the area of an arbitrary triangle 122
Compute the length of a path 123
Approximate m 123
Write various hello-world functions 123
Approximate a function by a sum of sines 124
Implement a Gaussian function 124
Make a function of the formula in Exer. 1.12 124
Write a function for numerical differentiation 125
Make an adaptive Trapezoidal integration rule ... 125
Compute a polynomial via a product 126
Implement the factorial function 126
Compute velocity and acceleration from position

data; one dimension, 126
Compute velocity and acceleration from position

data; two dimensions, 127
Find the max and min values of a function 127
Find the max and min elements in a list 127

Implement the Heaviside function 128

List of Exercises

Exercise 3.25
Exercise 3.26
Exercise 3.27
Exercise 3.28
Exercise 3.29
Exercise 3.30
Exercise 3.31
Exercise 3.32
Exercise 3.33
Exercise 3.34
Exercise 3.35
Exercise 3.36
Exercise 3.37
Exercise 3.38
Exercise 3.39
Exercise 3.40
Exercise 3.41
Exercise 4.1

Exercise 4.2

Exercise 4.3

Exercise 4.4

Exercise 4.5

Exercise 4.6

Exercise 4.7

Exercise 4.8

Exercise 4.9

Exercise 4.10
Exercise 4.11
Exercise 4.12
Exercise 4.13
Exercise 4.14
Exercise 4.15
Exercise 4.16
Exercise 4.17
Exercise 4.18
Exercise 4.19
Exercise 4.20
Exercise 4.21

Exercise 4.22
Exercise 4.23
Exercise 4.24
Exercise 4.25
Exercise 4.26

Implement a smoothed Heaviside function 128
Implement an indicator function 128
Implement a piecewise constant function 128
Apply indicator functions 129
Rewrite a mathematical function............... 129
Make a table for approximations of cosz 130
Use None in keyword arguments 130
Write a sort function for a list of 4-tuples 131
Find prime numbers........ 132
Find pairs of characters....................... 132
Count substrings. 132
Explain why a program works 132
Resolve a problem with a function 132
Determine the types of some objects............ 133
Explain the difference between if and elif 133
Find an error in a program 134
Find programming errors 134
Make an interactive program 180
Read from the command line in Exer. 4.1 180
Use exceptions in Exer. 4.2 180
Read input from the keyboard 180
Read input from the command line............. 180
Prompt the user for input to a formula 180
Read command line input a formula 180
Make the program from Exer. 4.7 safer 181
Test more in the program from Exer. 4.7 181
Raise an exception in Exer. 4.9 181
Compute the distance it takes to stop a car 181
Look up calendar functionality................. 181
Use the StringFunction tool 181
Extend a program from Ch. 4.2.1 181
Why we test for specific exception types 182
Make a simple module 182
Make a useful main program for Exer. 4.16 182
Make a module in Exer. 3.13 182
Extend the module from Exer. 4.18............. 183
Use options and values in Exer. 4.19............ 183
Check if mathematical identities hold on a

COMPULET . oottt e 183
Improve input to the program in Exer. 4.21 183
Apply the program from Exer. 4.22............. 184
Compute the binomial distribution 184
Apply the binomial distribution................ 185

Compute probabilities with the Poisson
distribution o 185

XXV

XXVi

Exercise 5.1
Exercise 5.2
Exercise 5.3
Exercise 5.4
Exercise 5.5
Exercise 5.6
Exercise 5.7
Exercise 5.8
Exercise 5.9
Exercise 5.10
Exercise 5.11
Exercise 5.12

Exercise 5.13
Exercise 5.14
Exercise 5.15
Exercise 5.16
Exercise 5.17
Exercise 5.18
Exercise 5.19
Exercise 5.20
Exercise 5.21
Exercise 5.22
Exercise 5.23
Exercise 5.24
Exercise 5.25
Exercise 5.26
Exercise 5.27
Exercise 5.28
Exercise 5.29
Exercise 5.30
Exercise 5.31
Exercise 5.32
Exercise 5.33
Exercise 5.34
Exercise 5.35
Exercise 5.36
Exercise 5.37
Exercise 5.38

Exercise 5.39
Exercise 5.40

Exercise 5.41
Exercise 5.42

List of Exercises

Fill lists with function values 243
Fill arrays; loop version 244
Fill arrays; vectorized version.................. 244
Plot a function 244
Apply a function to a vector................... 244
Simulate by hand a vectorized expression 245
Demonstrate array slicing 245
Replace list operations by array computing 245
Plot aformula............................... 245
Plot a formula for several parameters 245
Specify the z and y axes in Exer. 5.10 245
Plot exact and inexact Fahrenheit—Celsius

formulas 246
Plot the trajectory of a ball 246
Implement Lagrange’s interpolation formula 246
Plot the polynomial in Exer. 5.14 247
Investigate the polynomial in Exer. 5.14 247
Plot a wave packet 247
Judgeaplot........ 248
Plot the viscosity of water........... 248
Explore a complicated function graphically 248
Plot Taylor polynomial approximations to sinx .. 248
Animate a wave packet 249
Animate a smoothed Heaviside function......... 249
Animate two-scale temperature variations 249
Improve the solution in Exer. 5.24.............. 250
Animate a sequence of approximations to 7 250
Animate a planet’s orbit 250
Animate the evolution of Taylor polynomials 251
Plot the velocity profile for pipeflow 252
Plot the functions from Exer. 3.13.............. 252
Make a movie of the functions from Exer. 3.13 ... 252
Plot functions from the command line 253
Improve the program from Exercise 5.32 253
Demonstrate energy concepts from physics 253
Plot a w-like function......................... 254
Plot a piecewise constant function.............. 254
Vectorize a piecewise constant function 254
Visualize approximations in the Midpoint

integration rule it 254
Visualize approximations in the Trapezoidal
integration rule L it 254
Experience overflow in a function 254
Experience less overflow in a function........... 255

Extend Exer. 5.5 to a rank 2 array 256

List of Exercises

Exercise 5.43
Exercise 6.1
Exercise 6.2
Exercise 6.3
Exercise 6.4
Exercise 6.5
Exercise 6.6
Exercise 6.7
Exercise 6.8
Exercise 6.9
Exercise 6.10
Exercise 6.11
Exercise 6.12
Exercise 6.13
Exercise 6.14
Exercise 6.15
Exercise 6.16
Exercise 6.17
Exercise 6.18
Exercise 6.19
Exercise 6.20
Exercise 6.21
Exercise 6.22
Exercise 6.23
Exercise 6.24
Exercise 6.25
Exercise 6.26
Exercise 6.27
Exercise 6.28
Exercise 6.29
Exercise 6.30
Exercise 6.31
Exercise 6.32
Exercise 7.1
Exercise 7.2
Exercise 7.3
Exercise 7.4
Exercise 7.5
Exercise 7.6
Exercise 7.7
Exercise 7.8
Exercise 7.9
Exercise 7.10
Exercise 7.11
Exercise 7.12

Explain why array computations fail............ 256
Read a two-column data file 329
Read adatafile......... 329
Simplify the implementation of Exer. 6.1 329
Fit a polynomial todata 329
Read acceleration data and find velocities 330
Read acceleration data and plot velocities 331
Find velocity from GPS coordinates 331
Make a dictionary from a table 331
Explore syntax differences: lists vs. dictionaries .. 332
Improve the program from Ch. 6.2.5............ 332
Interpret output from a program 332
Make a dictionary L. 333
Make a nested dictionary 333
Make a nested dictionary from a file............ 333
Compute the area of a triangle. 333
Compare data structures for polynomials........ 333
Compute the derivative of a polynomial 333
Generalize the program from Ch. 6.2.7.......... 334
Write function data to file.................. ... 334
Specify functions on the command line.......... 334
Interpret function specifications................ 335
Compare average temperatures in cities 336
Try Word or OpenOffice to write a program 336
Evaluate objects in a boolean context........... 337
Fit a polynomial to experimental data 337
Generate an HTML report with figures 337
Extract information from a weather page........ 338
Compare alternative weather forecasts 338
Improve the output in Exercise 6.28 338
Allow different types for a function argument 338
Make a function more robust 339
Find proportion of bases inside/outside exons. ... 339
Make a function class........... 395
Extend the class from Ch. 7.2.1............. ... 395
Make classes for a rectangle and a triangle 395
Make a class for straight lines 395
Improve the constructor in Exer. 7.4............ 396
Make a class for quadratic functions 396
Make a class for linear springs 396
Wrap functions in a class 397
Extend the constructor in Exer. 7.8 397
Deduce a class implementation................. 398
Use special methods in Exer. 7.1 398
Extend the class from Ch. 7.2.1............. ... 398

Xxvil

XXviil

Exercise 7.13
Exercise 7.14
Exercise 7.15
Exercise 7.16
Exercise 7.17
Exercise 7.18
Exercise 7.19
Exercise 7.20
Exercise 7.21
Exercise 7.22
Exercise 7.23
Exercise 7.24

Exercise 7.25
Exercise 7.26
Exercise 7.27
Exercise 7.28
Exercise 7.29
Exercise 7.30
Exercise 7.31
Exercise 7.32
Exercise 7.33
Exercise 7.34
Exercise 7.35
Exercise 7.36
Exercise 7.37
Exercise 7.38
Exercise 7.39
Exercise 7.40
Exercise 7.41
Exercise 7.42
Exercise 7.43
Exercise 7.44
Exercise 7.45
Exercise 8.1

Exercise 8.2

Exercise 8.3

Exercise 8.4

Exercise 8.5

Exercise 8.6

Exercise 8.7

Exercise 8.8

Exercise 8.9

Exercise 8.10
Exercise 8.11

List of Exercises

Implement a class for numerical differentiation ... 398
Verify a program i, 399
Test methods for numerical differentiation....... 399
Modify a class for numerical differentiation 400
Make a class for summation of series 400
Apply the differentiation class from Ch. 7.3.2 401
Make a class for the Heaviside function 401
Add vectorization to the class in Exer. 7.19...... 401
Equip the class in Exer. 7.19 with plotting 401
Make a class for the indicator function.......... 402
Make a class for piecewise constant functions 402
Extend the class in Exer. 7.23 with plot

functionality L 402
Make a module for piecewise constant functions.. 402
Use classes for computing inverse functions 403
Vectorize a class for numerical integration 403
Speed up repeated integral calculations 404
Apply a polynomial class...................... 404
Find a bug in a class for polynomials 404
Implement subtraction of polynomials 405
Represent a polynomial by a NumPy array 405
Vectorize a class for polynomials 405

Use a dict to hold polynomial coefficients; add ... 405
Use a dict to hold polynomial coefficients; mul ... 406

Extend class Vec2D to work with lists/tuples 406
Extend class Vec2D to 3D vectors 406
Use NumPy arrays in class Vec2D 406
Use classes in the program from Ch. 6.7.2 407
Use aclassin Exer. A.25...................... 407
Apply the class from Exer. 7.40 interactively 408
Find local and global extrema of a function. 408
Improve the accuracy in Exer. 7.42 410
Find the optimal production for a company 410
Extend the program from Exer. 7.44............ 412
Flipacoin N times 466
Compute a probability........................ 466
Choose random colors 466
Draw balls fromahat 466
Computing probabilities of rolling dice.......... 466
Estimate the probability in a dice game 466
Compute the probability of hands of cards 467
Decide if a dice game is fair 467
Adjust the game in Exer. 8.8 467
Generalize the game from Chap. 8.3.2 467

Compare two playing strategies 467

List of Exercises

Exercise 8.12
Exercise 8.13
Exercise 8.14
Exercise 8.15
Exercise 8.16
Exercise 8.17
Exercise 8.18
Exercise 8.19
Exercise 8.20
Exercise 8.21
Exercise 8.22
Exercise 8.23
Exercise 8.24
Exercise 8.25
Exercise 8.26
Exercise 8.27
Exercise 8.28
Exercise 8.29
Exercise 8.30
Exercise 8.31
Exercise 8.32
Exercise 8.33
Exercise 8.34
Exercise 8.35
Exercise 8.36
Exercise 8.37
Exercise 8.38
Exercise 8.39
Exercise 8.40
Exercise 8.41
Exercise 8.42
Exercise 8.43
Exercise 8.44
Exercise 8.45
Exercise 8.46
Exercise 8.47
Exercise 8.48
Exercise 8.49
Exercise 8.50
Exercise 8.51
Exercise 9.1

Exercise 9.2

Exercise 9.3

Exercise 9.4

Exercise 9.5

Solve Exercise 8.11 with different no. of dice.
Extend Exercise 8.12
Investigate the winning chances of some games. . .
Compute probabilities of throwing two dice.
Play with vectorized boolean expressions........
Vectorize the program from Exer. 8.1
Vectorize the code in Exer. 8.2.................
Throw dice and compute a small probability.
Difference equation for random numbers
Make a class for drawing balls from a hat
Independent vs. dependent random numbers.
Compute the probability of flipping a coin.
Extend Exer. 823
Simulate the problems in Exer. 4.25
Simulate a poker game...........
Write a non-vectorized version of a code
Estimate growth in a simulation model
Investigate guessing strategies for Ch. 8.4.1......
Make a vectorized solution to Exer. 8.8
Compute 7 by a Monte Carlo method
Implement a variant of Exer. 8.31
Compute m by a random sum.
1D random walk with drift
1D random walk until a point is hit
Simulate making a fortune from gaming.........
Make a class for 2D random walk
Vectorize the class code from Exer. 8.37.........
2D random walk with walls; scalar version.
2D random walk with walls; vectorized version . . .
Simulate the mixture of gas molecules
Solve a variant of Exer. 841
Guess beer brands oL
Simulate stock prices
Compute with option prices in finance
Compute velocity and acceleration
Differentiate noisy signals
Model the noise in the data in Exer. 847
Reduce the noise in Exer. 847
Make a class for differentiating noisy data
Speed up Markov chain mutation
Demonstrate the magic of inheritance...........
Inherit from classes in Ch. 9.1
Inherit more from classes in Ch. 9.1
Reverse the class hierarchy from Ch. 9.1
Make circle a subclass of an ellipse

XXiX

XXX

Exercise 9.6
Exercise 9.7
Exercise 9.8
Exercise 9.9
Exercise 9.10
Exercise 9.11
Exercise 9.12
Exercise 9.13
Exercise 9.14
Exercise 9.15
Exercise 9.16

Exercise 9.17
Exercise 9.18
Exercise 9.19
Exercise 9.20
Exercise 9.21
Exercise 9.22
Exercise 9.23
Exercise A.1

Exercise A.2

Exercise A.3

Exercise A.4

Exercise A.5

Exercise A.6

Exercise A.7

Exercise A.8

Exercise A.9

Exercise A.10
Exercise A.11
Exercise A.12
Exercise A.13
Exercise A.14
Exercise A.15
Exercise A.16
Exercise A.17
Exercise A.18
Exercise A.19
Exercise A.20
Exercise A.21
Exercise A.22
Exercise A.23
Exercise A.24
Exercise A.25
Exercise A.26

List of Exercises

Make super- and subclass for a point 550
Modify a function class by subclassing 550
Explore the accuracy of difference formulas. 550
Implement a subclass 551
Make classes for numerical differentiation 551
Implement a new subclass for differentiation 551
Understand if a class can be used recursively 551
Represent people by a class hierarchy 551
Add a new class in a class hierarchy 553
Change the user interface of a class hierarchy 553
Compute convergence rates of numerical

integration methods 953
Add common functionality in a class hierarchy ... 554
Make a class hierarchy for root finding 554
Make a calculus calculator class................ 555
Extend Exer. 9.19 o i 556
Make line drawing of a person; program. 556
Make line drawing of a person; class 556
Animate a person with waving hands 556
Determine the limit of a sequence 583
Determine the limit of a sequence 583
Experience convergence problems 583
Compute 7 via SEqUENCESoovuvrenenne. .. 584
Reduce memory usage of difference equations 584
Compute the development of a loan 584
Solve a system of difference equations........... 584
Extend the model (A.32)-(A.33) 584
Experiment with the program from Exer. A.8.... 585
Change index in a difference equation........... 585
Construct time points from dates 585
Solve nonlinear equations by Newton’s method... 586
Visualize the convergence of Newton’s method ... 586
Implement the Secant method 587
Test different methods for root finding 587
Make difference equations for the Midpoint rule.. 587
Compute the arc length of a curve 587
Find difference equations for computing sinz 588
Find difference equations for computing cosx 588
Make a guitar-like sound 588
Damp the bass in a sound file 589
Damp the treble in a sound file 589
Demonstrate oscillatory solutions of (A.13)...... 590
Improve the program from Exer. A.23 590
Generate an HTML report 591

Simulate the price of wheat 591

List of Exercises

Exercise B.1
Exercise B.2
Exercise B.3
Exercise B.4
Exercise B.5
Exercise B.6
Exercise B.7
Exercise B.8
Exercise B.9
Exercise C.1
Exercise C.2
Exercise C.3
Exercise C.4
Exercise C.5
Exercise D.1
Exercise D.2
Exercise D.3
Exercise E.1
Exercise E.2

Exercise E.3
Exercise E.4
Exercise E.5

Exercise E.6

Exercise E.7

Exercise E.8

Exercise E.9

Exercise E.10
Exercise E.11
Exercise E.12
Exercise E.13
Exercise E.14
Exercise E.15
Exercise E.16
Exercise E.17
Exercise E.18
Exercise E.19
Exercise E.20
Exercise E.21
Exercise E.22
Exercise E.23
Exercise E.24
Exercise E.25
Exercise E.26

Interpolate a discrete function 619
Study a function for different parameter values .. 619
Study a function and its derivative 620
Use the Trapezoidal method 620
Compute a sequence of integrals 621
Use the Trapezoidal method 621
Compute trigonometric integrals 622
Plot functions and their derivatives............. 623
Use the Trapezoidal method 623
Solve a nonhomogeneous linear ODE 639
Solve a nonlinear ODE 639
Solve an ODE for y(z)............. 639
Experience instability of an ODE 640
Solve an ODE with time-varying growth 640
Use a w function with astep 665
Make a callback function in Exercise D.1........ 665
Improve input to the simulation program. 665
Solve a simple ODE in two ways 705
Use the ODESolver hierarchy to solve a simple

ODE ... 705
Solve an ODE for emptying a tank 705
Scale the logistic equation..................... 706
Compute logistic growth with time-varying

carrying capacity oL 707
Solve an ODE for the arc length 707
Compute inverse functions by solving an ODE ... 707

Generalize the implementation in Exer. E.7...... 708

Extend the implementation in Exer. E.8 708
Compute inverse functions by interpolation. 709
Simulate a falling or rising body in a fluid 709
Check the solution’s limit in Exer. E.11......... 711
Visualize the different forces in Exer. E.11....... 711
Solve an ODE until constant solution 711
Useclassesin Exer. E14 712
Scale away parameters in Exer. E.14......... ... 712
Use the 4th-order Runge-Kutta on (C.34) 713
Compare ODE methods 713
Compare ODE methods 713

Solve two coupled ODEs for radioactive decay ... 714
Code a 2nd-order Runge-Kutta method; function. 714
Code a 2nd-order Runge-Kutta method; class.... 714
Make a subclass for Heun’s method 714
Make a subclass for the Midpoint method 715
Make a subclass for an Adams-Bashforth method 715
Implement the iterated Midpoint method; function 715

XXXil

Exercise E.27
Exercise E.28
Exercise E.29
Exercise E.30
Exercise E.31
Exercise E.32
Exercise E.33
Exercise E.34
Exercise E.35
Exercise E.36
Exercise E.37
Exercise E.38
Exercise E.39
Exercise E.40
Exercise E.41
Exercise E.42
Exercise E.43
Exercise E.44
Exercise E.45
Exercise E.46
Exercise E.47
Exercise E.48
Exercise E.49
Exercise E.50

List of Exercises

Implement the iterated Midpoint method; class .. 715
Make a subclass for the iterated Midpoint method 716
Study convergence of numerical methods for ODEs 716

Solve an ODE specified on the command line 716
Find the body’s position in Exer. E.11.......... 717
Add the effect of air resistance on a ball 717
Solve an ODE system for an electric circuit. 718
Compare methods for solving (E.76)-(E.77) 718
Simulate the spreading of a disease 718
Make a more flexible code in Exer. E.35......... 720
Introduce vaccination in Exer. E.35 721
Introduce a vaccination campaign in Exer. E.37 .. 721
Find optimal vaccination period in Exer. E.38 ... 721
Simulate human—zombie interaction 722
Simulate an entire zombie movie 724
Simulate a war on zombies 725
Explore predator-prey population interactions ... 725
Formulate a 2nd-order ODE as a system 726
Solve the system in Exer. E.44 in a special case .. 727
Make a tool for analyzing oscillatory solutions ... 728
Enhance the code from Exer. E45 729
Allow flexible choice of functions in Exer. E.47 ... 732
Use the modules from Exer. E.47 and E48 733

Model the economy of fishing 734

Computing with Formulas

Our first examples on computer programming involve programs that
evaluate mathematical formulas. You will learn how to write and run
a Python program, how to work with variables, how to compute with
mathematical functions such as e* and sinz, and how to use Python
for interactive calculations.

We assume that you are somewhat familiar with computers so that
you know what files and folders' are, how you move between folders,
how you change file and folder names, and how you write text and save
it in a file.

All the program examples associated with this chapter can be found
as files in the folder src/formulas. We refer to the preface for how to
download the folder tree src containing all the program files for this
book.

1.1 The First Programming Encounter: A Formula

The first formula we shall consider concerns the vertical motion of a
ball thrown up in the air. From Newton’s second law of motion one can
set up a mathematical model for the motion of the ball and find that
the vertical position of the ball, called y, varies with time ¢ according
to the following formula?:

1
y(t) = vot — ith. (1.1)

1 Another frequent word for folder is directory.

2 This formula neglects air resistance, which is usually small unless vg is large — see Exer-
cise 1.11.

H.P. Langtangen, A Primer on Scientific Programming with Python, 1
Texts in Computational Science and Engineering 6,
DOI 10.1007/978-3-642-30293-0_1, (© Springer-Verlag Berlin Heidelberg 2012

http://dx.doi.org/10.1007/978-3-642-30293-0_1

1 Computing with Formulas

Here, vy is the initial velocity of the ball, g is the acceleration of gravity,
and t is time. Observe that the y axis is chosen such that the ball starts
at y =0 when t = 0.

To get an overview of the time it takes for the ball to move upwards
and return to y = 0 again, we can look for solutions to the equation
y=0:

1, 1
vot—igt =1 v0—§gt =0 = t=0ort=2v/g.
That is, the ball returns after 2vy/g seconds, and it is therefore reason-
able to restrict the interest of (1.1) to ¢ € [0, 2vg/g].

1.1.1 Using a Program as a Calculator

Our first program will evaluate (1.1) for a specific choice of vy, g, and
t. Choosing vo = 5 m/s and g = 9.81 m/s® makes the ball come back
after t = 2ug/g ~ 1 s. This means that we are basically interested in
the time interval [0, 1]. Say we want to compute the height of the ball
at time ¢ = 0.6 s. From (1.1) we have

1
y:506—§98L0@

This arithmetic expression can be evaluated and its value can be printed
by a very simple one-line Python program:

print 5%0.6 - 0.5%9.81%0.6%*2

The four standard arithmetic operators are written as +, -, *, and /
in Python and most other computer languages. The exponentiation
employs a double asterisk notation in Python, e.g., 0.6% is written as
0.6%%2.

Our task now is to create the program and run it, and this will be
described next.

1.1.2 About Programs and Programming

A computer program is just a sequence of instructions to the computer,
written in a computer language. Most computer languages look some-
what similar to English, but they are very much simpler. The number
of words and associated instructions is very limited, so to perform a
complicated operation we must combine a large number of different
types of instructions. The program text, containing the sequence of in-
structions, is stored in one or more files. The computer can only do
exactly what the program tells the computer to do.

1.1 The First Programming Encounter: A Formula

Another perception of the word “program” is a file that can be run
(“double-clicked”) to perform a task. Sometimes this is a file with tex-
tual instructions (which is the case with Python), and sometimes this
file is a translation of all the program text to a more efficient and
computer-friendly language that is quite difficult to read for a human.
All the programs in this chapter consist of short text stored in a single
file. Other programs that you have used frequently, for instance Fire-
fox or Internet Explorer for reading web pages, consist of program text
distributed over a large number of files, written by a large number of
people over many years. One single file contains the machine-efficient
translation of the whole program, and this is normally the file that
you “double-click” on when starting the program. In general, the word
“program” means either this single file or the collection of files with
textual instructions.

Programming is obviously about writing programs, but this process
is more than writing the correct instructions in a file. First, we must
understand how a problem can be solved by giving a sequence of in-
structions to the computer. This is usually the most difficult thing
with programming. Second, we must express this sequence of instruc-
tions correctly in a computer language and store the corresponding
text in a file (the program). Third, we must run the program, check
the validity of the results, and usually enter a fourth phase where errors
in the program must be found and corrected. Mastering this process
requires a lot of training, which implies making a large number of pro-
grams (exercises in this book, for instance) and getting the programs
to work.

1.1.3 Tools for Writing Programs

Since programs consist of plain text, we need to write this text with the
help of another program that can store the text in a file. You have most
likely extensive experience with writing text on a computer, but for
writing your own programs you need special programs, called editors,
which preserve exactly the characters you type. The widespread word
processors, Microsoft Word being a primary example?, are aimed at
producing nice-looking reports. These programs format the text and
are not good tools for writing your own programs, even though they can
save the document in a pure text format. Spaces are often important in
Python programs, and editors for plain text give you complete control
of the spaces and all other characters in the program file.

3 Other examples are OpenOffice, TextEdit, iWork Pages, and BBEdit. Chapter 6.1.3 gives
some insight into why such programs are not suitable for writing your own Python programs.

1 Computing with Formulas

Emacs, XEmacs, Vim, and Gedit are popular editors for writing pro-
grams on Linux or Unix systems, including Mac* computers. On Win-
dows we recommend Notepad++ or the Window versions of Emacs,
Vim, or Gedit. None of these programs are part of a standard Win-
dows installation.

A special editor for Python programs comes with the Python soft-
ware. This editor is called Idle and is usually installed under the name
idle (or idle-python) on Linux/Unix and Mac. On Windows, it is
reachable from the Python entry in the Start menu. Idle has a gentle
learning curve, but is mainly restricted to writing Python programs.
Completely general editors, such as Emacs and Vim, have a steeper
learning curve and can be used for any text files, including reports in
student projects.

More advanced development environments also exist for Python. For
numerical programming the Spyder software is of particular interest as
it provides a graphical environment much like that of Matlab.

1.1.4 Using ldle to Write the Program

Let us explain in detail how we can use Idle to write our one-line
program from Chapter 1.1.1. Idle may not become your favorite editor
for writing Python programs, yet we recommend to follow the steps
below to get in touch with Idle and try it out. You can simply replace
the Idle instructions by similar actions in your favorite editor, Emacs
for instance.

First, create a folder where your Python programs can be located.
Here we choose a folder name mytest under your home folder. To write
and run Python programs, you will need a terminal window on Lin-
ux/Unix or Mac, sometimes called a console window, or an MS-DOS
window or command prompt on Windows. Launch such a window and
use the cd (change directory) command to move to the mytest folder.
If you have not made the folder with a graphical file & folder manager
you must create the folder by the command mkdir mytest (mkdir stands
for make directory).

The next step is to start Idle. This can be done by writing idle&
(Linux) or start idle (Windows) in the terminal window. Alterna-
tively, you can launch Idle from the Start menu on Windows. Fig-
ure 1.1 displays a terminal window where we create the folder, move
to the folder, and start Idle®.

4 On Mac, you may want to download a more “Mac-like” editor such as the Really Simple
Text program.

5 The ampersand after idle is Linux specific. On Windows you have to write start idle
instead. The ampersand postfix or the start prefix makes it possible to continue with
other commands in the terminal window while the program, here Idle, is running. This is
important for program testing where we often do a lot of edit-and-run cycles, which means
that we frequently switch between the editor and the terminal window.

1.1 The First Programming Encounter: A Formula

Terminal> mkdir mytest
Terminal> cd mytest
Terminal> idle&

[1] 12148

Terminal> [}

Fig. 1.1 A terminal window on a Linux/Unix/Mac machine where we create a folder
(mkdir), move to the folder (cd), and start Idle.

If a window now appears on the screen, with “Python Shell” in the
title bar of the window, go to its File menu and choose New Window.
The window that now pops up is the Idle editor (having the window
name “Untitled”). Move the cursor inside this window and write the
line

print 5%0.6 — 0.5%9.81%0.6%%2

followed by pressing the Return key. The Idle window looks as in Fig-
ure 1.2.

Hle Edit Format Run Options Windows Help

Ir-‘.'ln* 5%0.6 - 0.5%9.81*0.6%%2

4
0

|Ln: 2| Col:

Fig. 1.2 An Idle editor window containing our first one-line program.

Your program is now in the Idle editor, but before you can run it,
the program text must be saved in a file. Choose File and then Save
As. As usual, such a command launches a new window where you can
fill in the name of the file where the program is to be stored. And
as always, you must first check that you are in the right folder, or
directory which is Idle’s word for the same thing. The upper line in
the file dialog window contains the folder name. Clicking on the bar to
the right (after the directory/folder name), gives a possibility to move
upwards in the folder hierarchy, and clicking on the folder icon to the
right of the bar, moves just one folder upwards. To go down in the

1 Computing with Formulas

folder tree, you simply double-click a folder icon in the main window
of this dialog. You must now navigate to the mytest folder under your
home folder. If you started Idle from the terminal window, there is
no need to navigate and change folder. Simply fill in the name of the
program. Any name will do, but we suggest that you choose the name
balll.py because this name is compatible with what we use later in
this book. The file extension .py is common for Python programs, but
not strictly required®.

Press the Save button and move back to the terminal window. Make
sure you have a new file balll.py here, by running the command 1s
(on Linux/Unix and Mac) or dir (on Windows). The output should be
a text containing the name of the program file. You can now jump to
the paragraph “How to Run the Program”, but it might be a good idea
to read the warning below first.

Warning About Typing Program Text. Even though a program is just
a text, there is one major difference between a text in a program and
a text intended to be read by a human. When a human reads a text,
she or he is able to understand the message of the text even if the text
is not perfectly precise or if there are grammar errors. If our one-line
program was expressed as

write 5%0.6 - 0.5%9.81%0.672

most humans would interpret write and print as the same thing, and
many would also interpret 6°2 as 62. In the Python language, however,
write is a grammar error and 6°2 means an operation very different
from the exponentiation 6#*2. Our communication with a computer
through a program must be perfectly precise without a single grammar
error’. The computer will only do exactly what we tell it to do. Any
error in the program, however small, may affect the program. There is
a chance that we will never notice it, but most often an error causes
the program to stop or produce wrong results. The conclusion is that
computers have a much more pedantic attitude to language than what
(most) humans have.

Now you understand why any program text must be carefully typed,
paying attention to the correctness of every character. If you try out
program texts from this book, make sure that you type them in exactly
as you see them in the book. Blanks, for instance, are often impor-
tant in Python, so it is a good habit to always count them and type
them in correctly. Any attempt not to follow this advice will cause you
frustrations, sweat, and maybe even tears.

6 Some editors, like Emacs, have many features that make it easier to write Python pro-
grams, but these features will not be automatically available unless the program file has a
.py extension.

7 “Programming demands significantly higher standard of accuracy. Things don’t simply

have to make sense to another human being, they must make sense to a computer.” —
Donald Knuth [4, p. 18], computer scientist, 1938—.

1.1 The First Programming Encounter: A Formula
1.1.5 How to Run the Program

The one-line program above is stored in a file with name balll.py.
To run the program, you need to be in a terminal window and in the
folder where the balll.py file resides. The program is run by writing
the command python ballil.py in the terminal window®:

Terminal

Terminal> python balll.py
1.2342

The program immediately responds with printing the result of its calcu-
lation, and the output appears on the next line in the terminal window.
Figure 1.3 shows what the whole terminal window may look like after
having run the program.

We use the prompt Terminal> in this book to indicate commands in
a Linux, Unix, Mac, or DOS terminal window. The text following the
Terminal> prompt must be a valid Unix or DOS command. You will
likely see a different prompt in the terminal window on your machine,
perhaps something reflecting your username or the current folder.

Terminal> mkdir mytest
Terminal> cd mytest
Terminal> idle&

ball_numbers.py
Terminal> python ball_numbers.py

Fig. 1.3 A terminal window on a Linux/Unix/Mac machine where we run our first one-line
Python program.

From your previous experience with computers you are probably
used to double-click on icons to run programs. Python programs can
also be run that way, but programmers usually find it more convenient
to run programs by typing commands in a terminal window. Why this
is so will be evident later when you have more programming experience.
For now, simply accept that you are going to be a programmer, and
that commands in a terminal window is an efficient way to work with
the computer.

Suppose you want to evaluate (1.1) for vg = 1 and ¢ = 0.1. This is
easy: move the cursor to the Idle editor window, edit the program text
to

8 There are other ways of running Python programs, as explained in Appendix H.1.

1 Computing with Formulas

print 1x0.1 - 0.5%9.81%0.1%*2

Save the file, move back to the terminal window and run the program
as before:

Terminal

Terminal> python balll.py
0.05095

We see that the result of the calculation has changed, as expected.

1.1.6 Verifying the Result

We should always carefully control that the output of a computer pro-
gram is correct. You will experience that in most of the cases, at least
until you are an experienced programmer, the output is wrong, and
you have to search for errors. In the present application we can simply
use a calculator to control the program. Setting ¢ = 0.6 and vg = 5 in
the formula, the calculator confirms that 1.2342 is the correct solution
to our mathematical problem.

1.1.7 Using Variables

When we want to evaluate y(t) for many values of ¢, we must modify the
t value at two places in our program. Changing another parameter, like
Vg, is in principle straightforward, but in practice it is easy to modify
the wrong number. Such modifications would be simpler to perform
if we express our formula in terms of variables, i.e., symbols, rather
than numerical values. Most programming languages, Python included,
have variables similar to the concept of variables in mathematics. This
means that we can define v0, g, t, and y as variables in the program,
initialize the former three with numerical values, and combine these
three variables to the desired right-hand side expression in (1.1), and
assign the result to the variable y.

The alternative version of our program, where we use variables, may
be written as this text:

0=5

9.81

0.6

vO*t - 0.5*g*xt**x2
rint y

v
g
t
y
P

Figure 1.4 displays what the program looks like in the Idle editor win-
dow. Variables in Python are defined by setting a name (here vo0, g,
t, or y) equal to a numerical value or an expression involving already
defined variables.

1.1 The First Programming Encounter: A Formula

File Edit Format Run Options Windows Help
v0 = §

g = 9.81 -
t =0.6

v = v0*t - 0.5*g*t**2

pry

£
0

Ln: 6|Col:

Fig. 1.4 An Idle editor window containing a multi-line program with several variables.

Note that this second program is much easier to read because it is
closer to the mathematical notation used in the formula (1.1). The pro-
gram is also safer to modify, because we clearly see what each number
is when there is a name associated with it. In particular, we can change
t at one place only (the line t = 0.6) and not two as was required in
the previous program.

We store the program text in a file ball2.py. Running the program,

Terminal

Terminal> python ball2.py

results in the correct output 1.2342.

1.1.8 Names of Variables

Introducing variables with descriptive names, close to those in the
mathematical problem we are going to solve, is considered important
for the readability and reliability (correctness) of the program. Variable
names can contain any lower or upper case letter, the numbers from
0 to 9, and underscore, but the first character cannot be a number.
Python distinguishes between upper and lower case, so X is always dif-
ferent from x. Here are a few examples on alternative variable names
in the present example?:

initial_velocity = 5

acceleration_of_gravity = 9.81

TIME = 0.6

VerticalPosition0fBall = initial_velocity*TIME - \
0.5*acceleration_of_gravity*TIME**2

print VerticalPositionOfBall

9 In this book we shall adopt the rule that variable names have lower case letters where
words are separated by an underscore. The first two declared variables have this form.

10

1 Computing with Formulas

With such long variables names, the code for evaluating the formula
becomes so long that we have decided to break it into two lines. This
is done by a backslash at the very end of the line (make sure there are
no blanks after the backslash!).

We note that even if this latter version of the program contains
variables that are defined precisely by their names, the program is
harder to read than the one with variables v0, g, t, and yo.

The rule of thumb is to use the same variable names as those appear-
ing in a precise mathematical description of the problem to be solved
by the program. For all variables where there is no associated precise
mathematical description and symbol, one must use descriptive vari-
able names which explain the purpose of the variable. For example, if
a problem description introduces the symbol D for a force due to air
resistance, one applies a variable D also in the program. However, if the
problem description does not define any symbol for this force, one must
apply a descriptive name, such as air_resistance, resistance_force,
or drag_force.

1.1.9 Reserved Words in Python

Certain words are reserved in Python because they are used to build up
the Python language. These reserved words cannot be used as variable
names: and, as, assert, break, class, continue, def, del, elif, else,
except, False, finally, for, from, global, if, import, in, is, lambda,
None, nonlocal, not, or, pass, raise, return, True, try, with, while, and
yield. You may, for instance, add an underscore at the end to turn a
reserved word into a variable name. See Exercise 1.16 for examples on
legal and illegal variable names.

1.1.10 Comments

Along with the program statements it is often informative to provide
some comments in a natural human language to explain the idea behind
the statements. Comments in Python start with the # character, and
everything after this character on a line is ignored when the program is
run. Here is an example of our program with explanatory comments:

Program for computing the height of a ball in vertical motion.
vO = 5 # initial velocity

9.81 # acceleration of gravity
0.6 # time
vO*
nt y

g
t
y = t - 0.5%g*xt**2 # vertical position
pri

This program and the initial version on page 8 are identical when
run on the computer, but for a human the latter is easier to understand
because of the comments.

1.1 The First Programming Encounter: A Formula

Good comments together with well-chosen variable names are nec-
essary for any program longer than a few lines, because otherwise the
program becomes difficult to understand, both for the programmer and
others. It requires some practice to write really instructive comments.
Never repeat with words what the program statements already clearly
express. Use instead comments to provide important information that
is not obvious from the code, for example, what mathematical variable
names mean, what variables are used for, and general ideas that lie
behind a forthcoming set of statements.

1.1.11 Formatting Text and Numbers

Instead of just printing the numerical value of y in our introductory
program, we now want to write a more informative text, typically some-
thing like

At t=0.6 s, the height of the ball is 1.23 m.

where we also have control of the number of digits (here y is accurate
up to centimeters only).

Printf Syntaxz. The output of the type shown above is accomplished by
a print statement combined with some technique for formatting the
numbers. The oldest and most widely used such technique is known
as printf formatting'?. For a newcomer to programming, the syntax of
printf formatting may look awkward, but it is quite easy to learn and
very convenient and flexible to work with. The printf syntax is used in
a lot of other programming languages as well.

The sample output above is produced by this statement using printf
syntax:

print ’At t=J,g s, the height of the ball is %.2f m.’ % (t, y)

Let us explain this line in detail. The print statement now prints a
string: everything that is enclosed in quotes (either single: ’, or dou-
ble: ") denotes a string in Python. The string above is formatted using
printf syntax. This means that the string has various “slots”, start-
ing with a percentage sign, here %g and %.2f, where variables in the
program can be put in. We have two “slots” in the present case, and
consequently two variables must be put into the slots. The relevant syn-
tax is to list the variables inside standard parentheses after the string,
separated from the string by a percentage sign. The first variable, t,
goes into the first “slot”. This “slot” has a format specification %g,
where the percentage sign marks the slot and the following character,

10 This formatting was originally introduced by a function printf in the C programming
language.

11

12

1 Computing with Formulas

g, is a format specification. The g that a real number is to be writ-
ten as compactly as possible. The next variable, y, goes into the second
“slot”. The format specification here is .2f, which means a real number
written with two digits after comma. The £ in the .2f format stands
for float, a short form for floating-point number, which is the term used
for a real number on a computer.

For completeness we present the whole program, where text and
numbers are mixed in the output:

v0 = 5
g = 9.81
t =0.6

y = vO*t - O0.5%gkt**2
print ’At t=Vg s, the height of the ball is %.2f m.’ % (t, y)

You can find the program in the file ball_print1.py in the src/formulas
folder.

There are many more ways to specify formats. For example, e writes
a number in scientific notation, i.e., with a number between 1 and 10
followed by a power of 10, as in 1.2432 - 1072, On a computer such a
number is written in the form 1.2432e-03. Capital E in the exponent is
also possible, just replace e by E, with the result 1.2432E-03.

For decimal notation we use the letter £, as in %f, and the output
number then appears with digits before and/or after a comma, e.g.,
0.0012432 instead of 1.2432E-03. With the g format, the output will
use scientific notation for large or small numbers and decimal notation
otherwise. This format is normally what gives most compact output of
a real number. A lower case g leads to lower case e in scientific notation,
while upper case G implies E instead of e in the exponent.

One can also specify the format as 10.4f or 14.6E, meaning in the
first case that a float is written in decimal notation with four decimals
in a field of width equal to 10 characters, and in the second case a float
written in scientific notation with six decimals in a field of width 14
characters.

Here is a list of some important printf format specifications!':
%s a string
%d an integer
%0xd an integer padded with x leading zeros
YA decimal notation with six decimals
he compact scientific notation, e in the exponent
%E compact scientific notation, E in the exponent
e compact decimal or scientific notation (with e)
%G compact decimal or scientific notation (with E)
hxz format z right-adjusted in a field of width x
%h-x2 format z left-adjusted in a field of width x
%.y2 format z with y decimals
hx.yz format z with y decimals in a field of width x
hhh the percentage sign (%) itself

The program printf_demo.py exemplifies many of these formats.

11 For a complete specification of the possible printf-style format strings, follow the link
from the item “printf-style formatting” in the index of the Python Library Reference.

http://docs.python.org/lib/genindex.html

1.1 The First Programming Encounter: A Formula

We may try out some formats by writing more numbers to the screen
in our program (the corresponding file is ball_print2.py):

vO = 5

g = 9.81

t = 0.6

y = vOxt - 0.5%xg*xt**2

print nun

At t=)f s, a ball with

initial velocity v0=%.3E m/s

is located at the height %.2f m.
nnn % (t, VO, y)

Observe here that we use a triple-quoted string, recognized by starting
and ending with three single or double quotes: >’ or """. Triple-quoted
strings are used for text that spans several lines.

In the print statement above, we print t in the f format, which
by default implies six decimals; v0 is written in the .3E format, which
implies three decimals and the number spans as narrow field as possible;
and y is written with two decimals in decimal notation in as narrow
field as possible. The output becomes

Terminal

Terminal> python ball_print2.py

At t=0.600000 s, a ball with
initial velocity v0=5.000E+00 m/s
is located at the height 1.23 m.

You should look at each number in the output and check the formatting
in detail.

Format String Syntaz. Python offers all the functionality of the printf
format and much more through a different syntax, often known as
format string syntax. Let us illustrate this syntax on the one-line output
previously used to show the printf construction. The corresponding
format string syntax reads

print ’At t={t:g} s, the height of the ball is {y:.2f} m.’.format(
t=t, y=y)

The “slots” where variables are inserted are now recognized by curly
braces rather than a percentage sign. The name of the variable is listed
with an optional colon and format specifier of the same kind as was
used for the printf format. The various variables and their values must
be listed at the end as shown. This time the “slots” have names so the
sequence of variables is not important.

The multi-line example is written as follows in this alternative for-
mat:

13

14

1 Computing with Formulas

print nnn

At t={t:f} s, a ball with

initial velocity v0={v0:.3E} m/s
is located at the height {y:.2f} m.
" format(t=t, vO=v0, y=y)

The Newline Character. We often want a computer program to write
out text that spans several lines. In the last example we obtained such
output by triple-quoted strings. We could also use ordinary single-
quoted strings and a special character for indicating where line breaks
should occur. This special character reads \n, i.e., a backslash followed
by the letter n. The two print statements

print """y(t) is
the position of
our ball."""

print ’y(t) is\nthe position of\nour ball’

result in identical output:

y(t) is
the position of
our ball.

1.2 Computer Science Glossary

It is now time to pick up some important words that programmers
use when they talk about programming: algorithm, application, as-
signment, blanks (whitespace), bug, code, code segment, code snippet,
debug, debugging, execute, executable, implement, implementation, in-
put, library, operating system, output, statement, syntax, user, verify,
and verification.

These words are frequently used in English in lots of contexts, yet
they have a precise meaning in computer science.

Program and code are interchangeable terms. A code/program seg-
ment is a collection of consecutive statements from a program. Another
term with similar meaning is code snippet. Many also use the word ap-
plication in the same meaning as program and code. A related term is
source code, which is the same as the text that constitutes the program.
You find the source code of a program in one or more text files'2.

We talk about running a program, or equivalently executing a pro-
gram or executing a file. The file we execute is the file in which the
program text is stored. This file is often called an ezecutable or an

12 Note that text files normally have the extension .txt, while program files have an ex-
tension related to the programming language, e.g., .py for Python programs. The content
of a .py file is, nevertheless, plain text as in a .txt file.

1.2 Computer Science Glossary

application. The program text may appear in many files, but the ex-
ecutable is just the single file that starts the whole program when we
run that file. Running a file can be done in several ways, for instance,
by double-clicking the file icon, by writing the filename in a terminal
window, or by giving the filename to some program. This latter tech-
nique is what we have used so far in this book: we feed the filename to
the program python. That is, we execute a Python program by execut-
ing another program python, which interprets the text in our Python
program file.

The term library is widely used for a collection of generally useful
program pieces that can be applied in many different contexts. Having
access to good libraries means that you do not need to program code
snippets that others have already programmed (most probable in a bet-
ter way!). There are huge numbers of Python libraries. In Python termi-
nology, the libraries are composed of modules and packages. Chapter 1.4
gives a first glimpse of the math module, which contains a set of stan-
dard mathematical functions for sinz, cosz, Inz, €*, sinhx, sin™! x,
etc. Later, you will meet many other useful modules. Packages are just
collections of modules. The standard Python distribution comes with
a large number of modules and packages, but you can download many
more from the Internet, see in particular www.python.org/pypi. Very
often, when you encounter a programming task that is likely to occur
in many other contexts, you can find a Python module where the job
is already done. To mention just one example, say you need to com-
pute how many days there are between two dates. This is a non-trivial
task that lots of other programmers must have faced, so it is not a big
surprise that Python comes with a module datetime to do calculations
with dates.

The recipe for what the computer is supposed to do in a program is
called algorithm. In the examples in the first couple of chapters in this
book, the algorithms are so simple that we can hardly distinguish them
from the program text itself, but later in the book we will carefully set
up an algorithm before attempting to implement it in a program. This
is useful when the algorithm is much more compact than the resulting
program code. The algorithm in the current example consists of three
steps:

1. initialize the variables vg, g, and ¢ with numerical values,
2. evaluate y according to the formula (1.1),
3. print the y value to the screen.

The Python program is very close to this text, but some less expe-
rienced programmers may want to write the tasks in English before
translating them to Python.

The implementation of an algorithm is the process of writing and
testing a program. The testing phase is also known as verification: After

15

http://www.python.org/pypi

16

1 Computing with Formulas

the program text is written we need to wverify that the program works
correctly. This is a very important step that will receive substantial
attention in the present book. Mathematical software produce numbers,
and it is normally quite a challenging task to verify that the numbers
are correct.

An error in a program is known as a bug'3, and the process of
locating and removing bugs is called debugging. Many look at debugging
as the most difficult and challenging part of computer programming.

Programs are built of statements. There are many types of state-
ments:

vO = 3
is an assignment statement, while
print y

is a print statement. It is common to have one statement on each
line, but it is possible to write multiple statements on one line if the
statements are separated by semi-colon. Here is an example:

vO = 3; g =9.81; t = 0.6
y = vO*t - O0.5%gkt**x2
print y

Although most newcomers to computer programming will think they
understand the meaning of the lines in the above program, it is im-
portant to be aware of some major differences between notation in a
computer program and notation in mathematics. When you see the
equality sign “=” in mathematics, it has a certain interpretation as an
equation (z+2 = 5) or a definition (f(z) = 22 +1). In a computer pro-
gram, however, the equality sign has a quite different meaning, and it is
called an assignment. The right-hand side of an assignment contains an
expression, which is a combination of values, variables, and operators.
When the expression is evaluated, it results in a value that the variable
on the left-hand side will refer to. We often say that the right-hand side
value is assigned to the variable on the left-hand side. In the current
context it means that we in the first line assign the number 3 to the
variable v0, 9.81 to g, and 0.6 to t. In the next line, the right-hand side
expression vOxt - 0.5*xg*t**2 is first evaluated, and the result is then
assigned to the y variable.

13 In the very early days of computing, computers were built of a large number of tubes,
which glowed and gave off heat. The heat attracted bugs, which caused short circuits.
“Debugging” meant shutting down the computer and cleaning out the dead bugs.

1.2 Computer Science Glossary
Consider the assignment statement
y=y+3

This statement is mathematically false, but in a program it just means
that we evaluate the right-hand side expression and assign its value to
the variable y. That is, we first take the current value of y and add 3.
The value of this operation is assigned to y. The old value of y is then
lost.

You may think of the = as an arrow, y <- y+3, rather than an equality
sign, to illustrate that the value to the right of the arrow is stored in
the variable to the left of the arrow!*. An example will illustrate the
principle of assignment to a variable:

y =3

print y

y=y+4

print y

y = y¥y
print y

Running this program results in three numbers: 3, 7, 49. Go through
the program and convince yourself that you understand what the result
of each statement becomes.

A computer program must have correct syntax, meaning that the
text in the program must follow the strict rules of the computer lan-
guage for constructing statements. For example, the syntax of the print
statement is the word print, followed by one or more spaces, followed
by an expression of what we want to print (a Python variable, text
enclosed in quotes, a number, for instance). Computers are very picky
about syntax! For instance, a human having read all the previous pages
may easily understand what this program does,

myvar = 5.2
prinnt Myvar

but the computer will find two errors in the last line: prinnt is an
unknown instruction and Myvar is an undefined variable. Only the first
error is reported (a syntax error), because Python stops the program
once an error is found. All errors that Python finds are easy to remove.
The difficulty with programming is to remove the rest of the errors,
such as errors in formulas or the sequence of operations.

Blanks may or may not be important in Python programs. In Chap-
ter 2.1.2 you will see that blanks are in some occasions essential for a
correct program. Around = or arithmetic operators, however, blanks do
not matter. We could hence write our program from Chapter 1.1.7 as

4 The R (or S or S-PLUS) programming languages for statistical computing actually use
an arrow, while other languages such as Algol, Simula, and Pascal use := to explicitly state
that we are not dealing with a mathematical equality.

17

18

1 Computing with Formulas

v0=3;g=9.81;t=0.6;y=v0*t-0.5%g*t**2;print y

This is not a good idea because blanks are essential for easy reading
of a program code, and easy reading is essential for finding errors, and
finding errors is the difficult part of programming. The recommended
layout in Python programs specifies one blank around =, +, and -, and
no blanks around #, /, and *x. Note that the blank after print is essen-
tial: print is a command in Python and printy is not recognized as any
valid command. (Python would look at printy as an undefined vari-
able.) Computer scientists often use the term whitespace when referring
to a blank!®.

When we interact with computer programs, we usually provide some
information to the program and get some information out. It is common
to use the term input data, or just input, for the information that must
be known beforehand. The result from a program is similarly referred to
as output data, or just output. In our example, vy, g, and ¢ constitute
input, while y is output. All input data must be assigned values in
the program before the output can be computed. Input data can be
explicitly initialized in the program, as we do in the present example,
or the data can be provided by user through keyboard typing while the
program is running, as we explain in Chapter 4. Output data can be
printed in the terminal window, as in the current example, displayed
as graphics on the screen, as done in Chapter 5, or stored in a file for
later access, as explained in Chapter 6.

The word user usually has a special meaning in computer science:
It means a human interacting with a program. You are a user of a
text editor for writing Python programs, and you are a user of your
own programs. When you write programs, it is difficult to imagine how
other users will interact with the program. Maybe they provide wrong
input or misinterpret the output. Making user-friendly programs is very
challenging and depends heavily on the target audience of users. The
author had the average reader of the book in mind as a typical user
when developing programs for this book.

A central part of a computer is the operating system. This is actu-
ally a collection of programs that manages the hardware and software
resources on the computer. There are three major operating systems
today: Windows, Macintosh (called Mac for short), and Unix. Sev-
eral versions of Windows have appeared since the 1990s: Windows 95,
98, 2000, ME, XP, and Vista. Unix was invented already in 1970 and
comes in many different versions. Nowadays, two open source imple-
mentations of Unix, Linux and Free BSD Unix, are most common. The
latter forms the core of the Mac OS X operating system on Macintosh
15 More precisely, blank is the character produced by the space bar on the keyboard,
while whitespace denotes any character(s) that, if printed, do not print ink on the paper:

a blank, a tabulator character (produced by backslash followed by t), or a newline character
(produced by backslash followed by n). The newline character is explained on page 14.

1.3 Another Formula: Celsius-Fahrenheit Conversion

machines, while Linux exists in slightly different flavors: Red Hat, De-
bian, Ubuntu, and Suse to mention the most important distributions.
We will use the term Unix in this book as a synonym for all the operat-
ing systems that inherit from classical Unix, such as Solaris, Free BSD,
Mac OS X, and any Linux variant. Note that this use of Unix also in-
cludes Macintosh machines, but only newer machines as the older ones
run an Apple-specific Mac operating system. As a computer user and
reader of this book, you should know exactly which operating system
you have. In particular, Mac users must know if their operating system
is Unix-based or not.

The user’s interaction with the operation system is through a set of
programs. The most widely used of these enable viewing the contents
of folders or starting other programs. To interact with the operating
system, as a user, you can either issue commands in a terminal window
or use graphical programs. For example, for viewing the file contents of
a folder you can run the command 1s in a Unix terminal window or dir
in a DOS (Windows) terminal window. The graphical alternatives are
many, some of the most common are Windows Explorer on Windows,
Nautilus and Konqueror on Unix, and Finder on Mac. To start a pro-
gram, it is common to double-click on a file icon or write the program’s
name in a terminal window.

1.3 Another Formula: Celsius-Fahrenheit Conversion

Our next example involves the formula for converting temperature mea-
sured in Celsius degrees to the corresponding value in Fahrenheit de-
grees:

F= §C+32 (1.2)

In this formula, C' is the amount of degrees in Celsius, and F' is the
corresponding temperature measured in Fahrenheit. Our goal now is to
write a computer program which can compute F' from (1.2) when C'is
known.

1.3.1 Potential Error: Integer Division

Straightforward Coding of the Formula. A straightforward attempt at

coding the formula (1.2) goes as follows!®:

16 The parentheses around 9/5 are not strictly needed, i.e., (9/5)*C is computationally
identical to 9/5*C, but parentheses remove any doubt that 9/5*C could mean 9/(5*C).
Chapter 1.3.4 has more information on this topic.

19

20

1 Computing with Formulas

C=21
F = (9/5)*C + 32
print F

When run, this program prints the value 53. You can find the program
in the file c2f _v1.py'” in the src/formulas folder — as all other programs
from this chapter.

Verifying the Results. Testing the correctness is easy in this case since
we can evaluate the formula on a calculator: % -21+ 32 is 69.8, not 53.

What is wrong? The formula in the program looks correct!

Float and Integer Division. The error in our program above is one
of the most common errors in mathematical software and is not at all
obvious for a newcomer to programming. In many computer languages,
there are two types of divisions: float division and integer division.
Float division is what you know from mathematics: 9/5 becomes 1.8 in
decimal notation.

Integer division a/b with integers (whole numbers) a and b results
in an integer that is truncated (or mathematically, “rounded down”).
More precisely, the result is the largest integer ¢ such that bc < a. This
implies that 9/5 becomes 1 since 1-5 =5 < 9 while 2-5 = 10 > 9.
Another example is 1/5, which becomes 0 since 0-5 <1 (and 1-5 > 1).
Yet another example is 16/6, which results in 2 (try 2-6 and 3 -6 to
convince yourself). Many computer languages, including Fortran, C,
C++, Java, and Python, interpret a division operation a/b as integer
division if both operands a and b are integers. If either a or b is a real
(floating-point) number, a/b implies the standard mathematical float
division.

The problem with our program is the coding of the formula (9/5)*C
+ 32. This formula is evaluated as follows. First, 9/5 is calculated. Since
9 and 5 are interpreted by Python as integers (whole numbers), 9/5 is
a division between two integers, and Python chooses by default integer
division, which results in 1. Then 1 is multiplied by ¢, which equals 21,
resulting in 21. Finally, 21 and 32 are added with 53 as result.

We shall very soon present a correct version of the temperature con-
version program, but first it may be advantageous to introduce a fre-
quently used word in Python programming: object.

1.3.2 Objects in Python

When we write

17 The v1 part of the name stands for “version 1”. Throughout this book, we will often
develop several trial versions of a program, but remove the version number in the final
version of the program.

1.3 Another Formula: Celsius-Fahrenheit Conversion
c=21

Python interprets the number 21 on the right-hand side of the assign-
ment as an integer and creates an int (for integer) object holding the
value 21. The variable C acts as a name for this int object. Similarly, if
we write C = 21.0, Python recognizes 21.0 as a real number and there-
fore creates a float (for floating-point) object holding the value 21.0
and lets C be a name for this object. In fact, any assignment statement
has the form of a variable name on the left-hand side and an object on
the right-hand side. One may say that Python programming is about
solving a problem by defining and changing objects.

At this stage, you do not need to know what an object really is, just
think of an int object as a collection, say a storage box, with some
information about an integer number. This information is stored some-
where in the computer’s memory, and with the name C the program
gets access to this information. The fundamental issue right now is that
21 and 21.0 are identical numbers in mathematics, while in a Python
program 21 gives rise to an int object and 21.0 to a float object.

There are lots of different object types in Python, and you will later
learn how to create your own customized objects. Some objects contain
a lot of data, not just an integer or a real number. For example, when
we write

print ’A text with an integer %d and a float %f’ % (2, 2.0)

a str (string) object, without a name, is first made of the text between
the quotes and then this str object is printed. We can alternatively do
this in two steps:

s = ’A text with an integer %d and a float %f’ % (2, 2.0)
print s

1.3.3 Avoiding Integer Division

As a quite general rule of thumb, one should avoid integer division in
mathematical formulas'®. There are several ways to do this, as we de-
scribe in Appendix H.2. The simplest remedy in Python is to insert
a statement that simply turns off integer division. A more widely ap-
plicable method, also in other programming languages than Python,
is to enforce one of the operands to be a float object. In the current
example, there are several ways to do this:

18 Some mathematical algorithms do make use of integer division, but in those cases you
should use a double forward slash, //, as division operator, because this is Python’s way of
explicitly indicating integer division.

21

22

1 Computing with Formulas

(9.0/5)*C + 32
(9/5.0)*C + 32

F
F
F = float(C)*9/5 + 32

In the first two lines, one of the operands is written as a decimal num-
ber, implying a float object and hence float division. In the last line,
float (C)*9 means float times int, which results in a float object, and
float division is guaranteed.

A related construction,

F = float(C)*(9/5) + 32

does not work correctly, because 9/5 is evaluated by integer division,
yielding 1, before being multiplied by a float representation of C (see
next section for how compound arithmetic operations are calculated).
In other words, the formula reads F=C+32, which is wrong.

We now understand why the first version of the program does not
work and what the remedy is. A correct program is

c=21
F = (9.0/5)*C + 32
print F

Instead of 9.0 we may just write 9. (the dot implies a float interpre-
tation of the number). The program is available in the file c2f.py. Try
to run it — and observe that the output becomes 69.8, which is correct.

Comment. We could easily have run into problems in our very first
programs if we instead of writing the formula % gt? as 0.5*g*t**2 wrote
(1/2) *g*xt**2. Explain the problem!

1.3.4 Arithmetic Operators and Precedence

Formulas in Python programs are usually evaluated in the same way
as we would evaluate them mathematically. Python proceeds from left
to right, term by term in an expression (terms are separated by plus
or minus). In each term, power operations such as a®, coded as a*#b,
has precedence over multiplication and division. As in mathematics, we
can use parentheses to dictate the way a formula is evaluated. Below
are two illustrations of these principles.

o 5/9+2*axx4/2: First 5/9 is evaluated (as integer division, giving 0
as result), then a* (ax*4) is evaluated, then 2 is multiplied with a*,
that result is divided by 2, and the answer is added to the result of
the first term. The answer is therefore a**4.

® 5/(9+2)*ax*(4/2): First & is evaluated (as integer division, yield-
ing 0), then 4/2 is computed (as integer division, yielding 2), then
a**2 is calculated, and that number is multiplied by the result of
5/(9+2). The answer is thus always zero.

1.4 Evaluating Standard Mathematical Functions

As evident from these two examples, it is easy to unintentionally get
integer division in formulas. Although integer division can be turned off
in Python, we think it is important to be strongly aware of the integer
division concept and to develop good programming habits to avoid it.
The reason is that this concept appears in so many common computer
languages that it is better to learn as early as possible how to deal with
the problem rather than using a Python-specific feature to remove the
problem.

1.4 Evaluating Standard Mathematical Functions

Mathematical formulas frequently involve functions such as sin, cos,
tan, sinh, cosh, exp, log, etc. On a pocket calculator you have spe-
cial buttons for such functions. Similarly, in a program you also have
ready-made functionality for evaluating these types of mathematical
functions. One could in principle write one’s own program for evaluat-
ing, e.g., the sin(x) function, but how to do this in an efficient way is
a non-trivial topic. Experts have worked on this problem for decades
and implemented their best recipes in pieces of software that we should
reuse. This section tells you how to reach sin, cos, and similar functions
in a Python context.

1.4.1 Example: Using the Square Root Function

Problem. Consider the vertical motion of a ball in (1.1) on page 1. We
now ask the question: How long time does it take for the ball to reach
the height y.? The answer is straightforward to derive. When y = .
we have

= vot 1t2
= vot — —gt”.
Ye 0 29

We recognize that this equation is a quadratic equation which we must
solve with respect to t. Rearranging,

1
Egt —vot +y. =0,

and using the well-known formula for the two solutions of a quadratic
equation, we find

to=(vo— b =209) /9. ta= (o8 20w) /9. (13)

There are two solutions because the ball reaches the height y. on its
way up (t = t1) and on its way down (t = ta > t;).

23

24

1 Computing with Formulas

The Program. To evaluate the expressions for ¢; and t2 from (1.3)
in a computer program, we need access to the square root function.
In Python, the square root function and lots of other mathematical
functions, such as sin, cos, sinh, exp, and log, are available in a module
called math. We must first import the module before we can use it,
that is, we must write import math. Thereafter, to take the square root
of a variable a, we can write math.sqrt(a). This is demonstrated in a
program for computing ¢; and ts:

vO = 5
g = 9.81
yc = 0.2

import math

tl = (vO - math.sqrt(v0**2 - 2xgxyc))/g

t2 = (vO + math.sqrt(vO**2 - 2xgxyc))/g

print ’At t=Yg s and %g s, the height is %g m.’ % (t1, t2, yc)

The output from this program becomes
At t=0.0417064 s and 0.977662 s, the height is 0.2 m.

You can find the program as the file ball_yc.py in the src/formulas
folder.

Two Ways of Importing a Module. The standard way to import a
module, say math, is to write

import math

and then access individual functions in the module with the module
name as prefix as in

x = math.sqrt(y)

People working with mathematical functions often find math.sqrt(y)
less pleasing than just sqrt(y). Fortunately, there is an alternative im-
port syntax that allows us to skip the module name prefix. This alter-
native syntax has the form “from module import function”. A specific
example is

from math import sqrt

Now we can work with sqrt directly, without the math. prefix. More
than one function can be imported:

from math import sqrt, exp, log, sin
Sometimes one just writes
from math import *

to import all functions in the math module. This includes sin, cos, tan,
asin, acos, atan, sinh, cosh, tanh, exp, log (base e), log10 (base 10),

1.4 Evaluating Standard Mathematical Functions

sqrt, as well as the famous numbers e and pi. Importing all functions
from a module, using the asterisk (*) syntax, is convenient, but this
may result in a lot of extra names in the program that are not used.
It is in general recommended not to import more functions than those
that are really used in the program'®.

With a from math import sqrt statement we can write the formulas

for the roots in a more pleasing way:

t1
t2

(vO - sqrt(v0**2 - 2*g*yc))/g
(vO + sqrt(vOx*2 - 2*gxyc))/g

Import with New Names. Imported modules and functions can be given
new names in the import statement, e.g.,

import math as m
m is now the name of the math module
v = m.sin(m.pi)

from math import log as 1n
v = 1n(5)

from math import sin as s, cos as c, log as 1n
v = s(x)*c(x) + 1n(x)

In Python, everything is an object, and variables refer to objects, so
new variables may refer to modules and functions as well as numbers
and strings. The examples above on new names can also be coded by
introducing new variables explicitly:

non
8
wn -
s
B

1.4.2 Example: Using More Mathematical Functions

Our next examples involves calling some more mathematical functions
from the math module. We look at the definition of the sinh(z) function:

sinh(x) = 5(650 —e). (1.4)
We can evaluate sinh(z) in three ways: i) by calling math.sinh, ii) by
computing the right-hand side of (1.4), using math.exp, or iii) by com-
puting the right-hand side of (1.4) with the aid of the power expressions
math.e**x and math.ex*(-x). A program doing these three alternative

calculations is found in the file 3sinh.py. The core of the program looks
like this:

19 Nevertheless, of convenience we often use the from module import #* syntax in this book.

25

26

1 Computing with Formulas

from math import sinh, exp, e, pi

X = 2%pi
rl = sinh(x)
r2 = 0.5%(exp(x) - exp(-x))

r3 = 0.5%(e*xxx - ex*x(-x))
print ri1, r2, r3

The output from the program shows that all three computations give
identical results:

267.744894041 267.744894041 267.744894041

1.4.3 A First Glimpse of Round-Off Errors

The previous example computes a function in three different yet math-
ematically equivalent ways, and the output from the print statement
shows that the three resulting numbers are equal. Nevertheless, this is
not the whole story. Let us try to print out r1, r2, r3 with 16 decimals:

print ’%.16f %.16f %.16f’ % (r1l,r2,r3)

This statement leads to the output
267.7448940410164369 267.7448940410164369 267.7448940410163232

Now r1 and r2 are equal, but r3 is different! Why is this so?

Our program computes with real numbers, and real numbers need
in general an infinite number of decimals to be represented exactly.
The computer truncates the sequence of decimals because the storage
is finite. In fact, it is quite standard to keep only 16 digits in a real
number on a computer. Exactly how this truncation is done is not
explained in this book?°. For now the purpose is to notify the reader
that real numbers on a computer often have a small error. Only a few
real numbers can be represented exactly with 16 digits, the rest of the
real numbers are only approximations.

For this reason, most arithmetic operations involve inaccurate real
numbers, resulting in inaccurate calculations. Think of the following
two calculations: 1/49-49 and 1/51 - 51. Both expressions are identical
to 1, but when we perform the calculations in Python,

print ’%.16f %.16f’ % (1/49.0%49, 1/51.0%51)

the result becomes

0.9999999999999999 1.0000000000000000
The reason why we do not get exactly 1.0 as answer in the first case, is
because 1/49 is not correctly represented in the computer. Also 1/51

has an inexact representation, but the error does not propagate to the
final answer.

20 Tnstead, you can search for “floating point number” on wikipedia.org.

http://wikipedia.org

1.5 Interactive Computing

21 in floating-point numbers may propagate

through mathematical calculations and result in answers that are only
approximations to the exact underlying mathematical values. The er-
rors in the answers are commonly known as round-off errors. As soon
as you use Python interactively as explained in the next section, you
will encounter round-off errors quite often.

Python has a special module decimal which allows real numbers to
be represented with adjustable accuracy so that round-off errors can
be made as small as desired. However, we will hardly use this module??
because approximations implied by many mathematical methods ap-
plied throughout this book normally lead to (much) larger errors than
those caused by round-off.

To summarize, errors

1.5 Interactive Computing

A particular convenient feature of Python is the ability to execute
statements and evaluate expressions interactively. The environments
where you work interactively with programming are commonly known
as Python shells. The simplest Python shell is invoked by just typing
python at the command line in a terminal window. Some messages
about Python are written out together with a prompt >>>, after which
you can issue commands. Let us try to use the interactive shell as a
calculator. Type in 3%4.5-0.5 and then press the Return key to see
Python’s response to this expression:

Terminal> python

Python 2.5.1 (r251:54863, May 2 2007, 16:56:35)

[GCC 4.1.2 (Ubuntu 4.1.2-Oubuntu4)] on linux2

Type "help", "copyright", "credits" or "license" for more information.
>>> 3%¥4.5-0.5

13.0

The text on a line after >>> is what we write (shell input) and the
text without the >>> prompt is the result that Python calculates (shell
output). It is easy, as explained below, to recover previous input and
edit the text. This editing feature makes it convenient to experiment
with statements and expressions.

1.5.1 Using the Python Shell
The program from Chapter 1.1.7 can be typed in, line by line, in the

interactive shell:

21 Exercise 2.23 on page 84 estimates the size of the errors.
22 See the last paragraph of Chapter 3.1.9 for an example.

27

28

1 Computing with Formulas

>>> v0 = 5

>>> g = 9.81

>>> t 0.6

>>> y = vO*t — 0.5*gxt*x*2
>>> print y

1.2342

We can now easily calculate an y value corresponding to another (say)
v0 value: hit the up arrow key?? to recover previous statements, repeat
pressing this key until the v0 = 5 statement is displayed. You can then
edit the line, say you edit the statement to

>>> v0 = 6

Press return to execute this statement. You can control the new value
of v0 by either typing just vO or print vO0:

>>> v0

6

>>> print vO
6

The next step is to recompute y with this new v0 value. Hit the up
arrow key multiple times to recover the statement where y is assigned,
press the Return key, and write y or print y to see the result of the
computation:

>>> § = vOxt — 0.5kgxtxx2
>>> y

1.8341999999999996

>>> print y

1.8342

The reason why we get two slightly different results is that typing just
y prints out all the decimals that are stored in the computer (16), while
print y writes out y with fewer decimals. As mentioned on page 26,
computations on a computer often suffer from round-off errors. The
present calculation is no exception. The correct answer is 1.8342, but
round-off errors lead to a number that is incorrect in the 16th decimal.
The error is here 4 - 10716,

1.5.2 Type Conversion

Often you can work with variables in Python without bothering about
the type of objects these variables refer to. Nevertheless, we encoun-
tered a serious problem in Chapter 1.3.1 with integer division, which
forced us to be careful about the types of objects in a calculation. The

23 This key works only if Python was compiled with the Readline library. In case the key
does not work, try the editing capabilities in another Python shell, for example, IPython
(see Chapter 1.5.3).

1.5 Interactive Computing

interactive shell is very useful for exploring types. The following exam-
ple illustrates the type function and how we can convert an object from
one type to another.

First, we create an int object bound to the name C and check its
type by calling type(C):

>>> C = 21
>>> type(C)
<type ’int’>

We convert this int object to a corresponding float object:

>>> C = float(C) # type conversion
>>> type(C)

<type ’float’>

>>> C

21.0

In the statement C = float(C) we create a new object from the original
object referred to by the name C and bind it to the same name C. That
is, C refers to a different object after the statement than before. The
original int with value 21 cannot be reached anymore (since we have
no name for it) and will be automatically deleted by Python.

We may also do the reverse operation, i.e., convert a particular float
object to a corresponding int object:

>>> C = 20.9

>>> type(C)

<type ’float’>

>>> D = int(C) # type conversion

>>> type(D)

<type ’int’>

>>> D

20 # decimals are truncated :-/

In general, one can convert a variable v to type MyType by writing
v=MyType (v), if it makes sense to do the conversion.

In the last input we tried to convert a float to an int, and this oper-
ation implied stripping off the decimals. Correct conversion according
to mathematical rounding rules can be achieved with help of the round
function:

>>> round(20.9)

21.0

>>> int(round(20.9))
21

1.5.3 IPython

There exist several improvements of the standard Python shell pre-
sented in the previous section. The author advocates the IPython shell
as the preferred interactive shell. You will then need to have IPython

29

30

1 Computing with Formulas

installed. Typing ipython in a terminal window starts the shell. The
(default) prompt in IPython is not >>> but In [X]:, where X is the
number of the present input command. The most widely used features
of IPython are summarized below.

Running Programs. Python programs can be run from within the

shell:

In [1]: run ball2.py
1.2342

This command requires that you have taken a cd to the folder where
the ball2.py program is located and started IPython from there.

On Windows you may, as an alternative to starting IPython from
a DOS window, double click on the IPython desktop icon or use the
Start menu. In that case, you must move to the right folder where your
program is located. This is done by the os.chdir (change directory)
command. Typically, you write something like

In [1]: import os
In [2]: os.chdir(r’C:\Documents and Settings\me\My Documents\div’)
In [3]: run ball2.py

if the ball2.py program is located in the folder div under My Documents
of user me. Note the r before the quote in the string: it is required to
let a backslash really mean the backslash character.

We recommend to run all your Python programs from the IPython
shell. Especially when something goes wrong, IPython can help you to
examine the state of variables so that you become quicker to locate
bugs. In the rest of the book, we just write the program name and the
output when we illustrate the execution of a program:

Terminal

ball2.py
1.2342

You then need to write run before the program name if you execute
the program in IPython, or if you prefer to run the program from the
Terminal command prompt in a terminal window, you need to write
python prior to the program name. Appendix H.1 describes various
other ways to run a Python program.

Quick Recovery of Previous Output. The results of the previous state-
ments in an interactive IPython session are available in variables of the
form _iX (underscore, i, and a number X), where X is 1 for the last state-
ment, 2 for the second last statement, and so forth. Short forms are _
for _i1, __ for _i2, and ___ for _i3. The output from the In [1] input
above is 1.2342. We can now refer to this number by an underscore
and, e.g., multiply it by 10:

1.5 Interactive Computing

In [2]: _*10
Out [2]: 12.341999999999999

Output from Python statements or expressions in [Python are pre-
ceded by Out [X] where X is the command number corresponding to the
previous In [X] prompt. When programs are executed, as with the run
command, or when operating system commands are run (as shown be-
low), the output is from the operating system and then not preceded
by any Out[X] label.

TAB Completion. Pressing the TAB key will complete an in-
completely typed variable name. For example, after defining
my_long_variable_name = 4, write just my at the In [4]: prompt
below, and then hit the TAB key. You will experience that my is imme-
diately expanded to my_long_variable_name. This automatic expansion
feature is called TAB completion and can save you from quite some

typing.
In [3]: my_long variable_name = 4

In [4]: my_long variable_name
Out[4]: 4

Recovering Previous Commands. You can “walk” through the com-
mand history by typing Ctrl-p or the up arrow for going backward or
Ctrl-n or the down arrow for going forward. Any command you hit can
be edited and re-executed. Also commands from previous sessions are
stored in the command history.

Running Uniz/Windows Commands. Operating system commands can
be run from IPython. Below we run the three Unix commands date, 1s
(list files), and mkdir (make directory):

In [5]: date
Thu Nov 18 11:06:16 CET 2010

In [6]: 1s
myfile.py yourprog.py

In [7]: mkdir mytestdir

If you have defined Python variables with the same name as operat-
ing system commands, e.g., date=30, you must write !date to run the
corresponding operating system command.

IPython can do much more than what is shown here, but the ad-
vanced features and the documentation of them probably do not make
sense before you are more experienced with Python — and with reading
manuals.

Remark. In the rest of the book we will apply the >>> prompt in in-
teractive sessions instead of the input and output prompts as used by

31

32

1 Computing with Formulas

IPython, simply because most Python books and electronic manuals
use >>> to mark input in interactive shells. However, when you sit by
the computer and want to use an interactive shell, we recommend to
use [Python, and then you will see the In [X] prompt instead of >>>.

1.6 Complex Numbers

Suppose 22 = 2. Then most of us are able to find out that z = /2 is
a solution to the equation. The more mathematically interested reader
will also remark that x = —+/2 is another solution. But faced with the
equation z? = —2, very few are able to find a proper solution without
any previous knowledge of complex numbers. Such numbers have many
applications in science, and it is therefore important to be able to use
such numbers in our programs.

On the following pages we extend the previous material on comput-
ing with real numbers to complex numbers. The text is optional, and
readers without knowledge of complex numbers can safely drop this
section and jump to Chapter 1.7.

A complex number is a pair of real numbers a and b, most often
written as a+bi, or a+ b, where i is called the imaginary unit and acts
as a label for the second term. Mathematically, i = /—1. An important
feature of complex numbers is definitely the ability to compute square
roots of negative numbers For example, V-2 = V2i (i.e., V2 2v/—1).
The solutions of 22 = —2 are thus 27 = +v/2i and x5 = —\/§z.

There are rules for addltlon, subtraction, multiplication, and divi-
sion between two complex numbers. There are also rules for raising a
complex number to a real power, as well as rules for computing sin z,
cos z, tan z, €®, In z, sinh z, cosh z, tanh z, etc. for a complex number
z = a + ib. We assume in the following that you are familiar with the
mathematics of complex numbers, at least to the degree encountered
in the program examples.

letu=a+biand v=c+ di

u=v = a=c¢ b=d

—u=—a—bi

u* =a—0bi (complex conjugate)
u+v=_(a+c)+(b+d)i

u—v=(a—c)+ (b—d)i

uv = (ac — bd) + (be + ad)i
v = ac+bd+bc—adi
2+ A+ d?

1.6 Complex Numbers

ul = Va2 + b2
|ul

€9 =cosq+ising

1.6.1 Complex Arithmetics in Python

Python supports computation with complex numbers. The imaginary
unit is written as j in Python, instead of ¢ as in mathematics. A complex
number 2 — 3i is therefore expressed as (2-3j) in Python. We remark
that the number ¢ is written as 1j, not just j. Below is a sample session
involving definition of complex numbers and some simple arithmetics:

>>>u = 2.5 + 3j # create a complex number
>>> vy = 2 # this is an int
>>>w=u+v # complex + int

>>> w

(4.5+33)

>>> a = -2

>>> b = 0.5

>>> s = a + bxlj # create a complex number from two floats
>>> s = complex(a, b) # alternative creation
>>> s

(-2+0.53)

>>> s*y # complex*complex
(-10.5-3.753)

>>> s/w # complex/complex

(-0.25641025641025639+0.282051282051282057)

A complex object s has functionality for extracting the real and imag-
inary parts as well as computing the complex conjugate:

>>> s.real

-2.0

>>> s.imag

0.5

>>> s.conjugate()
(-2-0.53)

1.6.2 Complex Functions in Python
Taking the sine of a complex number does not work:

>>> from math import sin
>>> r = sin(w)
Traceback (most recent call last):
File "<input>", line 1, in ?
TypeError: can’t convert complex to float; use abs(z)

The reason is that the sin function from the math module only works
with real (float) arguments, not complex. A similar module, cmath,
defines functions that take a complex number as argument and return
a complex number as result. As an example of using the cmath module,
we can demonstrate that the relation sin(ai) = isinh a holds:

33

34

1 Computing with Formulas

>>> from cmath import sin, sinh
>>> r1 = sin(8j)

>>> ri

1490.4788257895502j

>>> r2 = 1j*sinh(8)

>>> r2

1490.4788257895502j

Another relation, e’ = cos q + isin g, is exemplified next:

>>> q =8 # some arbitrary number

>>> exp(1j*q)
(-0.14550003380861354+0.98935824662338179j)
>>> cos(q) + 1j*sin(q)
(-0.14550003380861354+0.989358246623381793)

1.6.3 Unified Treatment of Complex and Real Functions

The cmath functions always return complex numbers. It would be nice
to have functions that return a float object if the result is a real
number and a complex object if the result is a complex number. The
Numerical Python package (see more about this package in Chapter 5)
has such versions of the basic mathematical functions known from math
and cmath. By taking a

from numpy.lib.scimath import *

one gets access to these flexible versions of mathematical functions?*.

A session will illustrate what we obtain.
Let us first use the sqrt function in the math module:

>>> from math import sqrt

>>> sqrt(4) # float

2.0

>>> sqrt(-1) # illegal

Traceback (most recent call last):
File "<input>", line 1, in 7

ValueError: math domain error

If we now import sqrt from cmath,

>>> from cmath import sqrt

the previous sqrt function is overwritten by the new one. More pre-
cisely, the name sqrt was previously bound to a function sqrt from the
math module, but is now bound to another function sqrt from the cmath
module. In this case, any square root results in a complex object:

>>> sqrt(4) # complex
(2+03)

>>> sqrt(-1) # complex
1]

24 The functions also come into play by a from scipy import * statement or from
scitools.std import *. The latter is used as a standard import later in the book.

1.7 Summary
If we now take

>>> from numpy.lib.scimath import *

we import (among other things) a new sqrt function. This function is
slower than the versions from math and cmath, but it has more flexibility
since the returned object is float if that is mathematically possible,
otherwise a complex is returned:

>>> sqrt(4) # float
2.0

>>> sqrt(-1) # complex
13

As a further illustration of the need for flexible treatment of both com-
plex and real numbers, we may code the formulas for the roots of a
quadratic function f(x) = az? + bz + ¢

>>> a =1; b =2; c =100 # polynomial coefficients
>>> from numpy.lib.scimath import sqrt

>>> r1l = (b + sqrt(b**2 - 4*axc))/(2*a)
>>> 12 = (-b - sqrt(b**2 - 4xaxc))/(2*a)
>>> ril

(-1+9.949874371073)

>>> r2

(-1-9.949874371073)

Using the up arrow, we may go back to the definitions of the coefficients
and change them so the roots become real numbers:

>>a=1; b=4; c=1 # polynomial coefficients

Going back to the computations of r1 and r2 and performing them
again, we get

>>> ril
-0.267949192431
>>> r2
-3.73205080757

That is, the two results are float objects. Had we applied sqrt from
cmath, r1 and r2 would always be complex objects, while sqrt from the
math module would not handle the first (complex) case.

1.7 Summary

1.7.1 Chapter Topics

Program Files. Python programs must be made by a pure text editor
such as Emacs, Vim, Notepad++ or similar. The program text must
be saved in a text file, with a name ending with the extension .py. The

35

36

1 Computing with Formulas

filename can be chosen freely, but stay away from names that coincide
with modules or keywords in Python, in particular do not use math.py,
time.py, random.py, os.py, sys.py, while.py, for.py, if.py, class.py,
def .py, to mention some forbidden filenames.

Programs Must Be Accurate! A program is a collection of statements
stored in a text file. Statements can also be executed interactively in a
Python shell. Any error in any statement may lead to termination of
the execution or wrong results. The computer does exactly what the
programmer tells the computer to do!

Variables. The statement

some_variable = obj

defines a variable with the name some_variable which refers to an ob-
ject obj. Here obj may also represent an expression, say a formula,
whose value is a Python object. For example, 1+2.5 involves the ad-
dition of an int object and a float object, resulting in a float ob-
ject. Names of variables can contain upper and lower case English
letters, underscores, and the digits from 0 to 9, but the name can-
not start with a digit. Nor can a variable name be a reserved word in
Python.

If there exists a precise mathematical description of the problem to
be solved in a program, one should choose variable names that are
in accordance with the mathematical description. Quantities that do
not have a defined mathematical symbol, should be referred to by de-
scriptive variables names, i.e., names that explain the variable’s role
in the program. Well-chosen variable names are essential for making a
program easy to read, easy to debug, and easy to extend. Well-chosen
variable names also reduce the need for comments.

Comment Lines. Everything after # on a line is ignored by Python and
used to insert free running text, known as comments. The purpose of
comments is to explain, in a human language, the ideas of (several)
forthcoming statements so that the program becomes easier to under-
stand for humans. Some variables whose names are not completely
self-explanatory also need a comment.

Object Types. There are many different types of objects in Python. In
this chapter we have worked with

e integers (whole numbers, object type int):

x1

0=3
XYZ = 2

1.7 Summary

e floats (decimal numbers, object type float):

max_temperature = 3.0
MinTemp = 1/6.0

e strings (pieces of text, object type str):

a = ’This is a piece of text\nover two lines.’

b = "Strings are enclosed in single or double quotes."
c = """Triple-quoted strings can

span

several lines.
nnn

e complex numbers (object type complex):

a=2.5+ 3j
real = 6; imag = 3.1
b = complex(real, imag)

Operators. Operators in arithmetic expressions follow the rules from
mathematics: power is evaluated before multiplication and division,
while the latter two are evaluated before addition and subtraction.
These rules are overridden by parentheses. We suggest to use paren-
theses to group and clarify mathematical expressions, also when not
strictly needed.

—t*x2xg/2
- (t*x2)*(g/2) # equivalent
—tx* (2xg) /2 # a different formula!

a=5.0; b=5.0; c=5.0
a/b + c + axc # yields 31.0
a/(b + c) + axc # yields 25.5
a/(b + c + a)*c # yields 1.6666666666666665

Particular attention must be paid to coding fractions, since the division
operator / often needs extra parentheses that are not necessary in the
mathematical notation for fractions (compare ;% with a/(b+c) and

b+c
a/b+c)

Common Mathematical Functions. The math module contains common
mathematical functions for real numbers. Modules must be imported
before they can be used:

import math
a = math.sin(math.pi*1.5)

or

from math import *
a = sin(pix*1.5)

or

38

1 Computing with Formulas

from math import sin, pi
a = sin(pix*1.5)

Print. To print the result of calculations in a Python program to a
terminal window, we apply the print command, i.e., the word print
followed by a string enclosed in quotes, or just a variable:

print "A string enclosed in double quotes"
print a

Several objects can be printed in one statement if the objects are sepa-
rated by commas. A space will then appear between the output of each
object:

>>>a =5.0; b=-5.0; c=1.9856; d = 33
>>> print ’a is’, a, ’b is’, b, ’c and d are’, c, d
a is 5.0 b is -5.0 ¢ and d are 1.9856 33

The printf syntax enables full control of the formatting of real numbers
and integers:

>>> print ’a=Yg, b=%12.4E, c=%.2f, d=%5d’ % (a, b, c, d)
a=5, b= -5.0000E+00, c=1.99, d= 33

Here, a, b, and c are of type float and formatted as compactly as
possible (%g for a), in scientific notation with 4 decimals in a field of
width 12 (%12.4E for b), and in decimal notation with two decimals in
as compact field as possible (%.2f for c). The variable d is an integer
(int) written in a field of width 5 characters (%5d).

Integer Division. A common error in mathematical computations is
to divide two integers, because this results in integer division. Any
number written without decimals is treated as an integer. To avoid
integer division, ensure that every division involves at least one real
number, e.g., 9/5 is written as 9.0/5, 9./5, 9/5., or 9/5.0.

Complex Numbers. Values of complex numbers are written as (X+Yj),
where X is the value of the real part and Y is the value of the imaginary
part. One example is (4-0.2j). If the real and imaginary parts are
available as variables r and i, a complex number can be created by
complex(r, 1i).

The cmath module must be used instead of math if the argument
is a complex variable. The numpy package offers similar mathematical
functions, but with a unified treatment of real and complex variables.

Terminology. Some Python and computer science terms briefly covered
in this chapter are

1.7 Summary

e object: anything that a variable (name) can refer to?® (number,
string, function, module, .. .)

e variable: name of an object

e statement: an instruction to the computer, usually written on a line
in a Python program (multiple statements on a line must be sepa-
rated by semicolons)

e expression: a combination of numbers, text, variables, and operators
that results in a new object, when being evaluated

e assignment: a statement binding an evaluated expression (object) to
a variable (name)

e algorithm: detailed recipe for how to solve a problem by program-

ming

code: program text (or synonym for program)

implementation: same as code

executable: the file we run to start the program

verification: providing evidence that the program works correctly

debugging: locating and correcting errors in a program

1.7.2 Example: Trajectory of a Ball

Problem. The formula (1.1) computes the height of a ball in vertical
motion. What if we throw the ball with an initial velocity having an
angle 6 with the horizontal? This problem can be solved by basic high
school physics as you are encouraged to do in Exercise 1.13. The ball
will follow a trajectory y = f(z) through the air?S, where

1 gz

f(x)-xtan@—mm—kyo. (1.5)
In this expression, x is a horizontal coordinate, g is the acceleration
of gravity, vg is the size of the initial velocity which makes an angle
with the = axis, and (0, yg) is the initial position of the ball. Our pro-
gramming goal is to make a program for evaluating (1.5). The program
should write out the value of all the involved variables and what their
units are.

Solution. We use the SI system and assume that vg is given in km /h;
g=9.81 m/sz; x, Yy, and gy are measured in meters; and € in degrees.
The program has naturally four parts: initialization of input data, im-
port of functions and 7 from math, conversion of vy and 6 to m/s and

25 But objects can exist without being bound to a name: print ’Hello!’ first makes a
string object of the text in quotes and then the contents of this string object, without a
name, is printed.

26 This formula neglects air resistance. Exercise 1.11 explores how important air resistance
is. For a soft kick (vo = 10 km/h) of a football, the gravity force is about 120 times larger
than the air resistance. For a hard kick, air resistance may be as important as gravity.

39

1 Computing with Formulas

radians, respectively, and evaluation of the right-hand side expression
in (1.5). We choose to write out all numerical values with one decimal.
The complete program is found in the file trajectory.py:

g = 9.81 # m/s**2

vO = 15 # km/h
theta = 60 # degrees

x = 0.5 # m

yo =1 # m

print ||nu\

vO = %.1f km/h

theta = %d degrees

yO = Y%.1fm

x = %.1f m\

mnn 9% (vO, theta, y0, x)

from math import pi, tan, cos

Convert vO to m/s and theta to radians
v0 = v0/3.6

theta = theta*pi/180

y = x*tan(theta) - 1/(2*%v0*x2)xgxx**2/((cos(theta))**2) + y0

print ’y =%.1fm’ %y

The backslash in the triple-quoted multi-line string makes the string
continue on the next line without a newline. This means that removing
the backslash results in a blank line above the v0 line and a blank
line between the x and y lines in the output on the screen. Another
point to mention is the expression 1/(2*v0**2), which might seem as a
candidate for unintended integer division. However, the conversion of
v0 to m/s involves a division by 3.6, which results in v0 being float,
and therefore 2xv0**2 being float. The rest of the program should be
self-explanatory at this stage in the book.

We can execute the program in IPython or an ordinary terminal
window and watch the output:

v0 = 15.0 km/h
theta = 60 degrees
yo =1.0m
X =0.5m
y =1.6m

1.7.3 About Typesetting Conventions in This Book

This version of the book applies different design elements for different
types of “computer text”. Complete programs and parts of programs
(snippets) are typeset with a light blue background. A snippet looks
like this:

1.8 Exercises

a = sqrt(4*p + c)
print ’a =’, a

A complete program has an additional vertical line to the left:

C=21
F = (9.0/5)*C + 32
print F

As a reader of this book, you may wonder if a code shown is a complete
program you can try out or if it is just a part of a program (a snippet) so
that you need to add surrounding statements (e.g., import statements)
to try the code out yourself. The appearance of a vertical line to the
left or not will then quickly tell you what type of code you see.

An interactive Python session is typeset as

>>> from math import *
>>p=1; c=-1.5
>>> a = sqrt(4xp + c)

Running a program, say ball_yc.py, in the terminal window, followed
by some possible output is typeset as?’

ball_yc.py

At t=0.0417064 s and 0.977662 s, the height is 0.2 m.

Sometimes just the output from a program is shown, and this output
appears as plain “computer text”:

h=0.2

order=0, error=0.221403
order=1, error=0.0214028
order=2, error=0.00140276
order=3, error=6.94248e-05
order=4, error=2.75816e-06

Files containing data are shown in a similar way in this book:

date Oslo London Berlin Paris Rome Helsinki

01.05 18 21.2 20.2 13.7 15.8 15
01.06 21 13.2 14.9 18 24 20
01.07 13 14 16 25 26.2 14.5

1.8 Exercises

What Does It Mean to Solve an Exercise? The solution to most of the
exercises in this book is a Python program. To produce the solution,

27 Recall from Chapter 1.5.3 that we just write the program name. A real execution de-
mands prefixing the program name by python in a DOS/Unix terminal window, or by run
if you run the program from an interactive IPython session. We refer to Appendix H.1 for
more complete information on running Python programs in different ways.

42

1 Computing with Formulas

you first need understand the problem and what the program is sup-
posed to do, and then you need to understand how to translate the
problem description into a series of Python statements. Equally impor-
tant is the verification (testing) of the program. A complete solution to
a programming exercises therefore consists of two parts: the program
text and a demonstration that the program works correctly. Some sim-
ple programs, like the ones in the first two exercises below, have so
simple output that the verification can just be to run the program and
record the output.

In cases where the correctness of the output is not obvious, it is
necessary to provide information together with the output to “prove”
that the result is correct. This can be a calculation done separately
on a calculator, or one can apply the program to a special simple test
with known results. The requirement is to provide evidence that the
program works as intended.

The sample run of the program to check its correctness can be in-
serted at the end of the program as a triple-quoted string®®. The con-
tents of the string can be text from the run in the terminal window, cut
and pasted to the program file by the aid of the mouse. Alternatively,
one can run the program and direct the output to a file?”:

Terminal

Terminal> python myprogram.py > result

Afterwards, use the editor to insert the file result inside the string.

As an example, suppose we are to write a program for converting
Fahrenheit degrees to Celsius. The solution process can be divided into
three steps:

1. Establish the mathematics to be implemented: solving (1.2) with
respect to C' gives the conversion formula

5
9
2. Coding of the formula in Python: ¢ = (5.0/9)*(F - 32)

3. Establish a test case: from the c2f.py program in Chapter 1.3.3 we
know that C' = 21 corresponds to F' = 69.8. We can therefore, in
our new program, set F' = 69.8 and check that C' = 21. The output
from a run can be appended as a triple quoted string at the end of
the program.

C=2(F-32).

28 Alternatively, the output lines can be inserted as comments, but using a multi-line string
requires less typing. (Technically, a string object is created, but not assigned to any name
or used for anything in the program — but for a human the text in the string contains useful
information.)

29 The redirection to files does not work if the program is run inside IPython. In a DOS
terminal window you may also choose to redirect output to a file, because cut and paste
between the DOS window and the program window does not work by default unless you
right-click the top bar, choose Properties and tick off Quick Edit Mode.

1.8 Exercises

An appropriate complete solution to the exercise is then

Convert from Fahrenheit degrees to Celsius degrees:

F =69.8
C = (5.0/9)*(F - 32)
print C

)23

Sample run:
python f2c.py
21.0

PR vl

Exercise 1.1. Compute 1+1.

The first exercise concerns some very basic mathematics and pro-
gramming: assign the result of 141 to a variable and print the value of
that variable. Name of program file: 1plusi.py. o

Exercise 1.2. Write a “Hello, World!” program.

Almost all books about programming languages start with a very
simple program that prints the text “Hello, World!” no the screen. Make
such a program in Python. Name of program file: hello_world.py. ¢

Exercise 1.3. Derive and compute a formula.
Can a newborn baby in Norway expect to live for one billion (10%)
seconds? Name of program file: seconds2years.py. o

Exercise 1.4. Convert from meters to British length units.

Make a program where you set a length given in meters and then
compute and write out the corresponding length measured in inches,
in feet, in yards, and in miles. Use that one inch is 2.54 c¢m, one foot is
12 inches, one yard is 3 feet, and one British mile is 1760 yards. As a
verification, a length of 640 meters corresponds to 25196.85 inches,
2099.74 feet, 699.91 yards, or 0.3977 miles. Name of program file:

length_conversion.py. o

Exercise 1.5. Compute the mass of various substances.

The density of a substance is defined as ¢ = m/V, where m is the
mass of a volume V. Compute and print out the mass of one liter of
each of the following substances whose densities in g/cm® are found
in the file src/files/densities.dat: iron, air, gasoline, ice, the human
body, silver, and platinum: 21.4. Name of program file: 1liter.py. <

Exercise 1.6. Compute the growth of money in a bank.
Let p be a bank’s interest rate in percent per year. An initial amount

A has then grown to
n
p
Al 1+ —
< * 100)

after n years. Make a program for computing how much money 1000
euros have grown to after three years with 5% interest rate. Name of
program file: interest_rate.py. o

43

44

1 Computing with Formulas

Exercise 1.7. Find error(s) in a program.
Suppose somebody has written a simple one-line program for com-
puting sin(1):

x=1; print ’sin(%g)=lg’ % (x, sin(x))
Type in this program and try to run it. What is the problem? o

Exercise 1.8. Type in program text.
Type the following program in your editor and execute it. If your
program does not work, check that you have copied the code correctly.

from math import pi

h=5.0 # height
b=2.0 # base
r =1.5 # radius

area_parallelogram = h*b
print ’The area of the parallelogram is %.3f’ % area_parallelogram

area_square = bxx2
print ’The area of the square is %g’) area_square

area_circle = pix*r**2
print ’The area of the circle is %.3f’ J, area_circle

volume_cone = 1.0/3*pi*r**2xh
print ’The volume of the cone is %.3f’ % volume_cone

Name of program file: formulas_shapes.py. o

Exercise 1.9. Type in programs and debug them.
Type these short programs in your editor and execute them. When
they do not work, identify and correct the erroneous statements.

(a) Does sin?(z) + cos?(z) = 17

from math import sin, cos
x = pi/4

1_val = sin"2(x) + cos~2(x)
print 1_VAL

Name of program file: sin2_plus_cos2.py
(b) Work with the expressions for movement with constant accelera-
tion:

0 =3 m/s

1s

2 m/s**2

vO*t + 1/2 axt*x2
print s

nedcdg

Name of program file: acceleration.py
(c) Verify these equations:

(a+b)? =a® + 2ab+ b?
(a —b)? = a® — 2ab + b?

1.8 Exercises

a2 = axx2

b2 = b**2

eql_sum = a2 + 2ab + b2
eg2_sum = a2 - 2ab + b2
eql_pow = (a + b)**2
eq2_pow = (a - b)*x2

print ’First equation: g
print ’Second equation: %h

%g’, % (eql_sum, eql_pow)
%h’, % (eq2_pow, eq2_pow)

Name of program file: a_pm_b_sqr.py o

Exercise 1.10. Evaluate a Gaussian function.
The bell-shaped Gaussian function,

@) = —exp [—% (”’”;mﬂ, (16)

is one of the most widely used functions in science and technology?’.
The parameters m and s are real numbers, where s must be greater
than zero. Make a program for evaluating this function when m = 0,
s =2, and x = 1. Verify the program’s result by comparing with hand
calculations on a calculator. Name of program file: Gaussianl.py. ¢

Exercise 1.11. Compute the air resistance on a football.
The drag force, due to air resistance, on an object can be expressed
as

1
Fy= §CDQAV2, (1.7)

where g is the density of the air, V is the velocity of the object, A is
the cross-sectional area (normal to the velocity direction), and Cp is
the drag coefficient, which depends heavily on the shape of the object
and the roughness of the surface.

The gravity force on an object with mass m is F, = mg, where
g=9.81 ms2.

We can use the formulas for F; and F}; to study the importance of air
resistance versus gravity when kicking a football. The density of air is
0=1.2kgm 3. We have A = ma? for any ball with radius a. For a foot-
ball @ = 11 ecm. The mass of a football is 0.43 kg, Cp can be taken as 0.2.

Make a program that computes the drag force and the gravity force
on a football. Write out the forces with one decimal in units of Newton
(N = kgm/s?). Also print the ratio of the drag force and the gravity
force. Define Cp, o0, A, V, m, g, Fy, and F, as variables, and put

30 The function is named after Carl Friedrich Gauss, 1777-1855, who was a German math-
ematician and scientist, now considered as one of the greatest scientists of all time. He
contributed to many fields, including number theory, statistics, mathematical analysis, dif-
ferential geometry, geodesy, electrostatics, astronomy, and optics. Gauss introduced the
function (1.6) when he analyzed probabilities related to astronomical data.

45

http://en.wikipedia.org/wiki/Carl_Gauss

46

1 Computing with Formulas

a comment with the corresponding unit. Use the program to calculate
the forces on the ball for a hard kick, V' = 120 km/h and for a soft kick,
V =10 km/h (it is easy to mix inconsistent units, so make sure you
compute with V' expressed in m/s). Name of program file: kick.py. ©

Exercise 1.12. How to cook the perfect egg.

As an egg cooks, the proteins first denature and then coagulate.
When the temperature exceeds a critical point, reactions begin and
proceed faster as the temperature increases. In the egg white the pro-
teins start to coagulate for temperatures above 63 C, while in the yolk
the proteins start to coagulate for temperatures above 70 C. For a soft
boiled egg, the white needs to have been heated long enough to coag-
ulate at a temperature above 63 C, but the yolk should not be heated
above 70 C. For a hard boiled egg, the center of the yolk should be
allowed to reach 70 C.

The following formula expresses the time ¢ it takes (in seconds) for
the center of the yolk to reach the temperature 7}, (in Celsius degrees):

M2/3Cp1/3 T, — T,
t= P p|o7620 v, 1.8
Kn2(47/3)2/3 n[T, - Tw] (18)

Here, M, p, ¢, and K are properties of the egg: M is the mass, p is the
density, c is the specific heat capacity, and K is thermal conductivity.
Relevant values are M = 47 g for a small egg and M = 67 g for
a large egg, p = 1.038 gem™3, ¢ = 3.7 Jg 'K™!, and K = 5.4 -
1073 Wem ™! K=t Furthermore, Ty, is the temperature (in C degrees)
of the boiling water, and T, is the original temperature (in C degrees)
of the egg before being put in the water. Implement the formula in a
program, set T, = 100 C and T;, = 70 C, and compute ¢ for a large
egg taken from the fridge (7, = 4 C) and from room temperature
(T, = 20 C). Name of program file: egg.py. o

Exercise 1.13. Derive the trajectory of a ball.

The purpose of this exercise is to explain how Equation (1.5) for the
trajectory of a ball arises from basic physics. There is no programming
in this exercise, just physics and mathematics.

The motion of the ball is governed by Newton’s second law:

F, = ma, (1.9)
F, =may (1.10)

where F, and Fj are the sum of forces in the x and y directions, re-
spectively, a, and a, are the accelerations of the ball in the z and y
directions, and m is the mass of the ball. Let (z(t),y(t)) be the posi-
tion of the ball, i.e., the horizontal and vertical coordinate of the ball at
time ¢. There are well-known relations between acceleration, velocity,
and position: the acceleration is the time derivative of the velocity, and

1.8 Exercises

the velocity is the time derivative of the position. Therefore we have
that

d?z
=", (1.11)
d%y

If we assume that gravity is the only important force on the ball, F, = 0
and Fy, = —mg.

Integrate the two components of Newton’s second law twice. Use the
initial conditions on velocity and position,

d

%:p(()) = vg cos b, (1.13)

%y((}) = vy sin b, (1.14)
2(0) =0, (1.15)
y(0) = o, (1.16)

to determine the four integration constants. Write up the final expres-
sions for z(t) and y(t). Show that if § = 7 /2, i.e., the motion is purely
vertical, we get the formula (1.1) for the y position. Also show that if
we eliminate ¢, we end up with the relation (1.5) between the x and y
coordinates of the ball. You may read more about this type of motion
in a physics book, e.g., [6]. o

Exercise 1.14. Find errors in the coding of formulas.

Some versions of our program for calculating the formula (1.2) are
listed below. Determine which versions that will not work correctly and
explain why in each case.

C = 21; F = 9/5%C + 32; print F
C=21.0; F= (9/5)*xC + 32; print F
C=21.0; F = 09xC/5 + 32; print F
C=21.0; F= 9.%x(C/5.0) + 32; print F
C=21.0; F= 9.0%C/5.0 + 32; print F
C =21; F = 9%C/5 + 32; print F
C=21.0; F = (1/5)*9%C + 32; print F
C = 21; F = (1./5)%9%C + 32; print F

Exercise 1.15. Explain why a program does not work.
Find out why the following program does not work:

C=A+8B
A =3
B=2
print C

47

48

1 Computing with Formulas

Exercise 1.16. Find errors in Python statements.

Try the following statements in an interactive Python shell. Explain

why some statements fail and correct the errors.

la =2

al = b

X 2

y=X+4 # is it 67

from Math import tan

print tan(pi)

pi = "3.14159°

print tan(pi)

C = A%*3%*2%x3

_ = ((c-78564)/c + 32))
discount = 12%

AMOUNT = 120.-

amount = 120%$

address = hpl@simula.no

and = duck

class = ’INF1100, gr 2"
continue_ x>0

rev = fox = True

Norwegian = [’a human language’]
true = fox is rev in Norwegian

Hint: It might be wise to test the values of the expressions on the right-
hand side, and the validity of the variable names, separately before you
put the left- and right-hand sides together in statements. The last two
statements work, but explaining why goes beyond what is treated in

this chapter.

Exercise 1.17. Find errors in the coding of a formula.

Given a quadratic equation,
az? +bxr+c=0,

the two roots are

To —
2a 2 2a

I

What are the problems with the following program?

a=2; b=1; c=2
from math import sqrt
q = sqrt(b*b - 4xaxc)
x1 (-b + q)/2*a

x2 = (-b - q)/2*a
print x1, x2

b+ Vb —dac —b — Vb2 — dac

O

(1.17)

Hint: Compute all terms in (1.17) with the aid of a calculator, and
compare with the corresponding intermediate results computed in the
program (you need to add some print statements to see the result of

q, -b+q, and 2xa).

<

Loops and Lists

This chapter shows how repetitive tasks in a program can be automated
by loops. We also introduce list objects for storing and processing col-
lections of data with a specific order. Loops and lists, together with
functions and if-tests from Chapter 3, lay the fundamental program-
ming foundation for the rest of the book. The programs associated with
the chapter are found in the folder src/looplist.

2.1 While Loops

Our task now is to print out a conversion table with Celsius degrees in
the first column of the table and the corresponding Fahrenheit degrees
in the second column. Such a table may look like this:

-20 -4.
-15 5.
-10 14.

-5 23.

e
o
o)l
o
[elololololololololololol o)

2.1.1 A Naive Solution

Since we know how to evaluate the formula (1.2) for one value of C,
we can just repeat these statements as many times as required for
the table above. Using three statements per line in the program, for
compact layout of the code, we can write the whole program as

H.P. Langtangen, A Primer on Scientific Programming with Python, 49
Texts in Computational Science and Engineering 6,
DOI 10.1007/978-3-642-30293-0_2, (© Springer-Verlag Berlin Heidelberg 2012

http://dx.doi.org/10.1007/978-3-642-30293-0_2

50

2 Loops and Lists

C=-20; F =9.0/5%C + 32; print C, F
C =-15; F = 9.0/5%C + 32; print C, F
C=-10; F = 9.0/5%C + 32; print C, F
C= -5; F=9.0/5%C + 32; print C, F
C = 0; F =9.0/5%C + 32; print C, F
C= 5; F=09.0/5%C + 32; print C, F
C= 10; F =9.0/5%C + 32; print C, F
C= 15; F = 9.0/5%C + 32; print C, F
C= 20; F =9.0/56%C + 32; print C, F
C= 25; F =9.0/5%C + 32; print C, F
C= 30; F=09.0/5%C + 32; print C, F
C= 35; F=9.0/5%C + 32; print C, F
C = 40; F =9.0/5%C + 32; print C, F

Running this program, which is stored in the file c2f_table_repeat.
py, demonstrates that the output becomes
-20 -4.0

This output suffers from somewhat ugly formatting, but that problem
can quickly be fixed by replacing print C, F by a print statement
based on printf formatting. We will return to this detail later.

The main problem with the program above is that lots of statements
are identical and repeated. First of all it is boring to write this sort of
repeated statements, especially if we want many more C' and F' values
in the table. Second, the idea of the computer is to automate repetition.
Therefore, all computer languages have constructs to efficiently express
repetition. These constructs are called loops and come in two variants
in Python: while loops and for loops. Most programs in this book
employ loops, so this concept is extremely important to learn.

2.1.2 While Loops

The while loop is used to repeat a set of statements as long as a condi-
tion is true. We shall introduce this kind of loop through an example.
The task is to generate the rows of the table of C' and F' values. The
C value starts at —20 and is incremented by 5 as long as C' < 40. For
each C value we compute the corresponding F' value and write out the
two temperatures. In addition, we also add a line of hyphens above and
below the table. We postpone to nicely format the C' and F' columns
of numbers and perform for simplicity a plain print C, F statement
inside the loop.

Using a mathematical type of notation, we could write the while
loop as follows:

2.1 While Loops

C=-20

while C < 40 repeat the following:
F=32C+32
print C, F'
set C'to C+5

The three lines after the “while” line are to be repeated as long as the
condition C' < 40 is true. This algorithm will then produce a table of
C and corresponding F' values.

A complete Python program, implementing the repetition algorithm
above, looks quite similar!:

print ’------———————————— ’ # table heading

C = -20 # start value for C

dC = 5 # increment of C in loop

while C <= 40: # loop heading with condition
F = (9.0/5)*C + 32 # 1st statement inside loop
print C, F # 2nd statement inside loop
C=C+dC # 3rd statement inside loop

PIEing P emmemeem e 2 # end of table line (after loop)

A very important feature of Python is now encountered: The block
of statements to be executed in each pass of the while loop must be
indented. In the example above the block consists of three lines, and
all these lines must have exactly the same indentation. Our choice of
indentation in this book is four spaces. The first statement whose in-
dentation coincides with that of the while line marks the end of the
loop and is executed after the loop has terminated. In this example
this is the final print statement. You are encouraged to type in the
code above in a file, indent the last line four spaces, and observe what
happens (you will experience that lines in the table are separated by a
line of dashes: --------)

Many novice Python programmers forget the colon at the end of
the while line — this colon is essential and marks the beginning of the
indented block of statements inside the loop. Later, we will see that
there are many other similar program constructions in Python where
there is a heading ending with a colon, followed by an indented block
of statements.

Programmers need to fully understand what is going on in a program
and be able to simulate the program by hand. Let us do this with the
program segment above. First, we define the start value for the sequence
of Celsius temperatures: C = -20. We also define the increment dC that
will be added to C inside the loop. Then we enter the loop condition C
<= 40. The first time C is -20, which implies that C <= 40 (equivalent
to C' < 40 in mathematical notation) is true. Since the loop condition
is true, we enter the loop and execute all the indented statements.

L For this table we also add (of teaching purposes) a line above and below the table.

52

2 Loops and Lists

That is, we compute F corresponding to the current C value, print the
temperatures, and increment C by dcC.

Thereafter, we enter the second pass in the loop. First we check the
condition: Cis -15 and C <= 40 is still true. We execute the statements
in the indented loop block, C becomes -10, this is still less than or equal
to 40, so we enter the loop block again. This procedure is repeated until
Cis updated from 40 to 45 in the final statement in the loop block. When
we then test the condition, C <= 40, this condition is no longer true,
and the loop is terminated. We proceed with the next statement that
has the same indentation as the while statement, which is the final
print statement in this example.

Newcomers to programming are sometimes confused by statements
like

C=C+dC

This line looks erroneous from a mathematical viewpoint, but the state-
ment is perfectly valid computer code, because we first evaluate the
expression on the right-hand side of the equality sign and then let the
variable on the left-hand side refer to the result of this evaluation. In
our case, C and dC are two different int objects. The operation C+dC
results in a new int object, which in the assignment C = C+dC is bound
to the name C. Before this assignment, C was already bound to a int
object, and this object is automatically destroyed when C is bound to
a new object and there are no other names (variables) referring to this
previous object?.

Since incrementing the value of a variable is frequently done in com-
puter programs, there is a special short-hand notation for this and
related operations:

C += dC # equivalent to C = C + dC
C -=dC # equivalent to C = C - dC
C x= dC # equivalent to C = CxdC
C /= dC # equivalent to C = C/dC

2.1.3 Boolean Expressions

In our first example on a while loop, we worked with a condition C <=
40, which evaluates to either true or false, written as True or False in
Python. Other comparisons are also useful:

C == 40 # C equals 40

C != 40 # C does not equal 40

C >= 40 # C is greater than or equal to 40
C > 40 # C is greater than 40

C < 40 # C is less than 40

2 If you did not get the last point here, just relax and continue reading.

2.1 While Loops

Not only comparisons between numbers can be used as conditions in
while loops: Any expression that has a boolean (True or False) value
can be used. Such expressions are known as logical or boolean expres-
sions.

The keyword not can be inserted in front of the boolean expression to
change the value from True to False or from False to True. To evaluate
not C == 40, we first evaluate C == 40, for C = 1 this is False, and then
not turns the value into True. On the opposite, if C == 40 is True, not C
== 40 becomes False. Mathematically it is easier to read C !'= 40 than
not C == 40, but these two boolean expressions are equivalent.

Boolean expressions can be combined with and and or to form new
compound boolean expressions, as in

while x > 0 and y <= 1:
print x, y

If cond1l and cond2 are two boolean expressions with values True or
False, the compound boolean expression condl and cond2 is True if
both cond1 and cond2 are True. On the other hand, condl or cond2 is
True if at least one of the conditions, condl or cond?2, is True®

Here are some more examples from an interactive session where we
just evaluate the boolean expressions themselves without using them
in loop conditions:

>>>x=0; y=1.2

>>> x > 0 and y < 1
False

>>> x> 0ory <1
True

>>x>0o0ry>1

True

>>>x >0 or not y >1
False

>>> -1 < x <=0 # -1 <xand x <=0
True

>>> not (x > 0 or y > 0)
False

In the last sample expression, not applies to the value of the boolean
expression inside the parentheses: x>0 is False, y>0 is True, so the com-
bined expression with or is True, and not turns this value to False.

The common* boolean values in Python are True, False, 0 (false),
and any integer different from zero (true). To see such values in action,
we recommend to do Exercises 2.25 and 2.21.

3 In Python, condl and cond2 or condl or cond2 returns one of the operands and not just
True or False values as in most other computer languages. The operands condl or cond2
can be expressions or objects. In case of expressions, these are first evaluated to an object
before the compound boolean expression is evaluated. For example, (5+1) or -1 evaluates
to 6 (the second operand is not evaluated when the first one is True), and (5+1) and -1
evaluates to -1.

4 All objects in Python can in fact be evaluated in a boolean context, and all are True
except False, zero numbers, and empty strings, lists, and dictionaries. See Exercise 6.24 for
more details.

53

54

2 Loops and Lists

Erroneous thinking about boolean expressions is one of the most
common sources of errors in computer programs, so you should be
careful every time you encounter a boolean expression and check that
it is correctly stated.

2.1.4 Loop Implementation of a Sum

Summations frequently appear in mathematics. For instance, the sine
function can be calculated as a polynomial:

sin(z) ez — —+———+--, (2.1)

where 3! =3-2-1,5!=5-4-3-2-1, etc., are factorials. The expression
k! =k(k—1)(k—2)---2-1 can be computed by math.factorial (k).

An infinite number of terms are needed on the right-hand side of
(2.1) for the equality sign to hold. With a finite number of terms,
we obtain an approximation to sin(z), which is well suited for being
calculated in a program since only powers and the basic four arithmetic
operations are involved. Say we want to compute the right-hand side
of (2.1) for powers up to N = 25. Writing out and implementing each
one of these terms is a tedious job that can easily be automated by a
loop.

Computation of the sum in (2.1) by a while loop in Python, makes
use of (i) a counter k that runs through odd numbers from 1 up to some
given maximum power N, and (ii) a summation variable, say s, which
accumulates the terms, one at a time. The purpose of each pass of the
loop is to compute a new term and add it to s. Since the sign of each
term alternates, we introduce a variable sign that changes between —1
and 1 in each pass of the loop.

The previous paragraph can be precisely expressed by this piece of
Python code:

1.2 # assign some value

25 # maximum power in sum
1

X

sign = 1.0

import math

while k < N:
sign = - sign
k=k+ 2
term = sign*x*xk/math.factorial (k)
s = s + term

print ’sin(%g) = g (approximation with %d terms)’ % (x, s, N)
The best way to understand such a program is to simulate it by hand.

That is, we go through the statements, one by one, and write down on
a piece of paper what the state of each variable is.

2.2 Lists

When the loop is first entered, k < N implies 1 < 25, which is True
so we enter the loop block. There, we compute sign = -1.0, k = 3,
term = -1.0%x**3/(3%2x1)) (note that sign is float so we always have
float divided by int), and s = x - x*%3/6, which equals the first
two terms in the sum. Then we test the loop condition: 3 < 25 is
True so we enter the loop block again. This time we obtain term
= 1.0*x**5/math.factorial(5), which correctly implements the third
term in the sum. At some point, k is updated to from 23 to 25 in-
side the loop and the loop condition then becomes 25 < 25, which is
False, implying that the program jumps over the loop block and con-
tinues with the print statement (which has the same indentation as
the while statement).

2.2 Lists

Up to now a variable has typically contained a single number. Some-
times numbers are naturally grouped together. For example, all Celsius
degrees in the first column of our table from Chapter 2.1.2 could be
conveniently stored together as a group. A Python list can be used to
represent such a group of numbers in a program. With a variable that
refers to the list, we can work with the whole group at once, but we
can also access individual elements of the group. Figure 2.1 illustrates
the difference between an int object and a list object. In general, a list
may contain a sequence of arbitrary objects in a given order. Python
has great functionality for examining and manipulating such sequences
of objects, which will be demonstrated below.

vart 21

var2 0 20
1 21
2 29
3 4.0

Fig. 2.1 Illustration of two variables: varl refers to an int object with value 21, created
by the statement varl = 21, and var2 refers to a list object with value [20, 21, 29,
4.0], i.e., three int objects and one float object, created by the statement var2 = [20,
21, 29, 4.0].

2.2.1 Basic List Operations

To create a list with the numbers from the first column in our table,
we just put all the numbers inside square brackets and separate the

55

56

2 Loops and Lists

numbers by commas:
¢ = [-20, -15, -10, -5, O, 5, 10, 15, 20, 25, 30, 35, 40]

The variable C now refers to a list object holding 13 list elements. All
list elements are in this case int objects.

Every element in a list is associated with an indez, which reflects the
position of the element in the list. The first element has index 0, the
second index 1, and so on. Associated with the C list above we have 13
indices, starting with 0 and ending with 12. To access the element with
index 3, i.e., the fourth element in the list, we can write C[3]. As we
see from the list, C[3] refers to an int object with the value —5.

Elements in lists can be deleted, and new elements can be inserted
anywhere. The functionality for doing this is built into the list object
and accessed by a dot notation. Two examples are C.append(v), which
appends a new element v to the end of the list, and C.insert(i,v),
which inserts a new element v in position number i in the list. The
number of elements in a list is given by len(C). Let us exemplify some
list operations in an interactive session to see the effect of the opera-
tions:

>>> ¢ = [-10, -5, 0, 5, 10, 15, 20, 25, 30] # create list
>>> C.append(35) # add new element 35 at the end
>>> C # view list C

[-10, -5, 0, 5, 10, 15, 20, 25, 30, 35]
Two lists can be added:

>>> C = C + [40, 45] # extend C at the end
>>> C
[-10, -5, 0, 5, 10, 15, 20, 25, 30, 35, 40, 45]

What adding two lists means is up to the list object to define®, but not
surprisingly, addition of two lists is defined as appending the second
list to the first. The result of ¢ + [40,45] is a new list object, which
we then assign to C such that this name refers to this new list.

New elements can in fact be inserted anywhere in the list (not only
at the end as we did with C.append):

>>> C.insert (0, -15) # insert new element -15 as index O
>>> C
[-15, -10, -5, 0, 5, 10, 15, 20, 25, 30, 35, 40, 45]

5 Every object in Python and everything you can do with them is defined by programs
made by humans. With the techniques of Chapter 7 you can create your own objects and
define (if desired) what it means to add such objects. All this gives enormous power in the
hands of programmers. As one example, you can easily define your own list objects if you
are not satisfied with Python’s own lists.

2.2 Lists

With del C[i] we can remove an element with index i from the list C.
Observe that this changes the list, so C[i] refers to another (the next)
element after the removal:

>>> del C[2] # delete 3rd element

>>> C

[-15, -10, O, 5, 10, 15, 20, 25, 30, 35, 40, 45]

>>> del C[2] # delete what is now 3rd element
>>> C

[-15, -10, 5, 10, 15, 20, 25, 30, 35, 40, 45]

>>> len(C) # length of list

11

The command C.index(10) returns the index corresponding to the first
element with value 10 (this is the 4th element in our sample list, with
index 3):

>>> C.index(10) # find index for an element (10)
3

To just test if an object with the value 10 is an element in the list, one
can write the boolean expression 10 in C:

>>> 10 in C # is 10 an element in C?
True

“

Python allows negative indices, which “count from the right”. As
demonstrated below, C[-1] gives the last element of the list C. C[-2] is
the element before C[-1], and so forth.

>>> C[-1] # view the last list element

45

>>> C[-2] # view the next last list element
40

Building long lists by writing down all the elements separated by com-
mas is a tedious process that can easily be automated by a loop, using
ideas from Chapter 2.1.4. Say we want to build a list of degrees from
—50 to 200 in steps of 2.5 degrees. We then start with an empty list
and use a while loop to append one element at a time:

c =1

C_value = -50

C_max = 200

while C_value <= C_max:
C.append (C_value)
C_value += 2.5

In the next sections, we shall see how we can express these six lines of
code with just one single statement.

There is a compact syntax for creating variables that refer to the
various list elements. Simply list a sequence of variables on the left-
hand side of an assignment to a list:

57

58

2 Loops and Lists

>>> somelist = [’book.tex’, ’book.log’, ’book.pdf’]
>>> texfile, logfile, pdf = somelist

>>> texfile

’book.tex’

>>> logfile

’book.log’

>>> pdf

’book.pdf’

The number of variables on the left-hand side must match the number
of elements in the list, otherwise an error occurs.

A final comment regards the syntax: some list operations are reached
by a dot notation, as in C.append(e), while other operations requires
the list object as an argument to a function, as in len(C). Although
C.append for a programmer behaves as a function, it is a function that
is reached through a list object, and it is common to say that append is
a method in the list object, not a function. There are no strict rules in
Python whether functionality regarding an object is reached through
a method or a function.

2.2.2 For Loops

The Nature of For Loops. When data are collected in a list, we often
want to perform the same operations on each element in the list. We
then need to walk through all list elements. Computer languages have
a special construct for doing this conveniently, and this construct is in
Python and many other languages called a for loop. Let us use a for
loop to print out all list elements:

degrees = [0, 10, 20, 40, 100]
for C in degrees:
print ’list element:’, C
print ’The degrees list has’, len(degrees), ’elements’

The for C in degrees construct creates a loop over all elements in the
list degrees. In each pass of the loop, the variable C refers to an element
in the list, starting with degrees[0], proceeding with degrees[1], and
so on, before ending with the last element degrees[n-1] (if n denotes
the number of elements in the list, len(degrees)).

The for loop specification ends with a colon, and after the colon
comes a block of statements which does something useful with the
current element. Each statement in the block must be indented, as we
explained for while loops. In the example above, the block belonging
to the for loop contains only one statement. The final print statement
has the same indentation (none in this example) as the for statement
and is executed as soon as the loop is terminated.

As already mentioned, understanding all details of a program by
following the program flow by hand is often a very good idea. Here, we
first define a list degrees containing 5 elements. Then we enter the for

2.2 Lists

loop. In the first pass of the loop, C refers to the first element in the
list degrees, i.e., the int object holding the value 0. Inside the loop we
then print out the text ’1list element:’ and the value of C, which is 0.
There are no more statements in the loop block, so we proceed with
the next pass of the loop. C then refers to the int object 10, the output
now prints 10 after the leading text, we proceed with C as the integers
20 and 40, and finally C is 100. After having printed the list element
with value 100, we move on to the statement after the indented loop
block, which prints out the number of list elements. The total output
becomes

list element: O

list element: 10

list element: 20

list element: 40

list element: 100

The degrees list has 5 elements
Correct indentation of statements is crucial in Python, and we therefore
strongly recommend you to work through Exercise 2.26 to learn more

about this topic.

Making the Table. Our knowledge of lists and for loops over elements
in lists puts us in a good position to write a program where we collect
all the Celsius degrees to appear in the table in a list Cdegrees, and then
use a for loop to compute and write out the corresponding Fahrenheit
degrees. The complete program may look like this:

Cdegrees = [-20, -15, -10, -5, 0, 5, 10, 15, 20, 25, 30, 35, 40]
for C in Cdegrees:

F = (9.0/5)*C + 32

print C, F

The print C, F statement just prints the value of C and F with a default
format, where each number is separated by one space character (blank).
This does not look like a nice table (the output is identical to the
one shown on page 50). Nice formatting is obtained by forcing ¢ and
F to be written in fields of fixed width and with a fixed number of
decimals. An appropriate printf format is %5d (or %5.0£) for C and %5. 1£
for F. We may also add a headline to the table. The complete program
becomes:

Cdegrees = [-20, -15, -10, -5, O, 5, 10, 15, 20, 25, 30, 35, 40]
print °’ C F’
for C in Cdegrees:

F = (9.0/5)*C + 32

print ’%5d %5.1f° % (C, F)

This code is found in the file c2f_table_list.py and its output be-
comes

C F
-20 -4.0
-15 5.0
-10 14.0

59

60

2 Loops and Lists

N

o

)]

oo
[efelololololeololoXe]

2.3 Alternative Implementations with Lists and Loops

We have already solved the problem of printing out a nice-looking con-
version table for Celsius and Fahrenheit degrees. Nevertheless, there are
usually many alternative ways to write a program that solves a spe-
cific problem. The next paragraphs explore some other possible Python
constructs and programs to store numbers in lists and print out tables.
The various code snippets are collected in the program file session.py.

2.3.1 While Loop Implementation of a For Loop
Any for loop can be implemented as a while loop. The general code

for element in somelist:
<process element>

can be transformed to this while loop:

index = 0

while index < len(somelist):
element = somelist[index]
<process element>
index += 1

In particular, the example involving the printout of a table of Celsius
and Fahrenheit degrees can be implemented as follows in terms of a
while loop:

Cdegrees = [-20, -15, -10, -5, O, 5, 10, 15, 20, 25, 30, 35, 40]
index = 0
print °’ C F’
while index < len(Cdegrees):
C = Cdegrees[index]
F = (9.0/5)*C + 32
print ’%5d %5.1f’ % (C, F)
index += 1

2.3.2 The Range Construction

It is tedious to write the many elements in the Cdegrees in the previ-
ous programs. We should use a loop to automate the construction of

2.3 Alternative Implementations with Lists and Loops

the Cdegrees list. The range construction is particularly useful in this
regard:

e range(n) generates integers 0, 1, 2, ..., n-1.

e range(start, stop, step) generates a sequence if integers start,
start+step, start+2*step, and so on up to, but not including, stop.
For example, range(2, 8, 3) returns 2 and 5 (and not 8), while
range(1, 11, 2) returns 1, 3, 5, 7, 9.

e range(start, stop) is the same as range(start, stop, 1).

A for loop over integers are written as

for i in range(start, stop, step):

We can use this construction to create a Cdegrees list of the values
—20,—15,...,40:

Cdegrees = []
for C in range(-20, 45, 5):
Cdegrees. append(C)

Note that the upper limit must be greater than 40 to ensure that 40 is
included in the range of integers.

Suppose we want to create Cdegrees as —10,—7.5, —5,...,40. This
time we cannot use range directly, because range can only create inte-
gers and we have decimal degrees such as —7.5 and 1.5. In this case,
we introduce an integer counter ¢ and generate the C' values by the
formula C = —10+1¢-2.5 for ¢ = 0,1,...,20. The following Python
code implements this task:

Cdegrees = []

for i in range(0, 21):
C = -10 + ix2.5
Cdegrees.append (C)

2.3.3 For Loops with List Indices

Instead of iterating over a list directly with the construction

for element in somelist:

we can equivalently iterate of the list indices and index the list inside
the loop:

for i in range(len(somelist)):
element = somelist[i]

Since len(somelist) returns the length of somelist and the largest
legal index is len(somelist)-1, because indices always start at 0,

61

62

2 Loops and Lists

range(len(somelist)) will generate all the correct indices: 0, 1, ...,
len(somelist)-1.

Programmers coming from other languages, such as Fortran, C,
C++, Java, and C#, are very much used to for loops with integer
counters and usually tend to use for i in range(len(somelist)) and
work with somelist[i] inside the loop. This might be necessary or con-
venient, but if possible, Python programmers are encouraged to use for
element in somelist, which is more elegant to read.

Iterating over loop indices is useful when we need to process two
lists simultaneously. As an example, we first create two Cdegrees and
Fdegrees lists, and then we make a list to write out a table with
Cdegrees and Fdegrees as the two columns of the table. Iterating over
a loop index is convenient in the final list:

Cdegrees = []

n =21
C_min = -10
C_max = 40

dC = (C_max - C_min)/float(n-1) # increment in C
for i in range(0, n):

C = -10 + ixdC

Cdegrees.append(C)

Fdegrees = []

for C in Cdegrees:
F = (9.0/5)*C + 32
Fdegrees.append (F)

for i in range(len(Cdegrees)):
C = Cdegrees[i]
F = Fdegrees[i]
print ’%5.1f %5.1f’ % (C, F)

Instead of appending new elements to the lists, we can start with lists
of the right size, containing zeros, and then index the lists to fill in the
right values. Creating a list of length n consisting of zeros (for instance)
is done by

somelist = [0]*n

With this construction, the program above can use for loops over in-
dices everywhere:

n =21
C_min = -10
C_max = 40

dC = (C_max - C_min)/float(n-1) # increment in C

Cd